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Abstract: Dairy products are susceptible to modifications in protein oxidation during heat processing,
which can lead to changes in protein function, subsequently affecting intestinal health. Despite
being a unique nutritional source, yak milk has not been thoroughly examined for the effects of its
oxidized proteins on intestinal microbiota and metabolism. Hence, this study employed different
heat treatment methods (low-temperature pasteurization, high-temperature pasteurization, and
high-temperature sterilization) to induce oxidation in yak milk proteins. The study then assessed the
degree of oxidation in these proteins and utilized mice as research subjects. Using metagenomics
and metabolomics methods, this study examined the structure of intestinal microbial communities
and metabolic products in mice consuming oxidized yak milk. The results showed a decrease in
carbonyl and total thiol contents of yak milk proteins after different heat treatments, indicating that
heat treatment causes oxidation in yak milk proteins. Metagenomic analysis of mouse intestinal
microbiota revealed significant changes in 66 genera. In the high-temperature sterilization group
(H), key differential genera included Verrucomicrobiales, Verrucomicrobiae, Akkermansiaceae, and
28 others. The high-temperature pasteurization group (M) mainly consisted of Latilactobacillus,
Bacillus, and Romboutsia. The low-temperature pasteurization group (L) primarily comprised of
Faecalibacterium, Chaetomium, Paenibacillaceae, Eggerthella, Sordariales, and 33 others. Functionally,
compared to the control group (C), the H group upregulated translation and energy metabolism
functions, the L group the M group significantly upregulated metabolism of other amino acids,
translation, and cell replication and repair functions. Based on metabolomic analysis, differential
changes in mouse metabolites could affect multiple metabolic pathways in the body. The most
significantly affected metabolic pathways were phenylalanine metabolism, vitamin B6 metabolism,
steroid hormone biosynthesis, and pantothenate and CoA biosynthesis. The changes were similar to
the functional pathway analysis of mouse metagenomics, affecting amino acid and energy metabolism
in mice. In summary, moderate oxidation of yak milk proteins exhibits a positive effect on mouse
intestinal microbiota and metabolism. In conclusion, yak milk has a positive effect on mouse intestinal
microflora and metabolism, and this study provides a scientific basis for optimizing dairy processing
technology and further developing and applying yak milk.

Keywords: yak milk; protein oxidation; intestinal microbiota; metabolism

1. Introduction

As a crucial protein source for humans, dairy products undergo structural alterations
in proteins during heat treatment in the processing stage, affecting their functionality
and nutritional value [1]. Different heat treatment procedures can have an impact on its
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nutritional value, such as high temperature pasteurization may cause some degeneration
of the protein, making some nutrients slightly reduced, but overall little effect; Ultra-high
temperature transient sterilization can kill microbes more completely, a treatment that
causes partial degeneration of proteins, but may make some nutrients more easily absorbed.
Currently, dairy products are widely recognized for their quality, taste, nutritional value,
and safety, being a vital part of the human diet [2]. The oxidative modification of proteins
in dairy products plays a significant role in their function and stability [3]. Protein ox-
idative modification is a post-translational modification process, which mainly includes
free radical oxidation, metal ion-catalyzed oxidation, and reactive oxygen-mediated oxida-
tive modification. These modifications can change the physical and chemical properties
of proteins, affect their spatial conformation and active states, thus regulating biological
activities within the organism [4,5]. Heat treatment, a common oxidative modification and
pretreatment method for dairy products [6], is a key step in their processing [7]. It can
ensure the microbial safety of dairy products [8], while causing oxidative modification
of proteins [9,10]. Research by Dash K K, et al. [11] indicates that heat treatment can kill
and deactivate microbial colonies, thereby enhancing food safety. Liu H et al. [12] found
that in casein, oxidized lysine is the most important type of oxidative modification based
on redox proteomics study of heat-induced changes in milk protein oxidative modifica-
tions. Despite the importance of heat-induced modifications for certain dairy products,
“over-processing” often occurs due to varying heat treatment temperatures, leading to the
loss of dairy nutrients and sensory quality [13]. Nevertheless, moderate heat treatments
such as pasteurization and short time ultra-high temperature treatment generally do not
significantly alter most nutrients in dairy products [14].

The gut microbiota, a key component of the human microecosystem, is often referred
to as the “second genome” or “second brain” [15]. It not only participates in bidirec-
tional communication between the gut and the brain [16], but also plays a pivotal role
in generating beneficial metabolites and regulating immune responses [17]. Research by
Koh A, et al. [18] reveals that gut microbes can break down indigestible food components
(e.g., dietary fiber), producing beneficial metabolites such as butyric acid, propionic acid,
and acetic acid. These short-chain fatty acids have been found to maintain gut health.
Belkaid Y, et al. [19] demonstrated that gut microbes could affect the differentiation of T
cells, as well as promote the generation of regulatory T cells (Treg) and Th17 cells. Treg
cells can inhibit excessive immune responses, protecting the body from self-attack, while
Th17 cells play a defensive role in resisting pathogen invasion. Additionally, gut microbes
contribute to maintaining intestinal barrier integrity, inhibiting intestinal pathogens, pro-
moting vitamin synthesis, and eliminating exogenous toxins [20]. Therefore, preserving the
diversity and balance of gut microbes is an important strategy for regulating host health.

Metagenomics is a method that investigates the entire genome of a microbial commu-
nity, utilizing high-throughput sequencing technologies to unveil the intricate relationship
between the gut microbiota and the host [21]. Metabolomics employs advanced technolo-
gies such as mass spectrometry and chromatography to precisely identify and quantify
changes in metabolites, metabolic characteristics, and metabolic pathways within bio-
logical samples [22]. By combining these two -omics approaches, we can gain a more
comprehensive understanding of the types, functions, and impacts of the gut micro-
biota. Chen Qu, et al. [23] explored the impact of fructose and sucrose on host health and
metabolism using both metagenomics and metabolomics approaches. Their results showed
that fructose could increase the abundance of Lactobacillus and enhance the metabolism
of carbohydrates and the TCA cycle ability. In contrast to fructose, sucrose increased the
abundance of Klebsiella and Escherichia coli, leading to more severe hepatic steatosis,
enteropathy, obesity, and visceral fat accumulation.

Yak milk, a unique nutritious source of milk, has not been fully studied regarding
the impact of its oxidized proteins on gut microbiota and metabolism. To explore the
impact of yak milk proteins after different heat processing treatments on gut microbiota
and metabolism, we applied various heat processing methods (i.e., low-temperature pas-
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teurization, high-temperature pasteurization, and high-temperature sterilization) to oxidize
yak milk proteins. The study examined the degree of oxidation in yak milk proteins using
mice as subjects and employed metagenomics and metabolomics to analyze gut microbiota
and metabolic products in mice fed with oxidatively modified yak milk. These findings not
only contribute to the understanding of the impact of different heat processing methods
on yak milk for the Tibetan people but also provide a scientific basis for optimizing dairy
product processing technology and the broader development and application of yak milk.

2. Materials and Methods
2.1. Experiment Materials
2.1.1. Sample Collection

The yak milk used in this study was sourced from the plateau ranch in Damxung
County, Lhasa, Tibet Autonomous Region. The experimental animals used were specific
pathogen-free (SPF) male mice, strain C57BL, aged 8–10 weeks, which were supplied by
China Shaanxi Xincheng Longyuan Biotechnology Co., Ltd. (Xi’an, China).

2.1.2. Material of Study

Trichloroacetic acid was purchased from Beijing Solarbio Company China (Beijing,
China). Sodium lauryl sulfate (SDS), guanidine hydrochloride were purchased from
Hangzhou Gaojing Fine Chemical Company, Hangzhou, China. 2-nitrobenzoic acid (DTNB)
was purchased from Shanghai Sangon Biotech Company, Shanghai, China. Urea, ethyl
acetate, ethanol were purchased from Hangzhou Hanno Chemical Company, Hangzhou,
China. 2,4-dinitrophenylhydrazine (DNPH), Mass Spectrometry (MS) grade water, acetoni-
trile (ACN), formic acid, and methanol were purchased from Thermo Scientific Company,
New York, NY, USA. 2-chlorophenylalanine was purchased from Hangzhou Aladdin Com-
pany, Hangzhou, China. Hydrochloric acid and ammonium formate were purchased from
Beijing Sigma Company, Beijing, China. Phosphate buffer solution and anhydrous ethanol
were purchased from China Shanghai Titan Technology Co., Ltd. (Shanghai, China). BCA
kit was purchased from Shanghai Selleck Chemicals Company, Shanghai, China.

2.1.3. Experimental Instruments

The nucleic acid electrophoresis apparatus was obtained from Beijing 61 Instrument
Factory, Beijing, China. The microplate reader is from Tecan Austria GmbH manufacturer
and the equipment model is spark. The Covaris Ultrasonic Disrupter was sourced from
the Covaris S2 System in Massachusetts, USA. For fluorometric quantification, the Qubit
system from Life Technologies in CA, USA was utilized. The Agilent 2100 Bioanalyzer was
employed for analysis, and it’s from Agilent Technologies Co., Ltd., in the Santa Clara, CA,
USA. The PCR Instrument used was from Bio-Rad in the USA. Sequencing was conducted
using an Illumina sequencer from San Diego, CA, USA. The Agilent Fragment Analyzer
5400 Automatic Capillary Electrophoresis System is from Agilent Technologies Co., Ltd., in
the Santa Clara, CA, USA. Enzyme labeling instrument was acquired from Austria Tecan
Austria GmbH. The freezing centrifuge is from Hunan Xiangyi Laboratory Instrument
Development Co., Ltd., Zhuzhou, China. Other equipment includes a mixer and vortex
mixer, tissue grinder from Ningbo Xinzhi Biotech Co., Ltd., Ningbo, China. Ultrasonic
cleaner from Shumei Xingye Co., Ltd., Guangzhou, China. Filter membrane from Shanghai
Jin Teng, China and a liquid chromatograph and mass spectrometer from Shanghai Thermo
Fisher Company, Shanghai, China.

2.2. Experimental Method
2.2.1. Sample Preparation

The collected yak milk samples were centrifuged at 2149× g for 15 min at 4 ◦C to
separate the upper fat layer and retain the lower skim milk layer. This study used fat-
removed yak milk. They were then divided into four groups: control group (Control), low
temperature pasteurization group (65 ◦C, 30 min), high temperature pasteurization group
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(90 ◦C, 10 min), and high temperature sterilization group (120 ◦C, 10 min). Finally, the
sterilized samples were freeze-dried at −50 ◦C.

2.2.2. Animal Breeding and Sample Collection

The research involved a total of 40 healthy male mice. All mice were fed in standard
laboratory mouse chow containing soybean meal, fish meal, grain, corn, etc. for one week,
and were tested under the same environmental conditions. The mouse room was kept
at a controlled temperature of 22–24 ◦C, with relative humidity maintained at 50–60%.
The experimental animal room followed a 12-h light and 12-h darkness cycle. To ensure
balanced nutrition, the mice were given sterile feed, and their water source was sterile
as well. After 7 days of adaptive feeding, the mice were randomly divided into a normal
diet group (C), a low-temperature pasteurized yak milk protein-fed mouse group (65 ◦C)
(L), a high-temperature pasteurized yak milk protein-fed mouse group (90 ◦C) (M), and a
high-temperature sterilized yak milk protein-fed mouse group (120 ◦C) (H). Each group
consisted of 10 mice, and, excluding the control group, all other groups were administered
milk through gavage on the third day. The experimental animals in each group were
gavaged once at 8:00 every day for 12 consecutive weeks. At the end of the 12-week period,
three mice were randomly chosen from each group. Fresh morning mouse feces were
collected for total DNA extraction and intestinal flora detection. Lastly, cecal contents were
collected and stored at −80 ◦C [24]. Table 1 provides a detailed plan for each group.

Table 1. Group information of the animal experiments.

Groups Feeding Patterns Dosage Experimental Number

Control group Normal diet Free diet C

Different temperature treatments
65 ◦C treatment 385.7 mg/kg L
90 ◦C treatment 385.7 mg/kg M
120 ◦C treatment 385.7 mg/kg H

Note: The optimal adult daily intake of dairy products is 500 mL [25], and the average weight of an adult mouse
is 70 kg. Thus, the simulated daily intake for each adult mouse is 385.7 mg/kg.

2.2.3. Determination of Carbonyl Content

The method of Mestdagh, Kerkaert, Cucu, and De Meulenaer [26,27] was used with
slight modifications. Briefly, 0.2 mL of diluted sample solution was transferred to a
2 mL centrifuge tube, and mixed with 0.8 mL of 2 mol/L HCl (containing 10 mmol/L
2,4-dinitrophenylhydrazine). Meanwhile, 2 mol/L HCl was used as a blank control. After
incubation at room temperature for 1 h, 0.4 mL of 40% trichloroacetic acid was added. The
mixture was allowed to stand for 30 min, and then centrifuged at 10,000 r/min for 20 min
at 4 ◦C. The precipitate was washed three times with a cleaning solution (ethanol/ethyl
acetate (1:1)), and then dissolved in 1.0 mL of 0.02 mol/L phosphate buffer solution (pH 6.5,
containing 6 mol/L guanidine hydrochloride). The absorbance was measured at 370 nm,
and the molar extinction coefficient of 22,000 was used to calculate the carbonyl content
per milligram of protein, which was expressed as nmol/mg of protein, according to the
Formula (1). Finally, data analysis and plotting were performed. The protein concentration
was detected using a BCA kit.

Carbonyl Content (mol/mg) =
OD1 − OD2
22 × C × P

× 125 × 105 (1)

OD1 measures the absorbance of the tube, OD2 is the absorbance of the opposite tube,
C is the colorimetric light diameter, and P is the protein concentration in the sample.

2.2.4. Determination of Total Thiol Content

The free and total thiol groups were determined using the DTNB colorimetric method,
according to the method of Cao Y [28] et al., with minor modifications. A 0.8 mL defatted
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sample was mixed with 0.2 mL of 8 mol/L urea and 0.03 g/mL SDS solution and reacted
in the dark for 1 h. Then, 0.5 mL of 40% (w/v) trichloroacetic acid solution was added,
and the mixture was incubated for another 1 h. After centrifugation (5000 r/min, 10 min),
the precipitate was collected and washed with 40% trichloroacetic acid, and the washing
process was repeated twice under the same conditions. The precipitate was dissolved in 1
mL of 0.03 g/mL SDS solution, and 0.2 mL of DTNB solution was added and reacted in
the dark for 1 h. The absorbance was measured at a wavelength of 412 nm, and a blank
control group without DTNB was employed. Finally, the amount of thiol substances in
each milligram of protein was expressed, with the unit being nmol/mg. It was calculated
according to Formula (2):

SH (mol/mg) = 73.53 × A412 × D/C (2)

where A412 is the absorbance value of the sample after removing the reagent blank,
D—dilution multiple, C—protein concentration mg/mL.

2.2.5. DNA Extraction and Sequencing

Microbial DNA in mouse fecal samples was extracted using the CTAB method [29].
The extracted samples were sequenced using the 16S rRNA gene sequencing method [30].
The Illumina NovaSeq sequencing platform model is Novaseq 6000, used for sample
detection, library construction, and sequencing [31].

2.2.6. Untargeted Metabolomics Metabolite Extraction

A sample weighing between 62.9 mg and 100 mg was taken using a one ten-thousandth
balance and then homogenized with 0.6 mL of 2-chlorophenylalanine and methanol. Next,
100 mg of glass beads were added, and the sample was ground at 55 Hz for 90 s in
a tissue grinder. The sample was then sonicated at room temperature for 10 min. After
centrifugation at 12,000 rpm for 10 min at 4 ◦C, the supernatant was collected. Subsequently,
200 µL of the supernatant underwent filtration using a 0.22-µm filter, and the resulting
filtrate was collected for further analysis. Finally, 20 µL of each sample was taken and
mixed into the QC sample (QC: quality control, which was used to correct the deviation in
the analysis of the mixed samples and the error caused by the instrument analysis itself).
LC-MS detection was carried out on the samples.

Chromatographic Conditions

The Thermo Ultimate 3000 equipped with the ACQUITY UPLC® HSS T3 1.8 µm
(2.1 × 150 mm) chromatographic column was used in this study. The auto-sampler temper-
ature was set to 8 ◦C. The gradient elution was performed at a flow rate of 0.25 mL/min,
column temperature of 40 ◦C, and an injection volume of 2 µL. The mobile phase was
0.1% formic acid in water (C) and 0.1% formic acid in acetonitrile (D) for positive ions;
and 5 mM ammonium formate in water (A) and acetonitrile (B) for negative ions. The
gradient elution program was as follows: 0–1 min, 2% B/D; 1–9 min, 2–50% B/D; 9–12 min,
50–98% B/D; 12–13.5 min, 98% B/D; 13.5–14 min, 98−2% B/D; 14–20 min, 2% D—positive
mode (14–17 min, 2% B—negative mode).

Mass Spectrometric Conditions

The electrospray ion source (ESI) was used in both positive and negative ionization
modes. The spray voltage was 3.50 kV for positive ions and 2.50 kV for negative ions.
Other parameters included sheath gas 30 arb, auxiliary gas 10 arb, capillary temperature of
325 ◦C, and a resolution of 70,000. The scan range was 81~1000, and HCD was used for
secondary fragmentation with a collision voltage of 30 eV. Dynamic exclusion was used to
eliminate unnecessary MS/MS information.
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2.2.7. Data Processing and Analysis

In this experiment, independent samples Tukey test was performed using SPSS 25.0
statistical software. p < 0.05 indicated that the difference was statistically significant. Other
data were processed using mean ± standard deviation, and OriginPro 2012 was used for
plotting. KneadData software was used for quality control (based on Trimmomatic) and
host removal (based on Bowtie2) of the raw data. Before and after KneadData, FastQC was
used to check the rationality and effect of quality control [32,33]. Starting from the quality-
controlled reads and the reads with host genes removed, HUMAnN3 software (based
on DIAMOND) was used to align the reads of each sample to the database (UniRef90).
According to the UniRef90 ID and the corresponding relationship of each database, the
annotation information and relative abundance table of each functional database were
obtained [34–37]. The original data obtained from liquid chromatography-mass spectrome-
try (LC-MS/MS) was processed using Proteowizard software (v3.0.8789).

3. Results
3.1. The Effect of Different Heat Processing Treatments on the Carbonyl Content of Yak
Milk Protein

The formation of carbonyl groups is one of the most significant changes following
protein oxidation. Thus, the carbonyl content has become a common indicator to measure
the degree of protein oxidation [38]. As shown in Figure 1, compared with the control
group, the overall carbonyl content of the three groups that underwent different heat
processing treatments was significantly increased (p < 0.05). The carbonyl content increased
first and then decreased with the rise in temperature. These results indicate that different
heat processing treatments can lead to different degrees of oxidation in yak milk proteins.
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Figure 1. The content of carbonyl groups in yak milk protein treated with different heat treatments.
Note: a, b, and c indicate significant differences, and the same degree of difference is indicated by
identical letters.

3.2. Effect of Different Thermoprocessing Treatments on Total Sulfhydryl Content of Yak
Milk Protein

The reduction of thiol groups is one of the main common features of protein changes
in response to oxidative [39]. As shown in Figure 2, we found that the total thiol content in
the samples exposed to different heat treatments were decreased (p < 0.05), but the total
thiol content gradually increased with the rise in temperature. The decrease in the total
thiol content indicates that the protein is undergoing oxidation, and this oxidation process
intensifies with rising temperatures.
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Figure 2. Total sulfol content in yak milk proteins after different heat treatments. Note: a, b, and c
indicate significant differences, and the same degree of difference is indicated by identical letters.

3.3. Effect of Yak Milk Proteins on Mouse Intestinal Microbiota
3.3.1. Statistics of the Sequencing Data

The raw data (Raw Data) generated from Illumina sequencing contains a certain
proportion of low-quality data. To ensure the accuracy and reliability of subsequent
analyses, it is necessary to preprocess the original sequencing data. This involves tasks such
as quality control (Trimmomatic [32] Parameters: ILLUMINACLIP:adapters_path:2:30:10
SLIDINGWINDOW:4:20 MINLEN:50), and removal of host sequences (Bowtie2 [33]), to
obtain valid sequences (clean data) for downstream analysis. For fecal sequencing using
the Illumina NovaSeq, three mice were randomly chosen from each sample group. Through
quality control and the removal of host sequences, valid sequences were obtained. Specific
data statistics can be found in Table 2.

Table 2. List of data output quality.

Sample ID Raw
Reads (#)

Raw Base
(GB) %GC Raw

Q20 (%)
Raw

Q30 (%)
Clean

Reads (#) Cleaned (%) Clean
Q20 (%)

Clean
Q30 (%)

C1 19,676,161 5.9 48 97.12 92.27 18,588,781 94.47 98.36 94.25
C2 23,243,541 6.97 49 97.17 92.36 22,128,761 95.2 98.32 94.15
C3 20,049,616 6.01 49 97.01 92.02 19,011,523 94.82 98.27 94.01
H1 22,853,746 6.86 48 97.13 92.24 21,478,874 93.98 98.31 94.09
H2 19,776,846 5.93 47 97.19 92.43 18,605,722 94.08 98.4 94.36
H3 22,303,799 6.69 48 97.22 92.43 21,327,490 95.62 98.34 94.17
L1 22,337,587 6.7 48 97.16 92.37 21,123,586 94.57 98.38 94.32
L2 20,193,449 6.06 48 97.05 92.14 19,263,463 95.39 98.29 94.09
L3 22,841,107 6.85 49 97.27 92.68 21,779,059 95.35 98.44 94.52
M1 23,299,288 6.99 47 97.08 92.1 22,264,927 95.56 98.25 93.9
M2 23,379,247 7.01 47 97.13 92.23 22,281,520 95.3 98.29 94.05
M3 22,274,283 6.68 48 97.1 92.19 21,013,573 94.34 98.29 94.04

Note: Sample ID: Sample name; Raw Reads (#): Number of sequencing Raw reads; Raw Base (GB): Number
of Raw reads in GB, Total number of bases from the sequencing raw data, That is, the number of Raw reads
multiplied by the sequencing length; %GC: percentage of G/C bases in the total base number; Clean Reads
(#): number of Clean reads obtained after filtering (quality control and host removal sequence); Cleaned (%):
percentage of sequences remaining after filtering in Raw reads; Q20, The proportion of bases with a mass score
higher than 20; Q30, Proportion of bases with mass scores higher than 30.

3.3.2. Analysis of the Species Composition

To assess the species composition and diversity information of the samples, Kraken2 [40]
was used to annotate and classify the valid sequences of all samples. Based on the
Bracken [41] database, a basic species composition analysis was performed on the ob-
tained data. For each sample, the ratio of the number of sequences to the total number
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of sequences at the Kingdom, Phylum, Class, Order, Family, Genus, and Species levels
was statistically analyzed. Figure 3 shows the relative degree of annotation at each clas-
sification level in each sample. Notably, the species detected in these samples were as
follows: Archaea (616), Bacteria (83,786,651), Fungi (6186), Picornaviridae (1,922,113), Le-
viviridae (93), Positiviridae (82), Subviridae (2), Sangerviridae (789), Viruses (80,875); and
their corresponding proportions were: Archaea (0.00%), Bacteria (97.66%), Fungi (0.01%),
Picornaviridae (2.24%), Leviviridae (0.00%), Positiviridae (0.00%), Subviridae (0.00%),
Sangerviridae (0.00%), Viruses (0.09%).
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Figure 3. Bar graph of the degree of sequence annotation for each sample at each taxonomic level.
Note: The abscissa is the sample name, the ordinate (Sequence Number Percent) represents the ratio
of the number of sequences annotated to this level to the total annotation data, and the top-down
color order of the bar chart corresponds to the color order of the legend on the right. Each taxonomic
level with the highest value of 1, representing 100% of the sequences were annotated at least at
this level.

As shown in Figure 4A, at the phylum level, Firmicutes, Actinobacteria, Bacteroidetes,
and Verrucomicrobia are the dominant phyla in the fecal samples of each group of mice.
In the C group, Firmicutes, Actinobacteria, Bacteroidetes and Verrucomicrobia accounted
for 34.961%, 30.490%, 22.917% and 7.526%, respectively. In the H group, they accounted
for 31.765%, 18.688%, 31.083% and 8.775%, respectively. In the L group, they accounted
for 39.071%, 27.582%, 27.623% and 0.417%, respectively. In the M group, they accounted
for 54.882%, 24.456%, 15.559% and 2.291%, respectively. Compared with the C group, the
H group exhibited a decrease in the relative abundance of Firmicutes and Actinobacteria,
while an increase in the relative abundance of Bacteroidetes and Verrucomicrobia; the L
group had a decrease in the relative abundance of Actinobacteria and Verrucomicrobia,
while an increase in the relative abundance of Firmicutes and Bacteroidetes; the M group
showed a decrease in the relative abundance of Actinobacteria, Bacteroidetes and Verru-
comicrobia, while an increase in the relative abundance of Firmicutes. In addition, the
relative abundances of Bacteroidetes and Verrucomicrobia in the H group were higher than
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those in the L and M groups, the relative abundance of Actinobacteria in the L group was
higher than that in the H and M groups, and the relative abundance of Firmicutes in the M
group was higher than that in the H and L groups. This suggests that the intake of yak milk
proteins after different heat treatments can affect the composition of the gut microbiota in
mice at the phylum level.
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Figure 4. Relative distribution of each sample at the phyla (A), genus (B) level (top 20 species). Note:
The abscissa is the sample name, the ordinate (Sequence Number Percent) represents the ratio of
the number of sequences annotated to the phylum/genus level to the total annotation data, and
the top-down color order of the bar chart corresponds to the color order of the legend on the right.
Sequences without annotation at the phylum/genus level were grouped into the unclassified category.
The maximum of 20 species showing the most dominance in the legend, and the remaining species
with low relative abundance are classified as Other presented in figure.

As shown in Figure 4B, at the genus level, the gut microbial communities of all groups
of mice were mainly composed of Lactobacillus, Bifidobacterium, Muribaculum, Adlercreutzia,
Duncaniella, Bacteroides, Limosilactobacillus, Ligilactobacillus, etc. In the C group, these genera
accounted for 20.258%, 20.560%, 11.113%, 4.333%, 4.709%, 4.449%, 3.160% and 7.430%,
respectively. In the H group, they accounted for 17.833%, 8.571%, 15.227%, 4.571%, 7.322%,
5.173%, 1.598% and 7.311%, respectively. In the L group, they accounted for 18.855%,
8.722%, 8.033%, 17.373%, 10.291%, 4.886%, 8.175% and 3.200%, respectively. In the M
group, they accounted for 36.956%, 15.068%, 5.658%, 5.740%, 4.727%, 2.684%, 9.942% and
4.845%, respectively. Compared with the C group, the relative abundances of Bifidobacterium
and Ligilactobacillus were decreased in all three groups, while those of Adlercreutzia and
Duncaniella were increased. Compared with the three groups, the relative abundances of
Muribaculum, Bacteroides, and Ligilactobacillus in the H group were higher than those in the
L and M groups; the relative abundances of Adlercreutzia and Duncaniella in the L group
were higher than those in the H and M groups; and the relative abundances of Lactobacillus,
Bifidobacterium, and Limosilactobacillus in the M group were higher than those in the H and
L groups. This suggests that the intake of yak milk proteins after different heat treatments
significantly alters the gut microbiota in mice.

3.3.3. Analysis of Common Species in Each Sample

In the samples, we search for unique or shared species between groups based on the
presence or absence of species. For experimental schemes with fewer groups (less than
or equal to 5), we draw Venn diagrams [42] to analyze unique or shared species between
different sample groups, which intuitively display the similarities and overlaps in species
composition between sample groupings (Figure 5). According to the OTUs clustering



Foods 2024, 13, 192 10 of 23

results, there were 505 OTUs shared by the four groups; the C group had 141 unique OTUs,
the H group had 146 unique OTUs, the L group had 134 unique OTUs, and the M group
had 192 unique OTUs. Compared with the C group, the number of unique bacterial species
increased in the H group, decreased in the L group, and significantly increased in the M
group. This indicates that the intake of yak milk proteins processed with different heat
processing treatments can change the number of gut microbial communities in mice and
change their original gut microbiota structure.
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To further analyze the differences in the microbial community structure between
groups and identify species with abundance differences between groups, we used the
LEfSe analysis method to identify the specific microbial species distributed in each group.
The analysis results, including the evolutionary clade map (Figure 6) and LDA bar chart
(Figure 7), visually demonstrate the distinctive species in each group with significant dif-
ferences in community structure. We found that 66 bacterial genera changed, with the
main difference in the C group being Phoenicibacter and Longibaculum; the H group had
28 different genera such as Verrucomicrobiales, Verrucomicrobiae, Akkermansiaceae, etc.;
the L group had 33 different genera such as Faecalibacterium, Chaetomium, Paenibacil-
laceae, Eggerthella, Sordariales, etc.; the M group primarily consisted of Latilactobacillus,
Bacillus, and Romboutsia.
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Figure 7. LEfSe analysis of the LDA bar chart. Note: Each lateral column form represents a species,
the length of the column form corresponds to the LDA value, the higher the LDA value, the greater
the difference. The color pair of the column should be the species of that group, the characteristic
microorganism (with relatively high abundance in the corresponding group).
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3.3.4. Analysis of Functional Relative Abundance and Metabolic Pathway Profile

The KEGG database was used to cluster genes with similar functions [43]. Based on the
annotation results, a relative abundance statistical graph was constructed for each sample
at various functional levels. As shown in Figure 8A, these functions include: Metabolism
of other amino acids, Carbohydrate metabolism, Amino acid metabolism, Translation,
Metabolism of cofactors and vitamins, Replication and repair, Energy metabolism, Biosynthe-
sis of other secondary metabolites, Lipid metabolism, Glycan biosynthesis and metabolism,
Xenobiotics biodegradation and metabolism, Drug resistance: antimicrobial, Cell growth
and death, Nucleotide metabolism, Metabolism of terpenoids and polyketides, Membrane
transport, Endocrine system, and Cancer: overview. Compared to group C, group H
upregulated Translation and Energy metabolism functions and downregulated Amino acid
metabolism. Group L upregulated Metabolism of other amino acids, Translation, and Repli-
cation and repair, downregulated Amino acid metabolism, and Metabolism of cofactors and
vitamins. Group M significantly enhanced Metabolism of other amino acids, Translation,
Replication and repair, and significantly downregulated Carbohydrate metabolism, Amino
acid metabolism, Biosynthesis of other secondary metabolites, and Glycan biosynthesis and
metabolism. Taken together, the functional impact of heat-processed yak milk proteins on
mice is mainly associated with amino acid metabolism, cell repair, and energy metabolism.
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Figure 8. Bar plot of the hierarchical abundance of KEGG metabolic pathways (A). LEfSe analysis of
the metabolic pathways of KEGG (B). Note: In (A), the abscissa is the sample name, and the ordinate
(Sequence Number Percent) represents the ratio of the relative abundance of the metabolic pathway
annotated to each sample at the functional level to the total annotation data. The top-down color
order of the bar chart corresponds to the legend color order on the right, the legend shows the most
advantageous 20 metabolic pathways, and the remaining metabolic pathways are classified as Other
displayed in the figure. In (B), the abscissa is the sample name, and the ordinate (Sequence Number
Percent) represents the ratio of the relative abundance of functional metabolic pathways to each
sample at the functional level the top-down color order of the bar chart corresponds to the color
order of the legend on the right, the legend shows the most dominant 20 metabolic pathways, the
remaining metabolic pathways are classified as displayed in the figure.

Further functional metabolic pathway analysis was conducted on the distribution
of gut microbiota. As illustrated in Figure 8B, the 20 primary affected metabolic path-
ways with significant abundance are Ribosome information processing (map03010), Lysine
metabolism (map00473), Aminoacyl-tRNA biosynthesis (map00970), Carbon fixation in
photosynthetic organisms (map00710), DNA mismatch repair (map03430), Amino acid
metabolism: biosynthesis of valine, leucine, and isoleucine (map00290), Vancomycin re-
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sistance (map01502), Cell cycle—Caulobacter (map04112), Peptidoglycan biosynthesis
(map00550), Folate biosynthesis (map00670), Amino acid biosynthesis (map01230), Protein
export (map03060), Streptomycin biosynthesis (map00521), Glycolysis/Gluconeogenesis
(map00010), Lysine biosynthesis (map00300), Homologous recombination (map03440),
Alanine, aspartate, and glutamate metabolism (map00250), Drug metabolism—other en-
zymes (map00983), Pantothenate and CoA biosynthesis (map00770). Compared to group C,
group H upregulated map03010, map00710, map03430, map01230, map00521, map00010,
map00983 and downregulated map01230. Group L upregulated map03010, map00473,
map00970, map03430, map03060, map00250 and downregulated map01230, map00300,
map00770. Group M significantly enhanced map03010, map00473, map00970, map03430,
map00290, map04112, map03060, map03440, map00250 and significantly downregulated
map00710, map00550, map00670, map00521, map00010. Analysis of the corresponding
metabolic pathways revealed that the most notable effects were observed in amino acid
metabolism, biosynthesis, metabolism, and carbohydrate metabolism.

3.4. Effect of Yak Milk Proteins after Different Heat Processing Treatments on Mouse Metabolism
3.4.1. Sample QC and Standardization Calibration

When employing chromatographic columns, there is a risk of contamination, which
can introduce errors into the instrument’s chromatographic analysis. To ensure the accuracy
of measurement data, it is imperative to standardize and perform quality control on the
sample data. As shown in Figure 9A, the QC samples in the PCA plot are clustered together,
indicating an effective correction. In Figure 9B, the median and quartiles of metabolite
concentrations are uneven before standardization, but are basically on the same level after
standardization.
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Figure 9. PCA plot of quality control samples (A), content distribution of each metabolites before and
after standardization correction (B). Note: (A) The red point is the corrected quality control sample
point (QC sample), and the blue point is the test sample. Content distribution is represented by a
boxplot, which from left to right correspond to outlier, minimum, lower quartile, median, upper
quartile, maximum, outlier. (B) shows the distribution before standardization correction, and the
right panel shows the distribution after standardization correction.
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3.4.2. Metabolite Content Statistics

After correction of the metabolites, statistical analysis revealed differences between
groups. The results are shown in Figure 10. The top 20 metabolites in terms of abundance
are Oleamide, Fenpropimorph, 7-Ketolithocholic acid, Cholic acid, Monoolein, PPNico-
tinic acid, Linoleoyl ethanolamide, L-Phenylalanine, (+/−)12(13)-DiHOME, Isoleucine,
Hexadecanamide, D-Proline, 2-Hydroxycinnamic acid, (E)-Octadecadienoic acid, Xanthine,
L-Tyrosine, Oleoyl ethanolamide, MAG (18:3), Hypoxanthine, and Stearamide.
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Figure 10. Bar graph of the percentage accumulation of metabolites in the top 20 content. Note: The
abscissa is the sample name, sorted according to the grouping order, and different grouping samples
are labeled in different colors. The ordinate represents the percent content of each metabolite, and
the order of the columns corresponding to the metabolites from the top down is consistent with the
figure legend. The figure shows the metabolites ranked in the top 20, and the remaining metabolites
are included in Others.

3.4.3. Analysis of Differences among Samples

To investigate the differences between the samples and the correlations between the
groups, a principal component analysis was first conducted between the groups. Then, the
metabolites in the detected samples were clustered. As shown in Figure 11A, all points
are within the ellipse and are relatively concentrated, demonstrating a good model fit and
significant differences between groups. Figure 11B shows that the metabolites in each
group of samples are clustered in different locations, indicating significant differences.
Nevertheless, principal component analysis is an unsupervised analysis method and may
not provide a compelling explanation for the differences between samples. Therefore,
additional analysis is required for a more thorough understanding.
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of our PLS-DA model resulted solely from random factors. As depicted in Figure 12A, the 
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Figure 11. PCA diagram (A), and the clustering results of metabolite heat map (B). Note: In (A)
PCA, each point corresponds to one sample, and the distance between two points is approximately
the metabolite structure of the two samples (European distance). Different groups are highlighted
in different colors, and the area indicated by the ellipse is the 95% confidence region of the sample
point. The vertical axis is the sample name information, and it also includes the grouping information.
(B) Horizontal axis shows the metabolites. The cluster tree at the top of the figure is the similarity
cluster of metabolites in each sample, the cluster tree on the left is the sample cluster tree, and the
heatmap in the middle is the heat map of metabolite content. The relationship between the color and
metabolite content (Z-Score) is shown in the scale at the top right of the figure.

3.4.4. Partial Least Squares Discriminant Analysis

Although the figures and principal component analysis have initially suggested differ-
ences between the samples, to validate these differences, permutation tests were employed.
A permutation test statistic, often indicative of the model’s predictive power, was formu-
lated. Using the permutation method, the distribution of this test statistic was derived—a
random distribution shaped by chance factors. Comparing the observed test statistic of
the sample with this distribution could ascertain whether the discriminant effect of our
PLS-DA model resulted solely from random factors. As depicted in Figure 12A, the point
clouds of different groups of samples are distributed in distinct areas, indicating that the
PLS-DA model has a good discriminant effect and the presence of significantly different
metabolites between the groups. Figure 12B illustrates the permutation test of PLS-DA,
with prediction accuracy as the chosen test statistic. The observed test statistic resides on
the right side of the random distribution, implying its significance (the observed value
significantly surpasses the random value). The p-value is less than 0.05, indicating the
significance of our PLS-DA discriminant model. This implies that the discriminant effect
is substantial and can effectively distinguish between different groups, suggesting the
existence of significantly different metabolites among them.
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Figure 12. Distribution of test statistics and p-value of PLS-DA point cloud map (A), PLS-DA
displacement test (B). Note: In (A), each point corresponds to one sample, and the horizontal and
vertical coordinates are the values of the two factors with the best discrimination effect. Different
groups are highlighted in different colors, and the area indicated by the ellipse is the 95% confidence
region of the sample point. (B), the abscissa represents the replacement test statistics (model prediction
accuracy) between the distribution area, the ordinate is the replacement process of the interval test
statistics frequency, the arrow position is the actual observed test statistics value, if the value is
far from random distribution, that the model to distinguish the effect is not random, the model to
distinguish the effect is significant.

3.4.5. Univariate Analysis

After our initial analysis, we identified differences in metabolites between the groups.
However, understanding the physiological implications of these changes requires further
investigation. To address this, we calculated the fold change (FC) of metabolite alterations, pro-
viding a quantitative measure of the magnitude of these changes. This information, coupled
with p-values, was then used to filter out metabolites with significant effects, offering a better
understanding of the impact on the body. As shown in Figure 13, metabolites in the yellow re-
gion have a p-value of less than 0.05, and an absolute change greater than 2. These metabolites
exhibit significant differences between groups and large variations. To visually present the dif-
ferences in metabolites between groups, we statistically analyzed the selected metabolites. Box
plots of the top 25 differential metabolites are shown in Figure 14. Notably, these metabolites
include 2,3-Dinor-8-epi-prostaglandin F2α, 4-(methylthio)-6-phenyl-2-(3-pyridyl)pyrimidine-
5-carbonitrile, N-Acetyl-DL-serine, Indole, 2-Arachidonoyl glycerol, 3-Hydroxypicolinic acid,
Purine, (R)-3-Hydroxy myristic acid, Reserpine, 4-(2-chloro-6-fluorobenzyl)-3,5-dimethyl-4-
prop-2-ynyl-4H-pyrazole, All trans-Retinal, gamma-Glu-Leu, Acetanilide, 4-(1H-pyrazol-1-yl)-
N,N-bis(2-pyridinylmethyl)benzenesulfonamide, Oxaceprol, Isoferulic acid, L-Pyroglutamic
acid, 13-HPODE, ethyl 1-(4-acetyl-2-aminophenyl)piperidine-4-carboxylate, Boc-beta-cyano-
L-alanine, 9-Oxo-10(E),12(E)-octadecadienoic acid, 15-Acetyldeoxynivalenol, methyl 2,5-
dimethyl-1H-pyrrole-3-carboxylate, 9-Oxo-ODE, and Malvidin.



Foods 2024, 13, 192 17 of 23

Foods 2024, 13, x FOR PEER REVIEW 18 of 24 
 

 

alanine, 9-Oxo-10(E),12(E)-octadecadienoic acid, 15-Acetyldeoxynivalenol, methyl 2,5-di-
methyl-1H-pyrrole-3-carboxylate, 9-Oxo-ODE, and Malvidin. 

 
Figure 13. Multiple-change volcano plot. Note: Each point represents a metabolite, the abscissa is 
the change multiple, and the ordinate is the p value of t test. The larger the change multiple, the 
smaller the p value (the higher the log10 (p)), the larger the point. 

Figure 13. Multiple-change volcano plot. Note: Each point represents a metabolite, the abscissa is the
change multiple, and the ordinate is the p value of t test. The larger the change multiple, the smaller
the p value (the higher the log10 (p)), the larger the point.



Foods 2024, 13, 192 18 of 23Foods 2024, 13, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 14. Metabolite difference bin plots (*, ** and *** represent p < 0.05, p < 0.01 and p < 0.001, 
respectively). 

3.4.6. Metabolic Pathway Analysis 
Through enrichment analysis, we identified metabolites exhibiting significant differ-

ences between groups (t-test, p < 0.05). This approach allowed us to uncover essential bi-
ological pathways influencing specific biological processes, shedding light on the funda-
mental molecular mechanisms at play. Notably, we found key functional biological path-
ways within metabolic pathways. As shown in Figure 15A, the metabolic pathways were 
primarily enriched in steroid hormone biosynthesis, vitamin B6 metabolism, phenylala-
nine metabolism, pantothenate and CoA biosynthesis, primary bile acid biosynthesis, 
phenylalanine, tyrosine and tryptophan, lysine degradation, purine metabolism, pyrimi-

Figure 14. Metabolite difference bin plots (*, ** and *** represent p < 0.05, p < 0.01 and p < 0.001, respectively).

3.4.6. Metabolic Pathway Analysis

Through enrichment analysis, we identified metabolites exhibiting significant differ-
ences between groups (t-test, p < 0.05). This approach allowed us to uncover essential
biological pathways influencing specific biological processes, shedding light on the fun-
damental molecular mechanisms at play. Notably, we found key functional biological
pathways within metabolic pathways. As shown in Figure 15A, the metabolic pathways
were primarily enriched in steroid hormone biosynthesis, vitamin B6 metabolism, pheny-
lalanine metabolism, pantothenate and CoA biosynthesis, primary bile acid biosynthesis,
phenylalanine, tyrosine and tryptophan, lysine degradation, purine metabolism, pyrimidine
metabolism, biosynthesis of unsaturated fatty acids, arginine and proline metabolism, nicoti-
nate and nicotinamide metabolism, histidine metabolism, beta-alanine metabolism, alanine,
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aspartate and glutamate metabolism, glutathione metabolism, aminoacyl-tRNA biosynthesis,
porphyrin and chlorophyll metabolism, glycine, serine and threonine metabolism, steroid
biosynthesis, arachidonic acid metabolism, and tyrosine metabolism.
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Following this, we performed a topology analysis to determine the most significant
biological functions in these enriched metabolic pathways, emphasizing those most influ-
enced by the metabolites. As shown in Figure 15B, the metabolic pathways in the blue
region, which were significant in the ORA enrichment analysis, included phenylalanine
metabolism, vitamin B6 metabolism, steroid hormone biosynthesis, and pantothenate and
CoA biosynthesis.

4. Discussion

In this study, we observed notable changes in the gut microbiota composition and
metabolic products of mice following the consumption of yak milk proteins subjected to
various heat treatments. These observed changes hold the potential to similarly impact
human gut health.

Based on metagenomic analysis, at the phylum level, Firmicutes were found to be the
most abundant, followed by Bacteroidetes and Verrucomicrobia—a distribution resembling
that of the human gut microbiota [43]. At the genus level, the most significant changes in the
mouse gut microbiota were found in Latilactobacillus, Bacteroides, and Akkermansia. Lati-
lactobacillus exhibited potential benefits in enhancing gastrointestinal function, controlling
endotoxins, inhibiting the growth of decay-causing bacteria, and boosting immunity [44].
Bacteroides, encoding a higher number of carbohydrate-degrading enzymes compared to
Firmicutes [45], indicated a decline in immunity when their abundance decreased, affecting
gut immunity. Akkermansia plays a crucial role in promoting gut immunity, mitigating
gut inflammation, and demonstrating potent anticancer effects [46]. In response to a de-
cline in immunity, Akkermansia abundance rapidly increased, supporting gut immunity,
maintaining microbiota diversity, and promoting gut health. Moreover, results from OTUs
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clustering provided additional evidence supporting the impact of differently heated, ox-
idatively modified yak milk proteins on gut microbiota diversity in mice. Analysis of
functional abundance and metabolic pathways revealed significant influences on amino
acid metabolism, energy metabolism, carbohydrate metabolism, and transcription in mice.
Therefore, yak milk proteins, undergoing functional changes due to distinct heat treatments,
have considerably affected the structure and function of the mouse gut microbiota, along
with their metabolism and health status.

Metabolomic studies revealed that the consumption of yak milk proteins, which have
undergone various heat treatments, significantly regulated various metabolites in mice.
These metabolites included phenylalanine, Vitamin B6, steroidal hormones, pantothenate,
and Coenzyme A, each playing pivotal roles in the body. Phenylalanine, an essential amino
acid in the human body, typically converts into tyrosine via phenylalanine hydroxylase.
Tyrosine and phenylalanine jointly synthesize critical neurotransmitters and hormones,
contributing to glucose and fat metabolism. Insufficient phenylalanine may impede tyrosine
synthesis, leading to decreased thyroid hormone levels and affecting overall metabolic
function. Vitamin B6, a constituent of certain coenzymes, participates in diverse metabolic
reactions, particularly those involving amino acid metabolism. The metagenomic studies
revealed disruptions in amino acid metabolism in mice, possibly linked to altered Vitamin
B6 metabolism. Steroidal hormones, also known as steroid hormones, play vital roles in
maintaining life, regulating reproductive functions, body development, immune regulation,
and treating skin diseases [47]. Pantothenic acid, also known as Vitamin B5, is formed
through the enzymatic reaction of α-ketoisovaleric acid and L-aspartic acid [48]. Coenzyme
A, comprising of pantothenic acid, adenine, ribonucleic acid, and phosphate, serves as an
acyl carrier in enzymatic reactions [49]. In cells, Coenzyme A combines with acetic acid to
form Acetyl-CoA, which enters the oxidation process. Acetyl-CoA plays a critical role in
many metabolic pathways, such as glycolysis, the β-oxidation of fatty acids, and the citric
acid cycle [50]. Therefore, the most significant metabolic pathways in mice were amino acid
metabolism and energy metabolism. In summary, different heat treatments of oxidatively
modified yak milk proteins can affect the structure and metabolism of the mouse gut
microbiota, thereby influencing various functions such as amino acid metabolism, cell
repair, and energy metabolism.

In the dietary habits of the Tibetan people, yak milk products hold a crucial role.
Through the application of heat treatments, oxidatively modified yak milk proteins are in-
troduced into dairy products, potentially influencing the composition and function of their
gut microbiota, including important bacteria like Latilactobacillus and Akkermansia. These
bacteria play key roles in maintaining gut health and boosting immunity. Metabolomic stud-
ies have highlighted the significance of phenylalanine in neurotransmitter and hormone
synthesis. Different heat treatments may impact the phenylalanine content in yak milk
proteins, potentially influencing the metabolism and thyroid hormone levels of the Tibetan
people. This may be attributed to their metabolic adaptability in their unique high-altitude
environment. The potential interference with Vitamin B6 metabolism, particularly related
to amino acid metabolism, could have a substantial effect on Tibetan metabolism, given
the likelihood of Vitamin B6-rich traditional diets. Steroidal hormones and pantothenate,
crucial for life maintenance and immune regulation, also play vital roles in their overall
health. Therefore, a scientifically controlled and optimized approach to heat treatment
methods for yak milk proteins could enhance their nutritional value and contribute to
human health. This study, exploring the relationship between oxidative modification of Yak
milk proteins during different heat treatment processes and gut microbiota and metabolism,
provides valuable insights from the perspective of protein oxidation.

5. Conclusions

The metagenomic analysis of mouse gut microbiota revealed changes in 66 taxonomic
genera. In the high-temperature sterilization group (H), prominent differences included Ver-
rucomicrobiales, Verrucomicrobiae, Akkermansiaceae, and 28 others. The high-temperature
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pasteurization group (M) showed primary changes in genera such as Latilactobacillus,
Bacillus, and Romboutsia. The low-temperature pasteurization group (L) exhibited sig-
nificant variations in genera such as Faecalibacterium, Chaetomium, Paenibacillaceae,
Eggerthella, and Sordariales, among 33 others. Functionally, compared to group C, group
H upregulated translation and energy metabolism functions, group L enhanced other
amino acid metabolism, translation, and cell replication and repair functions, and group M
significantly improved other amino acid metabolism, translation, and cell replication and
repair functions. Metabolomic analysis indicated differential changes in mouse metabo-
lites affecting multiple metabolic pathways, with the most impacted being phenylalanine
metabolism, Vitamin B6 metabolism, steroidal hormone biosynthesis, and the biosynthesis
of pantothenate and Coenzyme A. This aligns with the metagenomic analysis of mouse
body function pathways, influencing amino acid and energy metabolism. Yak milk holds
significant importance in the daily diet of Tibetan people. The findings from this study can
assist them in comprehending the effects of various heat treatment methods on yak milk,
enabling informed and healthier dietary choices.
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