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Abstract: The problem of pyrethroid residues has become a topical issue, posing a potential food
safety concern. Pyrethroid pesticides are widely used to prevent and combat pests in Hami melon
cultivation. Due to its high sensitivity and accuracy, gas chromatography (GC) is used most frequently
for detecting pyrethroid pesticide residues. However, GC has a high cost and complex operation.
This study proposed a deep-learning approach based on the one-dimensional convolutional neural
network (1D-CNN), named Deepspectra network, to detect pesticide residues on the Hami melon
based on visible/near-infrared (380–1140 nm) spectroscopy. Three combinations of convolution
kernels were compared in the single-scale Deepspectra network. The convolution group of “5 × 1”
and “3 × 1” kernels obtained a better overall performance. The multiscale Deepspectra network was
compared to three single-scale Deepspectra networks on the preprocessing spectral data and obtained
better results. The coefficient of determination (R2) for lambda-cyhalothrin and beta-cypermethrin
was 0.758 and 0.835, respectively. The residual predictive deviation (RPD) for lambda-cyhalothrin
and beta-cypermethrin was 2.033 and 2.460, respectively. The Deepspectra networks were compared
with two conventional regression models: partial least square regression (PLSR) and support vector
regression (SVR). The results showed that the multiscale Deepspectra network outperformed the
other models. It was found that the multiscale Deepspectra network could be a novel approach for
the quantitative estimation of pyrethroid pesticide residues on the Hami melon. These findings can
also provide an effective strategy for spectral analysis.

Keywords: visible/near-infrared spectroscopy; deep learning; pesticide residues; spectral analysis;
Hami melon

1. Introduction

Pyrethroid pesticides are widely used to prevent and combat pests due to their stability
and high effectiveness, but they cause pesticide residue pollution problems in agricultural
products worldwide [1]. The Chinese Standard (NY/T 427—2016) [2] limits the residue
content of pyrethroid pesticides on muskmelons. Hami melon, a species of thick rind
muskmelon, is the product of geographical indications in Xinjiang [3]. Its pulp is sweet
and nutritious with a high reputation in the domestic and international markets. Hami
melon is susceptible to pests during cultivation, and farmers often use pyrethroid pesticides
for pest prevention. The excessive use of pyrethroid pesticides will cause residues on the
Hami melon surface and in the soil, contaminating the fruit. Pyrethroid pesticide residues
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have become a topical issue in society and pose a potential safety concern for agricultural
products. Therefore, finding a rapid and nondestructive method to detect pyrethroid
pesticide residues on the Hami melon is necessary.

Gas chromatography (GC) is the most frequently used method to detect pyrethroid
pesticide residues due to its high sensitivity and accuracy [4]. However, it requires sam-
ple pretreatment, and the pretreatment and detection steps are complex and costly [5].
Visible/near-infrared (Vis/NIR) spectroscopy, which is a potential detection technique for
pesticide residues, has the advantages of being rapid, nondestructive, convenient, and low-
cost [6]. Some scholars conducted a qualitative analysis of pesticide residues in fruits and
vegetables based on Vis/NIR spectroscopy. Ndung’u et al. [7] used short-wave NIR spec-
troscopy (750–900 nm) to rapidly screen for pesticides (a formulation of beta-cyfluthrin and
chloropyriphos, another formulation of metalaxyl and mancozeb) in spinach. Using princi-
pal component data, the shallow-learning approaches of support vector machines (SVM),
random forest (RF), and artificial neural networks (ANN) achieved a perfect accuracy of
100%. Chen et al. [8] proposed the contrastive principal component analysis to reduce
the feature dimension of near-infrared spectral data (900–1700 nm). The results showed
that this method could classify the fruits (apple and pear) as with or without chlorpyrifos
residues. For the discrimination of chlorpyrifos residue levels (mixing ratio of pesticide and
water as 1:0, 1:200, 1:500, 1:800, and 1:1000), a back propagation neural network (BPNN)
based on Vis/NIR spectroscopy (300–2500 nm) was proposed and obtained a better test
accuracy of 96.67% [9]. Nazarloo et al. [10] used Vis/NIR spectroscopy (400–1050 nm) with
partial least squares discriminant analysis (PLS-DA) to identify the safe and unsafe levels
of profenofos residues. The model accuracy of the prediction set was 91.66%.

Most qualitative analyses of pesticide residues obtained good accuracy. Moreover,
Vis/NIR spectroscopy also has the potential to quantitatively estimate pesticide residues.
Yazici et al. [11] used NIR spectroscopy (900–2500 nm) and partial least squares regression
(PLSR) to detect compound pesticide residues (boscalid and pyraclostrobin) in strawber-
ries. The residual predictive deviation for boscalid and pyraclostrobin was 2.28 and 2.31,
respectively. Nazarloo et al. [12] detected profenofos residues on tomatoes using Vis/NIR
spectroscopy (350–1100 nm) and the ANN model. After spectral feature extraction with
the successive prediction algorithm (SPA), the model performance was the best with a
coefficient of determination of 0.982 and a root mean square error of 0.166. The above
prediction results were admissible.

Previous studies mainly focused on detecting pesticide residues in fruits and vegeta-
bles by combining Vis/NIR spectral information with shallow-learning methods. As the
deep-learning approach evolved, further studies indicated that Vis/NIR spectral analysis
using the end-to-end deep-learning networks could improve the model accuracy in dis-
criminating the pesticide residues of fruits and vegetables. A single-scale, one-dimensional
convolutional neural network (1D-CNN) was proposed to recognize pesticide residues
(lambda-cyhalothrin, trichlorfon, phoxim, and mixtures of trichlorfon and phoxim) on
garlic chive leaves, achieving a better accuracy of 97.9% [13]. 1D-CNN models using multi-
scale convolution were proposed to identify the types and levels of pesticide residues on
the Hami melon [14,15]. The test results showed that the multiscale convolution networks
provided a better model performance than the single-scale networks. The 1D-CNN model
performed well in the qualitative analysis of pesticide residues. However, the use of deep-
learning networks for quantitatively estimating pesticide residues in fruits and vegetables
has yet to be investigated.

The objectives of this study were (1) to explore the feasibility of Vis/NIR spectroscopy
for the detection of pyrethroid pesticide residues on the Hami melon; (2) to establish
Deepspectra networks based on the 1D-CNN and evaluate the impact of convolution
kernel combination and architecture on the Deepspectra networks; and (3) to investigate
the potential of Deepspectra networks in the spectral analysis compared to conventional
regression models.



Foods 2023, 12, 1742 3 of 14

2. Materials and Methods
2.1. Sample Preparation

A total of 140 Hami melons (Xizhoumi) were purchased from a local agricultural
product trading center in Shihezi, Xinjiang, China. We chose two pyrethroid pesticides
(lambda-cyhalothrin and beta-cypermethrin) as the research object, and they were pur-
chased from a local agricultural material market in Shihezi, Xinjiang, China. The pesticide
specifications are shown in Table 1. All Hami melons were stored at 25 ◦C and a relative
humidity of 30% until sample preparation. The pesticide solution was prepared by mix-
ing lambda-cyhalothrin and beta-cypermethrin with water in ratios of 1:200, 1:400, and
1:800. There were 35 Hami melon samples in each group under three different ratios of
the pesticide solution. The remaining Hami melons were sprayed with clean water as
a control group. All samples were placed in the laboratory for ten hours until spectral
data acquisition.

Table 1. The pesticide specifications.

Pesticide Dosage Form Active Ingredient
Content Manufacturing Company

Lambda-cyhalothrin Microemulsion 2.5% Shandong Caoda Chemical Co.,
Ltd., Heze, Shandong, China

Beta-cypermethrin Emulsifiable
concentrate 4.5% Jinan Yinong Chemical Co.,

Ltd., Jinan, Shandong, China

2.2. Spectral Data Acquisition and Preprocessing
2.2.1. Instrument and Software for Acquisition

Figure 1 shows the visible/near-infrared spectroscopy system used in this study,
including a miniature fiber optic spectrograph with a spectral resolution of 0.69 nm, a fiber
optic probe, a light source consisting of two halogen lamps, a fruit tray, a lifting platform,
and a computer with a spectrometer operating software. The wavelength range of the
spectrum used in this study was 380–1140 nm.
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Figure 1. Visible/near-infrared spectroscopy system [14].

Table 2 shows the specifications of the main instruments and software for spectral
data acquisition. The integration time, moving average width, and average number of
scans were 0.1 s, 4, and 10, respectively. Before sample spectrum spectral data acquisition,
the initial spectrum (Rinitial) was calibrated into reflectance spectrum (Rcalibration) by using
the white and dark references, as shown in Equation (1). The dark reference (Rdark) was
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obtained by turning off the light source. The white reference (Rwhite) was obtained by using
a white Teflon bar when the light source was turned on.

Rcalibration =
Rinitial − Rcalibration

Rwhite − Rdark
(1)

Table 2. Specifications of the main instruments and software for spectral data acquisition.

Acquisition Instrument
and Software Version Manufacturing Company

Miniature fiber optic
spectrograph QE Pro-FL Ocean Insight, Inc., Dunedin, FL, USA

Fiber optic probe QP600-2-VIS-NIROOS-
00-5172-11 Ocean Insight, Inc., Dunedin, FL, USA

Halogen lamp MR16 Signify (China) Investment Co., Ltd.,
Shanghai, China

Spectrometer operating
software OceanView 1.6.7 Ocean Insight, Inc., Dunedin, FL, USA

2.2.2. Spectral Acquisition Position

To obtain the representative spectrum as the sample spectrum, we selected the spectral
acquisition position using the method proposed by Hu et al. [16], as shown in Figure 2.
There were three positions (stem, equator, and calyx) for each Hami melon. Then, four
regions with an interval angle of 90◦ were marked at the equator position. Therefore, we
acquired four spectra from each Hami melon and recorded its average spectrum as the
sample spectral data.
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2.2.3. Spectral Data Preprocessing

To enhance the spectral resolution and sensitivity, the first-order derivative (1st D),
as a widely-used preprocessing method, was used to remove background interference,
eliminate baseline drift, and separate superposed peaks [17]. In this study, the derivative
was computed with the Savitsky–Golay convolution. The number of points in the filter was
5. The order of the polynomial was 2.

2.3. Reference Measurement of the Pesticide Residue Contents

The reference measurement was performed after spectral data acquisition. The ref-
erence values of the pesticide residue contents were measured in the Food Quality Su-
pervision and Testing Center (Shihezi), Ministry of Agriculture and Rural Affairs. The
measurement procedure was consistent with Yu et al. [15]. (1) Standard preparation: The
standard mixture intermediate and working solutions were prepared in n-hexane at a
concentration of 20.0 mg/mL and 1.0 mg/mL, respectively. The solutions were stored in
brown reagent bottles at 4 ◦C and placed at room temperature before use. (2) Sample Prepa-
ration: The pulps and rinds of each Hami melon were cut into samples with a thickness
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of approximately 1.50 cm, and the samples were crushed in a food processor. Then, the
treated samples were transferred to the marked sample bottles. They were stored at −18 ◦C
and placed at room temperature before measurement. A QuEChERS (quick, easy, cheap,
effective, rugged, and safe) method was used for sample preprocessing, including extrac-
tion and clean-up, according to the British Standard (BS EN 15662:2008) [18]. (3) Extraction:
A 7.5 g amount of the crushed sample was weighed with an electronic balance and was
transferred to a 50 mL centrifuge tube. Then, 15 mL of acetonitrile was added. The mixture
was vortexed at a speed of 3000 r/min with a vortex shaker for 40 s. After homogenization
for 1 min, 5 g of NaCl was added to the mixture and again vortexed at a speed of 3000 r/min
for 40 s. Subsequently, the tubes were centrifuged with a high-speed centrifuge at a speed
of 7000 r/min for 5 min to separate the two layers. An 8 mL volume of the supernatant
was removed. (4) Clean-up: An 8 mL volume of the supernatant was transferred to a
15 mL QuEChERS clean-up centrifuge tube. Then, the mixture was vortexed at a speed of
3000 r/min for 40 s and centrifuged at a speed of 7000 r/min for 5 min. A 4 mL volume of
the supernatant was transferred to a glass tube and evaporated to dryness with a nitrogen
evaporator. Finally, the extract was redissolved in 2 mL of n-hexane. Table 3 shows the
specifications of the main instruments and reagents for the standard preparation, sample
preparation, extraction, and clean-up. (5) GC measurement: A gas chromatograph with a
micro electron capture detector (GC–µECD) was used for reference measurement of the
pesticide residue contents according to the Chinese Standard (NY/T 761—2008) [19]. The
GC–µECD conditions are shown in Table 4.

Table 3. Specifications of the main instruments and reagents for reference measurement of the
pesticide residue contents.

Instrument/Reagent Specification Manufacturing Company

Electronic balance BSA4202S-CW Sartorius Inc., Gottingen, Germany
Vortex shaker MS 3 Control IKA Inc., Staufen, Germany

High-speed centrifuge TG16-WS Xiangyi Centrifuge Instrument Co.,
Ltd., Changsha, China

Nitrogen evaporator N-EVAP-112 Organomation Associates, Inc.,
Burlington, VT, USA

GC–µECD Agilent 7890A Agilent Technologies Inc., Santa Clara,
CA, USA

Certified pesticide
standard solution

1000 mg/L and purities
greater > 98.0%

Agro-Environmental Quality
Supervision and Testing Center,

Ministry of Agriculture and Rural
Affairs, Tianjin, China

n-hexane chromatographically pure
CAS 110-54-3

Duksan Pure Chemicals Co., Ltd.,
Ansansi, Korea

Acetonitrile chromatographically pure ANPEL Laboratory Technologies
(Shanghai) Inc., Shanghai, China

QuEChERS clean-up
centrifuge tube

5982-0029
400.1 mg PSA, 400.1 mg

C18 EC, 45.0 mg bulk
carbograph, and

1199.8 mg magnesium
sulfate (purity from 98.5%

to 101.5%)

Agilent Technologies Inc., Santa Clara,
CA, USA
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Table 4. The GC–µECD conditions.

Parameters Conditions

Analytical column HP-5, 30 m × 0.320 mm × 0.25 µm
Injection volume 1 µL
Injection mode Spitless

Carrier gas Nitrogen, constant flow, 2.0 mL/min
Septum purge 3.0 mL/min

Makeup 60 mL/min
Inlet temperature 220 ◦C

Oven temperature
100 ◦C for 1 min

then 15 ◦C/min to 190 ◦C and hold for 2 min
then 6 ◦C/min to 280 ◦C and hold for 2 min

Detector temperature 320 ◦C

2.4. Deepspectra Network Implementation
2.4.1. Environment

The computations were performed on a Lenovo computer with a Windows 10 (64-bit)
operating system and an Intel (R) Core (TM) I7-8700 @3.20 GHz CPU. All Deepspectra
networks were implemented on PyTorch 1.13.1 framework using Python 3.7.3 in Spyder
IDE 3.3.3.

2.4.2. Architecture

A Deepspectra network based on the 1D-CNN was developed. The architecture of
a typical CNN is structured as a series of layers, including convolution (Conv), pooling,
flattened (Flatten), and fully connected (FC) layers [20]. The input of the network was
the preprocessing spectral data. The output of the network was the object character. The
capability of the CNN model to capture features can improve by stacking the convolution
and pooling layers. As a one-dimensional signal, the Vis/NIR spectral data had a low
dimension and density, so we stacked the stage of convolution and pooling layers one
time. The single-scale Deepspectra network had an input layer, two convolution layers,
two max-pooling layers, a flattened layer, a fully connected layer, and an output layer, as
shown in Figure 3.
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Figure 3. Architecture of the single-scale Deepspectra network. 1000 × 1 is the input of the network,
which is the preprocessing spectral data with a length of 1000 and a dimension of 1; Kernel 32@d × 1
is 32 convolution kernels of the size d × 1; 2:1 is the size of the max pooling kernel; 32 × l × 1 is the
size of the output feature map of the network layer, which is the depth × length × width; 7936 × 1 is
the size of the output feature map of the flattened layer, which is the length × width; 16 and 1 are the
number of the neurons in the network layer.
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Increasing the network depth is the most straightforward method to improve the per-
formance of the Deepspectra network, but it renders the enlarged network more prone to
overfitting [21]. The multichannel convolution provides an effective solution. A Deepspec-
tra network based on the parallel convolution architecture was proposed for quantitative
spectral analysis [22]. To evaluate the effect of the multichannel convolution architecture
on model performance, we designed the multiscale Deepspectra network. The multiscale
Deepspectra network had an input layer, three parallel convolution channels, a concatena-
tion layer (Concat), a flattened layer, a fully connected layer, and an output layer, as shown
in Figure 4. Moreover, two convolutional and two max-pooling layers were in each convolu-
tion channel. The concatenation layer was used for deep-feature fusion after multichannel
convolution, and the concatenation axis was the length, shown in Equation (2) to (4).

yd×l×w
c = yd×l×w

1 + yd×l×w
2 + yd×l×w

3 (2)

lc = l1 + l2 + l3 (3)

dc = d1 = d2 = d3, wc = w1 = w2 = w3 = 1 (4)

where yc is the output feature map of the concatenation layer; y1, y2, and y3 are the output
feature map of three convolution channels; and d, l, and w are the depth, length, and width
of the feature map, respectively.
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Figure 4. Architecture of the multiscale Deepspectra network. 1000 × 1 is the input of the network,
which is the preprocessing spectral data with a length of 1000 and a dimension of 1; Kernel 16@d × 1
is 16 n convolution kernels of the size d × 1; 2:1 is the size of the max pooling kernel; 16 × l × 1 is the
size of the output feature map of the network layer, which is the depth × length × width; 11,856 × 1
is the size of the output feature map of the flattened layer, which is the length × width; 16 and 1 are
the number of the neurons in the network layer.

2.4.3. Hyperparameters

Generally, a large convolution kernel has a large receptive field and obtains better
global features. However, using multiple large convolution kernels can lead to an explosion
of parameters [23]. Therefore, we used a larger kernel for the first convolution layer and
a smaller kernel for the second convolution layer. The convolution channels 1, 2, and 3
used the combination of convolution kernels as “7 × 1 and 5 × 1”, “7 × 1 and 3 × 1”, and
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“5 × 1 and 3 × 1”, respectively. To control network parameters, 32 and 16 kernels were
used in the single-scale and multiscale Deepspectra networks, respectively. The pooling
mode was max pooling. The padding of convolution and pooling was valid. The stride of
the sliding window in the convolution and pooling layers was 1 and 2, respectively. We
chose the rectified linear unit (ReLU) as the activation function in the convolution layers,
and it was the most widely used and effective [24]. The fully connected and output layers
had 16 and 1 neurons, respectively. The linear was the activation function in the output
layer. The mean square error (MSE) was the loss function, shown in Equation (5).

MSE =
∑n

i=1

(
yi, actual − yi, predicted

)2

n
(5)

where yi, actual is the reference values of the pesticide residue contents in the i-th Hami melon
sample; yi, predicted is the predicted values of the pesticide residue contents in the i-th Hami
melon sample; and n is the number of Hami melon samples in the corresponding dataset.

The adaptive moment estimation (Adam) was used to optimize model training. The
learning rate was 0.005. The remaining parameters of the Adam optimizer were default.
Considering the exponential scale of 2n and the small size of the sample dataset, we chose
a small batch size of 16. Moreover, batch normalization was added after each convolution
layer. Furthermore, it was also used after the flatten layer to replace the dropout method,
which could effectively accelerate Deepspectra network training and avoid overfitting [25].
The max epochs were set to 100. To obtain the best model, we chose the weight for modeling
when the loss of the validation set was minimal.

2.5. Conventional Regression Models

For Vis/NIR spectral analysis, partial least square regression (PLSR) and support
vector regression (SVR) were the most used as the linear and nonlinear multivariate quan-
titative correction methods [26]. We chose the best latent variables (LVs) to establish the
PLSR model. The radial basis function (RBF) was used as the kernel function in the SVR
model, and its hyperparameters of the penalty coefficient (c) and kernel function parameter
(g) were optimized with grid search (GS). The mathematical computing software MAT-
LAB (R2016b, MathWorks Inc., Natick, MA, USA) was used to establish the conventional
regression models.

2.6. Model Evaluation

Four parameters are often used for the evaluation of model performance, including
the coefficient of determination (R2) and the root mean square error (RMSE) for calibration
(R2

c , RMSEC), validation (R2
v, RMSEV), and prediction (R2

p, RMSEP), which are shown
in Equations (6) and (7) [27]. In addition, the residual predictive deviation (RPD) of the
prediction set is also an evaluation parameter, which is shown in Equation (8). Generally,
a regression model with better performance has higher values of R2 and lower values
of RMSE [28]. In RPD, values of 1.5–2.0 are initiatory for prediction, whereas values of
2.0–2.5 make an admissible prediction, values of 2.5–3.0 are suitable for prediction, and
values of >3.0 are sufficient for application [29].

R2 = 1 −
∑n

i=1

(
yi, actual − yi, predicted

)2

∑n
i=1
(
yi, actual − yactual

)2 (6)

RMSE =

√√√√∑n
i=1

(
yi, actual − yi, predicted

)2

n
(7)
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RPD =
1√

1 − R2
p

(8)

where yi, actual is the reference values of the pesticide residue contents in the i-th Hami
melon sample; yi, predicted is the predicted values of the pesticide residue contents in the
i-th Hami melon sample; yactual is the mean reference value of all Hami melon samples;
and n is the number of Hami melon samples in the corresponding dataset.

3. Results
3.1. Statistics of the Reference Values

The reference values of five samples were abnormal, so one hundred samples were
used for this study. The maximum and minimum lambda-cyhalothrin residue contents
were 32.36 and 0.96 µg/g, respectively. The maximum and minimum beta-cypermethrin
residue contents were 12.74 and 0.37 µg/g, respectively. The concentration fluctuation
range of the pesticide residues was extensive. It was necessary to adopt an appropriate
data division method to obtain an ideal dataset. Typically, 20% of the original sample set
was used as a validation, 20% as a prediction, and 60% as a correction set [27]. Moreover,
this study used an interval sampling method to divide the 100 samples [30]. Table 5 shows
the statistics of the residue contents of lambda-cyhalothrin and beta-cypermethrin in the
dataset. The residue contents of beta-cypermethrin were lower than those of lambda-
cyhalothrin. The concentration fluctuation range of the calibration set covered entirely
the range of the validation prediction set. In addition, the average values and standard
deviation (SD) values of the three sets were close to each other. The statistical characteristics
indicated that the sample division was reasonable [31].

Table 5. The statistics of the reference values of the pesticide residue contents in the dataset.

Pesticides Dataset
Number of

Samples
Residue Contents/(µg/g)

Max Min Mean SD

Lambda-
cyhalothrin

Calibration set 60 32.36 0.96 10.91 8.83
Validation set 20 31.79 1.22 11.32 9.03
Prediction set 20 31.31 1.14 10.97 8.79
Total samples 100 32.36 0.96 11.00 8.86

Beta-
cypermethrin

Calibration set 60 12.74 0.37 3.72 3.37
Validation set 20 12.21 0.46 3.84 3.47
Prediction set 20 12.19 0.42 3.76 3.44
Total samples 100 12.74 0.37 3.75 3.41

3.2. Spectral Characteristics

Figure 5 shows the Vis/NIR raw diffuse reflection spectra and 1st D transformed
spectra of the pesticide residues on the Hami melon. The rind color of the Xizhoumi
Hami melon is green due to chlorophylls. The bright color of the chlorophylls obscured
other pigments [7]. There were two absorption peaks (410–430 and 670–680 nm) in the
visible region (400–700 nm), which were associated with the absorption bands of the
chlorophylls [16]. The weak absorbance peak at 830–840 nm was associated with the third
overtone of the C–H functional group [32]. The strong absorbance peak at 970–980 nm
was associated with water [33]. Similar tendencies in the raw spectra demonstrated
that each sample had similar components. The different spectral reflectance suggested
differences in the pesticide residues. We needed to analyze the spectral data further
using the Deepspectra networks.
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3.3. Impact of the Convolution Kernel Combination and Architecture on the Deepspectra Networks

Table 6 shows the results of the Deepspectra networks for detecting lambda-cyhalothrin
and beta-cypermethrin residues. Three combinations of convolution kernels were com-
pared. For all convolution combinations, the R2

c was over 0.990, the R2
v was over 0.810, the

RMSEC was low, and the RMSEV was higher than the RMSEC. The results showed that all
single-scale Deepspectra networks obtained better training results without overfitting. For
the detection of the lambda-cyhalothrin residues, when the combination of convolution
kernels was 5 × 1 and 3 × 1, the prediction results were the best: the R2

p was 0.725, the
RMSEP was 4.606, and the RPD was 1.909. The single-scale Deepspectra network config-
ured with the 5 × 1 and 3 × 1 convolution kernel had an initiatory prediction performance.
The prediction result of the beta-cypermethrin residues was better than that of the lambda-
cyhalothrin residues. The RPD of three Deepspectra networks was over 2.200. It indicated
that the prediction was admissible. The convolution kernel combination of 7 × 1 and 3 × 1
obtained the best results: the R2

p was 0.814, the RMSEP was 1.484, and the RPD was 2.320.

Table 6. Results of the Deepspectra networks with different combinations of convolution kernels.

Pesticides Combination of
Convolution Kernels

Calibration Set Validation Set Prediction Set

R2
c RMSEC R2

v RMSEV R2
p RMSEP RPD

Lambda-
cyhalothrin

7 × 1 and 5 × 1 0.997 0.490 0.823 3.795 0.719 4.661 1.886
7 × 1 and 3 × 1 0.997 0.488 0.810 3.940 0.709 4.751 1.850
5 × 1 and 3 × 1 0.996 0.471 0.828 3.742 0.725 4.606 1.909

Multiscale 0.997 0.446 0.829 3.729 0.758 4.324 2.033

Beta-
cypermethrin

7 × 1 and 5 × 1 0.996 0.222 0.828 1.441 0.794 1.565 2.201
7 × 1 and 3 × 1 0.997 0.182 0.850 1.347 0.814 1.484 2.320
5 × 1 and 3 × 1 0.997 0.190 0.832 1.426 0.805 1.520 2.265

Multiscale 0.995 0.232 0.876 1.223 0.835 1.400 2.460

For the detection of the lambda-cyhalothrin and beta-cypermethrin residues, the
best combination of convolution kernels in the single-scale Deepspectra network was
different. The above results show that the single combination of convolution kernels
could not adapt to detecting different pesticide residues. The impact of the multichannel
convolution architecture on the Deepspectra network was investigated. For the detection of
the lambda-cyhalothrin residues, the R2

p was over 0.750, and the RPD was over 2.000. The
model prediction performance was admissible. For the detection of the lambda-cyhalothrin
residues, the R2

p was over 0.830, and the RPD was close to 2.500. The results showed
that the multichannel convolution architecture could improve the model performance.
Moreover, the detection of the lambda-cyhalothrin residues was better than that of the
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beta-cypermethrin residues due to lower RMSE, higher R2, and admissible RPD in the
calibration, validation, and prediction sets.

3.4. Comparison of the Deepspectra Networks with Conventional Regression Models

Figure 6 shows the results of the Deepspectra networks and conventional regression
models on the prediction set. The Deepspectra networks provided better performance than
the conventional regression models. The R2

p and RPD of PLSR and SVR were much lower
than the best performance of the Deepspectra networks. Compared with PLSR in detecting
the lambda-cyhalothrin residues, the R2

p and RPD of the multiscale Deepspectra network
were improved by 10.33% and 13.77%, respectively. Moreover, only the performance of
the multiscale Deepspectra network was admissible. The model performance of the worst
Deepspectra network was also higher than PLSR and SVR.
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Figure 6. Results of the Deepspectra networks and conventional regression models. The single-scale
Deepspectra network configured convolution kernels of 5 × 1 and 3 × 1, 7 × 1 and 5 × 1, and 7 × 1
and 3 × 1 were named S-DsNet1, S-DsNet2, and S-DsNet3, respectively; the multiscale Deepspectra
network was named M-DsNet.

The detection results of the beta-cypermethrin residues on conventional regression
models were better than those of the lambda-cyhalothrin residues. It corresponded to
the Deepspectra networks. The R2

p of PLSR and SVR was improved but was less than
0.800. The RPD of PLSR and SVR was over 2.000, which showed that the prediction
performance was admissible. However, it was also much lower than the performance of the
multiscale Deepspectra network. Compared with SVR in detecting the lambda-cyhalothrin
residues, the R2

p and RPD of the multiscale Deepspectra network were improved by 5.96%
and 13.31%, respectively. Three single-scale Deepspectra networks also outperformed the
conventional regression models.

4. Discussion

This study proposed Vis/NIR (380–1140 nm) spectroscopy coupled with Deepspec-
tra networks to detect two pyrethroid pesticide residues (lambda-cyhalothrin and beta-
cypermethrin) on the Hami melon. The results showed that the single-scale Deepspectra
network stacked with the 1D stage of the convolution and pooling layers was successfully
used for Vis/NIR spectral analysis. It was consistent with Tian et al. [24] and Chen et al. [34].
We further studied the impact of convolution kernel combinations on the Deepspectra
networks. We found that the optimal convolution kernel combination in detecting different
pesticide residues was different. The RPD of the single-scale Deepspectra network was
less than 2.0 for the detection of the lambda-cyhalothrin residues. It showed that the
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deep features captured with the single-channel convolution were insufficient to detect
two pesticides.

To improve the ability of the Deepspectra network to capture multilevel features,
we proposed the multiscale Deepspectra network incorporating three-channel convolu-
tion. The prediction results indicated that the multiscale Deepspectra network provided
improved performance. The combination of convolution kernels used in each channel
was different. It allowed the Deepspectra network to capture different scales of the lo-
cal features. The multiscale Deepspectra network learned patterns from limited spectral
deep features through concatenation mode. This corresponded to a previous study that
suggested that an end-to-end deep-learning approach based on the Inception module
performs better [22]. A review of spectral and deep-learning-based quality evaluation of
food and agricultural products also suggested that the multichannel convolution effectively
improved the performance of deep networks [35].

In addition, all Deepspectra networks outperformed the conventional regression
models. Significantly, the model performance of the multiscale Deepspectra network was
much higher than PLSR and SVR. However, the RPD of the multiscale Deepspectra network
was at least 2.5. It suggested that the prediction performance needed to be improved for
the application. We will improve the Deepspectra network architecture and optimize the
hyperparameters so that its RPD can reach 2.5 or over 3.0. A large dataset could also
effectively improve the performance of deep-learning models during training time [36].
The small amount of data used in this study may be another reason for the unsatisfactory
performance of the Deepspectra networks.

No matter which Deepspectra network we chose, detecting the beta-cypermethrin
residues obtained a better result. It may be due to the dispersion of the data set. The
beta-cypermethrin dataset with a low SD of 3.41 had good stability. The stability of the
dataset was also an essential factor in establishing a suitable model [30]. In addition, we
need to consider the impact of individual differences on the Hami melon. More Vis/NIR
spectral data of pesticide residues on the Hami melon need to be acquired to train the
model to improve the robustness of the Deepspectra network in the future.

As mentioned above, end-to-end deep-learning approaches (take the multiscale Deep-
spectra network as a representative) have potential application values in the quantitative
spectral analysis of pesticide residues. Sindhu et al. [37] also reported a similar point.

5. Conclusions

Deepspectra networks were designed to capture features from Vis/NIR spectra with-
out dimensional reduction and feature extraction based on prior knowledge. We performed
a Vis/NIR spectroscopy coupled with the multiscale Deepspectra network to detect lambda-
cyhalothrin and beta-cypermethrin residues on Hami melon. Our findings can provide a
theoretical basis and strategy for detecting pesticide residues on the large and thick rind
fruit. In addition, the multiscale Deepspectra network included three parallel convolu-
tion channels to capture different global and local features, which looked promising for
quantitative spectral analysis.

Extending the method’s scope and demonstrating its practical applicability in future
studies will be critical. It puts forward higher requirements for the repeatability and
adaptability of the model. On the other hand, the Deepspectra networks were end-to-
end deep-learning approaches, and the feature extraction is performed in a ‘black box’.
Therefore, it will also be interesting to explain and visualize the spectral depth feature
extraction process.
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