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Abstract: Traditional cereal-based foods usually include wheat flour in their formulations; however,
the search for new products with new ingredients providing different properties to foods is widely
pursued by food companies. Replacement of wheat by other flours can modify both nutritional
properties and organoleptic characteristics of the final baked food, but can also impact the formation
of potentially harmful compounds. The effect of the type of flour on the formation of furfurals
and dicarbonyl compounds was studied in a dough model system during baking that contains
water or glucose in order to promote the Maillard reaction and caramelization. The formation of
methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat
flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a
significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented
significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented
higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable
compounds in new food products formulated with different flours replacing the traditional wheat
flour should be considered carefully in terms of food safety.

Keywords: flours; Maillard reaction; cereal-based products; hydroxymethylfurfural; furfural;
dicarbonyl compounds

1. Introduction

Baked cereal products comprise a wide range of food products subjected to a baking process
in which cereal flour is the basic ingredient. Baking involves the application of high temperatures
directly on the food product (as high as 260 ◦C), generally in an oven or heating appliance [1].
The high temperatures applied and the low moisture of the cereal-based products promote the
development of different chemical reactions between food components, including the Maillard reaction
and caramelization. Both chemical reactions are responsible for the improvement of the textural
and organoleptic characteristics of the final baked food by promoting the flavour, colour, and aroma
compounds appreciated by the consumers. However, negative changes can occur simultaneously, such
as the natural formation of chemical contaminants, that could be mitigated with an adequate selection
of the dough recipe [2,3].

Hydroxymethylfurfural (HMF) and furfural are formed as intermediate products of the
Maillard reaction and, furthermore, HMF is also generated by the caramelization of sugars at high
temperatures [4]. Based on studies in animals, HMF is suspected to have possible mutagenic and
genotoxic activities through its metabolism product sulphoxymethylfurfural [5], whereas furfural
may lead to hepatotoxicity [6]. On the other hand, dicarbonyl compounds are also generated by the
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Maillard reaction and caramelization in addition to the lipid oxidation [7]. Dicarbonyl compounds
are intermediates of the Maillard reaction, but are also potent promotors of the reaction, since they
can interact directly with amino residues or even with other intermediary compounds, leading to the
formation of advanced glycation end-products (AGEs) [8]. Dicarbonyl compounds are also responsible
for the glycation of several biomolecules in vivo [9], and promoting the formation of circulating AGEs.
It has been reported that the consumption of thermally treated foods rich in AGEs could increase the
total body AGEs load [8], which is suggested to be implicated in the development of glycation and
inflammation associated with the aging process, and complications linked to chronic pathologies such
as diabetes, atherosclerosis, and neurodegenerative diseases, among others [10].

Baked cereal products are among the most consumed foods in the Western world [11].
The traditional way to formulate cereal-based foods includes wheat flour in their formulations;
however, food companies pursue the search for new products with new ingredients in order to
provide different properties to the foods. According to Lovis [12], during the last years there has been
a rise in consumer interest in wheat-free foods, due in part to the increase of the celiac disease. When
designing new formulas for baked products, the impact of these new ingredients on the nutritional
properties of the food and the chemical transformations occurring during the production chain
should be assessed. In this sense, many studies have evaluated, among other characteristics, both the
technological effects and nutritional properties of bakery products that include flours different from
wheat [13–16]. At this point, the contribution of the new formulations to the intake of HMF, furfural,
and dicarbonyl compounds should also be considered and taken into account from a toxicological
point of view, since the exposure should not be increased.

The aim of this paper was to study the formation of HMF, furfural, and dicarbonyl compounds,
including glyoxal, methylglyoxal, and 3-deoxyglucosone, during the baking step of different flours
used by the food industry. It also investigated the effects of the type of flour and the addition of glucose
into a dough model system on browning development and the formation of furfurals and dicarbonyl
compounds during baking.

2. Material and Methods

2.1. Chemicals

All chemicals used were of analytical grade and were obtained from Sigma Aldrich (St. Louis,
MO, USA). High performance liquid chromatography (HPLC)-grade methanol was from Merck
(Darmstadt, Germany).

2.2. Samples

Wheat (Triticum aestivum), spelt (Triticum spelta), oat (Avena sativa), rye (Secale cereale), and teff
(Eragrostis tef) flours were purchased from a local food store. Flours (0.5 g) were transferred to screw
cap pyrex tubes. Two mL of deionised water and 1 mL of sodium chloride (5 mg/mL) were added
to the samples. The mixture was vortexed for 5 min, held at room temperature for 30 min and
centrifuged at 1400× g for 10 min. The non-absorbed water was discharged and the tube containing
the dough with the retained water was closed and baked at 150 ◦C for 30 min in a forced air convection
oven (Memmert UNE 400, Schwabach, Germany). Eight repetitions per type of flour were prepared
and combined in two replicates of four samples. Additional experiments were repeated adding
2 mL of glucose (0.15 g/mL) instead of water, together with 1 mL of sodium chloride (5 mg/mL).
Eight repetitions per flour were also prepared and combined in two replicates of four samples.

2.3. Determination of Moisture

Moisture of flours was determined gravimetrically to a constant weight in an oven at 105 ◦C for
24 h according to the Association of Official Analytical Chemists (AOAC) method [17].
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2.4. Determination of Water Holding Capacity (WHC)

Flours (5 g) were placed in a pre-weighed centrifuge tube to which 30 mL of water were added.
The mixture was vigorously vortexed for 1 min, held at room temperature for 30 min, and centrifuged at
1400× g for 15 min. The non-absorbed water was discharged and the tube was weighed. Water holding
capacity according to the weight of samples was calculated by the following formula: ((weight of tube
with sample and water retained—weight of tube with sample)/(weight of sample)) × 100. Results are
expressed as gram of water retained per 100 gram of flour.

2.5. Measurement of pH

Flours or baked dough samples (0.25 g) were mixed with 25 mL of water and vortexed for 3 min.
The mixture was held at room temperature for 1 h and centrifuged to separate phases. pH of the
supernatant was measured using a CG-837 pH meter (Schott, Mainz, Germany).

2.6. Determination of Colour

The measurements were made using a HunterLab Spectrophotometer CM-3500D colorimeter
(Hunter Associates Laboratory, Stamford, CT, USA). Three independent measurements of a* (redness),
b* (yellowness) and L* (lightness) parameters were carried out on different areas of flours and baked
dough samples (with the addition of water or glucose). E index was calculated according to the
following equation: E = (L*2 + a*2 + b*2)1/2. Colour difference (∆E) was evaluated by comparing the
results in baked dough samples to those of initial flours.

2.7. Determination of Reducing Sugars (RS)

The reducing sugars content was determined by Miller [18] in the range of 0.25 to 2.0 mg/mL.
Results were expressed as g of glucose equivalents/100 g sample.

2.8. Determination of HMF and Furfural

HMF and furfural were determined in flours and baked dough samples following the High
Performance Liquid Chromatography (HPLC) method described by Mesías et al. [19]. The limit of
quantification was determined to be at 0.06 mg/kg and 0.03 mg/kg for HMF and furfural, respectively.
Results were expressed as mg/kg sample.

2.9. Determination of Dicarbonyl Compounds

Glyoxal (GO), methylglyoxal (MGO), and 3-deoxyglucosone (3-DG) were determined in flours and
baked dough samples according to the method of Navarro and Morales [20]. The limit of quantification
was determined to be at 0.1, 0.2, and 0.1 µg/g for GO, MGO, and 3-DG, respectively. Results were
expressed as µg/g sample.

2.10. Statistical Analysis

Statistical analyses were performed using a Statgraphics Centurion XV (Herndon, VA, USA).
Unless otherwise indicated, all measurements were performed at least in triplicate. Data was expressed
as mean ± standard deviation (SD). Analysis of variance (ANOVA) and the least significant difference
(LSD) test were applied to determine differences between means. Differences were considered to be
significant at p < 0.05. Relationships between the different parameters analysed were evaluated by
computing Pearson linear correlation coefficients at the p < 0.05 confidence level.

3. Results and Discussion

Five cereal flours were selected for the present study, including wheat, rye, oats, and spelt as
common flours, as well as teff, an alternative flour used especially in the manufacturing of gluten-free
products [21]. Model systems were designed at the maximum water holding capacity of each type
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of flour and carried out in two set of experiments with the aim of studying the formation of HMF,
furfural, and dicarbonyl compounds during baking. In the first experiment, dough was formulated
with water and baked for 30 min at 150 ◦C. The purpose was to examine the contribution of the
raw composition of the different flours on the formation of the former compounds since it is known
that both recipe composition and thermal treatment are the major factors involved in the extent
of the Maillard reaction [22]. In the second experiment, flours were formulated with a solution
of glucose with the aim of promoting the Maillard reaction and the caramelization during baking.
In this case, the formulation could be considered to be similar to those in a biscuit model system [19].
In both experiments, a solution of sodium chloride (5 mg/mL) was also added into the models, since
it is relevant for the dough behaviour and the formation of process contaminants and dicarbonyl
compounds during baking of cereal products [19,23].

A proximate composition of the flours is shown in Table 1. Values of pH of the water soluble
fraction of the flours were similar, ranging between 6.1 (wheat) and 6.7 (teff). The moisture of flours
was in the range of 9.9–10.5 g/100 g. Greater differences were found in the water holding capacity
of the flours. Spelt flour retained the 66.0% of its weight, whereas teff and rye flours retained until
116.2% and 124.8%, respectively. Wheat and oat flours showed intermediate values of water retention
capacity, 90.7% and 95.8% respectively. The differences in the final water content and the fact that
losses of water during the baking process were avoided in the closed tubes make not possible to
establish a relationship between the moisture content and the formation of Maillard reaction products.
The colour of the samples was measured by a colorimeter in the CIE L*a*b* scale. Due to the initial
darker colour of the teff flour, it was significantly different in all the colour parameters respect to the
other ones. According to the information provided by the flour manufacturer, wheat and oat flours
presented lower values of protein, and spelt and teff flour the highest ones. Regarding reducing sugars
content, rye flour showed the highest content (95.5 mg/g), whereas oat flour exhibited the lowest
content (11.0 mg/g).

Table 1. Characterization of flours in terms of pH value, moisture, water holding capacity, L*a*b* colour
scale, colour E index, reducing sugars content, protein, hydroxymethylfurfural, furfural, methylglyoxal,
glyoxal, and 3-deoxyglucosone.

Wheat Spelt Oat Teff Rye

pH 6.1 ± 0.1a 6.2 ± 0.1a 6.2 ± 0.1a 6.7 ± 0.0b 6.5 ± 0.2b
Moisture (%) 10.3 ± 0.0b 10.5 ± 0.1b 9.9 ± 0.1a 9.9 ± 0.0a 10.0 ± 0.1a

WHC (%) 90.7 ± 1.5b 66.0 ± 1.4a 95.8 ± 1.6c 116.2 ± 1.2d 124.8 ± 1.8e
a* 0.1 ± 0.0a 0.1 ± 0.0a 0.3 ± 0.0a 4.3 ± 0.2b 0.1 ± 0.0a
b* 8.4 ± 0.2b 8.9 ± 0.4bc 9.2 ± 0.6c 10.3 ± 0.3d 7.7 ± 0.1a
L* 91.4 ± 0.6d 89.0 ± 0.7c 87.0 ± 0.1b 68.3 ± 0.7a 87.2 ± 0.3b

E index 91.8 ± 0.5c 89.4 ± 0.7c 87.5 ± 0.1b 69.2 ± 0.7a 87.5 ± 0.2b
RS (mg/g) 30.0 ± 0.2c 36.6 ± 0.5d 11.0 ± 0.2a 26.7 ± 0.3b 95.5 ± 2.0e

Protein (g/100 g) 1 12.2 14.6 11.0 13.3 12.0
HMF (mg/kg) <LOQ <LOQ <LOQ <LOQ <LOQ

Furfural (mg/kg) <LOQ <LOQ <LOQ <LOQ <LOQ
MGO (µg/g) <LOQ <LOQ <LOQ <LOQ <LOQ
GO (µg/g) <LOQ <LOQ <LOQ <LOQ <LOQ

3-DG (µg/g) <LOQ <LOQ <LOQ <LOQ <LOQ
1 Protein content has been provided by the flour manufacturer. WHC: water holding capacity. RS: reducing
sugars. HMF: Hydroxymethylfurfural. MGO: Methylglyoxal. GO: Glyoxal. 3-DG: 3-deoxyglucosone. LOQ:
Limit of quantification. CIELAB parameters: L* defines lightness, a* denotes the red/green value and b* the
yellow/blue value. Results are mean ± standard deviation. Different letters in the same row mean significant
differences (p < 0.05).

Results of pH values and colour parameters of the baked doughs in the model systems are
summarized in Table 2. After baking, the pH was slightly decreased in the models containing water
and in a greater extent in the models containing glucose basically due to the formation of formic acid
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and acetic acid during the extent of the non-enzymatic browning reactions. Sugars and Amadori
compounds give rise to the formation of formic and acetic acids. Formic acid is mainly formed in
reactions involving disaccharides, while acetic acid is found when monosaccharides are the reactive
sugars and form the Maillard reaction [24,25].

The development of the colour is an important indicator of the advance of the Maillard
reaction [26]. Regardless the type of flour, doughs formulated with water browned slightly after
baking due to the initial content in reducing sugars (Table 2). Moreover, the addition of glucose
impacted the colour of the baked dough, and significant differences (p < 0.05) were found between
samples with added water with respect to those with added glucose. For each formulation, L* values
decreased during baking with the addition of water, observing a greater reduction with the addition
of glucose. In a similar way, both a* and b* values slightly increased in the baked flours, samples
with water exhibiting lower values than those with glucose. ∆E ranged from 18.6 to 41.7 in doughs
formulated with water, the lowest darkening being displayed in oat and teff. For all the dough model
systems, ∆E increased with the addition of the sugar (range: 22.5–45.3), thus describing a higher
browning process during baking in these samples. In this regard, teff flour showed the lowest ∆E after
baking in flours with both water and glucose addition, probably because the unbaked flour is already
slightly dark.

The formation of C2, C3, and C6 dicarbonyl compounds was studied in the samples since they
are key enhancers of the Maillard reaction, aside from their implication on the generation of flavour
compounds. Dicarbonyl compounds were not detected in unbaked flours (Table 1) but the formation
was evident in both experiments after baking (Figure 1). In samples formulated with water, values
for MGO, GO, and 3-DG ranged between 0.71 and 3.46, not detected −3.16, and 0.63–3.20 µg/kg,
respectively. Depending on the content of free amino acids and reducing sugars in the different cereal
flours, Maillard reaction or caramelization could be considered as the dominant mechanism in the
formation of dicarbonyl compounds during baking of flours. Wheat samples presented intermediate
values in MGO and 3-DG, but the maximum concentration of GO. Compared with this flour, the
content of dicarbonyl compounds was quite similar in the rest of the samples, with the exception of
oats for MGO, which presented the lowest level, and teff for GO, where this chemical product was not
present or was below the limit of quantification (0.1 µg/g). The formation of dicarbonyl compounds in
a sugar Maillard system is dependent on the pH value. In this regard, only the content of 3-DG was
significantly correlated with the pH of the unbaked flours (r = 9.9286, p = 0.0241). 3-DG also exhibited
a positive relationship with the extent of browning after baking (r = −0.9121, p = 0.0309), which were
not observed in MGO and GO.

Levels of dicarbonyl compounds were increased in systems formulated with glucose. In this
case, concentrations ranged from 5.86 to 8.90 µg/kg for MGO, from 3.13 to 5.62 µg/kg for GO and
from 54.2 to 73.7 µg/kg for 3-DG. The addition of the sugar promoted the formation of MGO mainly
in oat and teff, followed by rye and wheat (Figure 1(1.1)). In contrast, spelt displayed the lowest
difference between the content of MGO in the dough formulated with water, and this in the dough
formulated with glucose, since only an increase of 2.4 µg/kg was measured. Values for GO were
slightly higher when glucose was added (increment respect to the systems containing water ranging
from 1.4 to 3.3 µg/kg) (Figure 1(1.2)), however, greater differences were observed in the concentrations
of 3-DG (Figure 1(1.3)). These results were in agreement with those reported by Kocadağlı et al. [27],
who evaluated the content of dicarbonyl compounds in cookies. These authors observed that 3-DG
was the predominating compound, except in the cookies from wheat flour, which showed the lowest
level compared with other flours. It is known that MGO is formed to a larger extent under Maillard
reaction conditions as compared to caramelization [28]; however, 3-DG can be directly formed through
dehydration of glucose [23]. This could explain that, with the addition of glucose, the formation
of 3-DG is greatly increased compared with the formation of GO and MGO. In this sense, 3-DG
concentrations were found to be from 18-fold to even up to 116-fold higher compared with the content
of this compound in the baked doughs formulated with water.
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Table 2. Colour parameters and pH of baked doughs formulated with water or glucose and wheat, spelt, oat, teff and rye flour.

Wheat Spelt Oat Teff Rye

Water Glucose Water Glucose Water Glucose Water Glucose Water Glucose

pH 5.6 ± 0.1a 4.9 ± 0.1A * 6.0 ± 0.0b 5.4 ± 0.0B * 6.2 ± 0.0b 5.2 ± 0.1B * 6.3 ± 0.1b 6.1 ± 0.0C 5.7 ± 0.2a 5.4 ± 0.0B
L* 54.7 ± 1.1b 44.4 ± 0.6B * 53.4 ± 2.6b 43.4 ± 2.3B * 60.4 ± 0.9c 42.2 ± 1.3AB * 45.9 ± 0.9a 48.7 ± 2.0C 44.6 ± 1.4a 39.5 ± 1.3A *
a* 3.6 ± 0.4a 6.7 ± 0.6B * 3.6 ± 0.5a 4.7 ± 0.6A 3.1 ± 0.6a 8.7 ± 1.1C * 4.6 ± 0.2b 6.1 ± 0.6B * 3.7 ± 0.6a 6.5 ± 0.2B *
b* 14.6 ± 1.5c 15.4 ± 2.0BC 12.4 ± 1.9b 8.0 ± 1.4A * 17.0 ± 1.4c 17.5 ± 2.0C 7.3 ± 0.9a 12.2 ± 1.6B * 9.5 ± 1.3ab 13.3 ± 1.2B *
∆E 35.0 ± 0.5c 44.2 ± 0.5C * 34.5 ± 2.2c 45.0 ± 1.9C * 24.6 ± 0.5b 40.9 ± 1.4B * 18.6 ± 1.3a 22.5 ± 0.3A * 41.7 ± 1.2d 45.3 ± 1.3C *

Results are mean ± standard deviation. a–d: Means with different small letters are significantly different (p < 0.05) in baked dough model systems formulated with water. A–C: Means
with different capital letters are significantly different (p < 0.05) in baked dough model systems formulated with glucose. *: Asterisk means significant differences (p < 0.05) between the
dough formulated with the same flour when compared glucose and water system. ∆E: E flour—E baked dough model system containing water or glucose.
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Figure 1. Formation of methylglyoxal (MGO) (1.1); glyoxal (GO) (1.2); and 3-deoxyglucosone (3-DG)
(1.3) after baking in doughs formulated with water or glucose and wheat, spelt, oat, teff and rye
flour. Results are mean ± standard deviation. a–d: Means with different small letters are significantly
different (p < 0.05) in baked doughs containing water. A–C: Means with different capital letters are
significantly different (p < 0.05) in baked doughs with added glucose. *: Asterisk means significant
differences (p < 0.05) between the same flour when compared glucose and water addition.

Figure 2(2.1) shows the HMF formation during baking of different flours formulated in water and
glucose. Initial flours did not present detectable amount of furfural compounds (Table 1) whereas an
increase was observed in baked flours formulated with water (range: 0.5–7.3 mg/kg) and in a greater
extent in those formulated with glucose (range: 121.9–180.1 mg/kg). In the system formulated with
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water, the lowest amount of HMF was found for oat and the highest for rye. These findings could be
related to the lowest (11.0 mg/g) and the highest (95.5 mg/g) reducing sugars content in oat and rye
flours, respectively (Table 1). However, although the trend was positive (r = 0.8601, p = 0.0615), no
significant correlation was observed between reducing sugars and HMF content in samples formulated
with water. The ratio reducing sugars/protein had more influence over the HMF content and a
significant correlation was found among these parameters (r = 0.9079, p = 0.0331). This fact shows the
contribution of both components, reducing sugars and protein, on the formation of HMF, probably
coming from the Maillard reaction. As expected, HMF also correlated with the browning development
after baking, displaying a significant negative relation with the E value (r = −0.9368, p = 0.0189). HMF
was highly affected by the addition of glucose, which promotes both the Maillard reaction and the
caramelization. These findings agree with those of Gökmen et al. [29], who reported that the effect
of glucose on HMF formation is much greater than the effect of other sugars like sucrose. In this
condition, the lowest value was notable in wheat and the highest one in teff, which was highlighted
due to the significantly higher concentrations. The increase of the sugar content by the addition of
glucose could explain the absence of relation between HMF and the levels of sugars in the initial
flours. Protein content and HMF were not correlated, which could suggest that a high contribution
of the caramelization to the HMF generation. The pH values of the samples could also be involved
in the HMF formation. In general, lowering the pH increases the tendency of the HMF formation in
cereal-based foods during baking, and this effect can be more pronounced for the dough comprising
glucose [29], which is in agreement with the results of the present study.

Furfural showed the same behaviour as HMF during baking (Figure 2(2.2)). Furfural concentration
in unbaked samples was below the quantification limit of 0.03 mg/kg (Table 1). After baking, samples
containing water exhibited a range of furfural concentration between 0.2 and 1.6 mg/kg, being related
with the browning development, as shown by the significant correlation (p < 0.05) with the L*a*b*
parameters (r = −0.9072, p = 0.0335 for L*; r = 0.8937, p = 0.0409 for a*; r = −0.9463, p = 0.0032 for b*).
It was also found that the flour influenced the amount of furfural generated. Wheat had intermediate
values, being surpassed by teff and rye. The addition of glucose also displayed a strong influence on
furfural formation in baked dough system models. Wheat and oats presented increments of around
4.2 mg/kg, spelt and rye between 6.4 and 7.0 mg/kg, and teff, again, manifested the highest differences
(11.8 mg/kg). Furfural formation can also be related with the pH of the samples. In this regard,
a significant relationship was found between the pH in unbaked flours with the furfural generated
in baked doughs with water (r = 0.9802, p = 0.0033) and between pH and furfural in baked doughs
with glucose (r = 0.9326, p = 0.0208). A positive correlation (r = 0.9738, p = 0.0051) was also found
between HMF and furfural in the baked samples containing glucose, which corroborates the parallel
development of the Maillard reaction products.
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Figure 2. Formation of hidroxymethylfurfural (HMF) (2.1); and furfural (2.2) after baking in doughs
formulated with water or glucose and wheat, spelt, oat, teff and rye flour. Results are mean ± standard
deviation. a–c: Means with different small letters are significantly different (p < 0.05) in baked doughs
containing water. A–C: Means with different capital letters are significantly different (p < 0.05) in baked
doughs with added glucose. *: Asterisk means significant differences (p < 0.05) between the same flour
when compared glucose and water addition.

It is known that dicarbonyl compounds are highly reactive compounds which can promote the
advance of the Maillard reaction towards the formation of dietary AGEs after the reaction with amino
residues or even other intermediary compounds as HMF by dehydration [8]. In this line, Navarro
and Morales [20] reported a positive relationship between HMF and 3-DG in cookies. In the present
study, a significant relationship was found between 3-DG and furfural content (r = 0.9737, p = 0.0051)
whereas, although no significant, the trend was also positive among 3-DG and HMF (r = 0.8220,
p = 0.0877). In contrast, HMF did not significantly correlate with either GO or MGO, in agreement
with the observations found by Arribas-Lorenzo and Morales [28] in commercial cookies.

4. Conclusions

The composition of the flour will determine the formation of furfurals and C2, C3, and C6
dicarbonyl compounds in the baked dough. During baking, there is a concomitant formation of
desirable and undesirable compounds from the non-enzymatic browning reactions that will impact
on the consumer perception and the chemical safety of the product. The food industry commonly
identifies the functional performance of any ingredient on a cereal-based formulation in terms of
consumer acceptability and shelf-life, but food safety issues should be considered as well. In this
sense, there is a growing interest for wheat-free foods. Replacement of wheat flour by spelt, oat, rye,
and teff flours could be an alternative, maintaining an adequate nutritional value, but could have an
impact the levels of potentially harmful compounds. Compared with wheat flour formulations, spelt
and teff significantly reduced the formation of methylglyoxal and glyoxal, respectively. However,
3-deoxyglucosone formation is significantly increased in samples formulated with oats, teff, and rye.
In a similar way, HMF was significantly increased in spelt and teff formulations and furfural for spelt,
teff and rye. Therefore, the replacement of wheat flour in bakery products for the development of
new food products could present side effects related to the formation of process contaminants and
undesirable compounds that should be considered carefully in terms of food safety.
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