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Abstract: The assessment of interactions between natural antioxidants and other food matrix
components represents the main step in the investigation of total antioxidant properties, in terms of
potential health benefits. The diversity of chemical structures of natural compounds, besides their
possible interactions, as well as the biological role and different modes of action makes it difficult
to assess a single and reliable procedure for the evaluation of antioxidant activity. Today, much
attention is given to the distinction between extractable and non-extractable antioxidants as a key
tool in the description of the nutritional and healthy properties of food matrices. The starting point
for the investigation of antioxidant effects of food extracts is the analysis of antioxidant properties
of pure compounds and their interactions. Another complementary approach could be represented
by the study of how different biologically active compound-rich extracts contribute to the total
antioxidant capacity.
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1. Main Phases of Study of Antioxidant Properties: Focus on Extraction Procedure

The antioxidant properties of each food matrix come from the combined and concerted
action of biologically active compounds, i.e., polyphenols, carotenoids, lignans, glucosinolates, etc.
Antioxidants can exert large spectra of biological and physiological functions, i.e., anti-allergic,
anti-atherogenic, anti-inflammatory, antimicrobial, antioxidant, anti-thrombotic, cardioprotective, etc. [1].
The identification and quantification of the content of antioxidants as well as the understanding
and assessment of interactions between these biologically active compounds and other food matrix
components could be seen as the main step in the investigation of total antioxidant properties, in terms
of both the potential health benefits of food and as the indicator of a “possible beneficial role”.

The diversity of chemical structures of natural compounds, besides their possible interactions,
as well as the biological role and the different modes of action makes it difficult to assess a single and
reliable procedure for the evaluation of antioxidant activity.

Three essential items should be identified and developed in the evaluation of antioxidant
properties: the extraction procedure, the antioxidant capacity measurements and the expression
of results [2–6].

Chemical extraction represents an important issue. It is influenced by the types of solvents,
extraction time and temperature, as well as by the chemical composition and physical characteristics of
the analyzed sample [7]. There are some main aspects to consider in order to improve the recovery of
antioxidants. For this reason, some authors have tested the use of different times and temperatures [8–10]
or different solvents, i.e., ethanol, methanol, acetone and/or mixtures thereof [11,12], that have different
extraction efficiencies. For this purpose, Celik et al. [13] discuss the importance of the solvents’ effects
on the extraction recovery as well as on the performance of antioxidant assays.
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Normally, it appears that the use of an acid mixture of methanol/water improves the extraction
efficiency since it allows us to obtain extracts with the highest level of antioxidants [14,15].
Moreover, recent investigations have also performed alkaline hydrolysis, acid hydrolysis or enzymatic
digestion [16–22].

In recent years, much attention has been given to the distinction between extractable and
non-extractable antioxidants [23–25] as a key tool in the description of nutritional and healthy
properties of food matrices.

2. Extractable Antioxidants and Non-Extractable Antioxidants: Some Examples

Antioxidants occur in two forms: on the one side, as easily extractable compounds (free forms),
made soluble by aqueous-organic solvents; on the other side, as less extractable compounds that
are in bound forms because they remain in the residue after aqueous-organic extract. In detail,
non-extractable antioxidants are linked to the food matrix by covalent bonds, hydrogen bonds and/or
hydrophobic interactions. Non-extractable antioxidants encompass hydrolysable tannins and other
classes, i.e., phenolic acids and hydroxycinnamic acids, bound to carbohydrates and proteins as well
as macromolecules, such as condensed tannins (proanthocyanidins) [23].

The antioxidant properties of plant foods have been underestimated: significant amounts
of bioactive compounds remain in the residue from extraction as non-extractable antioxidants.
Their incidence in foodstuffs and diet were studied because they represent a significant portion in some
groups of foods, i.e., cereals, fruits, vegetables, nuts, and legumes [25–28]. Some specific and different
hydrolytic treatments of the residue were developed and performed for the isolation of non-extractable
compounds related to the food item within each food group, the type of bonds with the food matrix
as well as the nature and structure of the target compounds [23,25,28]. In relation to the presence of
multiple aspects and factors, it becomes difficult to carry out a categorization of the main trends of
the contribution of extractable and non-extractable antioxidants to the total antioxidant properties of
the major food groups. For this reason, some relevant examples were reported. Generally, however,
researchers concluded and remarked that the analysis of antioxidants in plant foods that remain in the
residues was necessary and required for a comprehensive and appropriate identification of antioxidant
properties. As for this aspect, studies are still needed to tackle this issue. Moreover, these studies
should also be combined with an in vitro physiological approach, and together they will represent the
basis for in vivo studies of antioxidant mechanisms [29,30].

Among the examples of studies concerning fruit items [26,31,32], Kristl et al. [32] studied the
evaluation of the contribution of extractable and non-extractable compounds to the total antioxidant
activity of plums. In this paper, in addition to the study of extractable compounds, hydrolyzable
tannins and non-extractable proanthocyanidins from residues by two different acidic treatments
were investigated: extractable antioxidants contributed less than 18% to the total antioxidant activity,
whereas non-extractable compounds contributed more, according to what was previously discussed
by other authors in relation to hydrolyzable tannins and/or non-extractable proanthocyanidins [26,33]
for fruit items. In detail, Arranz et al. (2009), by studying extractable polyphenols, hydrolyzable
polyphenols and proanthocyanidins in apple, peach, and nectarine, showed that the non-extractable
polyphenols content (112–126 mg/100 g of fresh fruit) was higher than the extractable polyphenols
content (18.8–28 mg/100 g of fresh fruit).

Considerable research was carried out both on grains [34–36] and their derivatives, i.e., bread,
pasta [37,38] as well as on pulses [25]. In the context of such research, the work by Durazzo et al. [37] was
focused on the antioxidant properties of experimental pastas made with different wholegrain cereals
in raw and cooked products; here, the authors found that in cooked pasta, FRAP (Ferric Reducing
Antioxidant Power) values ranged from 3.26 ± 0.08 µmol/g dry weight to 19.52 ± 1.28 µmol/g dry
weight in aqueous-organic extracts and from 17.91 ± 2.83 µmol/g dry weight to 87.83 ± 5.06 µmol/g
dry weight in residues [37].
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With regards to fatty food matrices, it is interesting to mention the work of Arranz et al. [39] who
studied the contributions of two major fractions of walnut (oil and defatted matter) on antioxidant
properties and then compared it to the data obtained from the analysis of whole walnut for better
understanding the possible interference of oil in the antioxidant properties: the contribution of walnut
oil to the total antioxidant capacity of walnut was less than 5% and hydrolyzable tannins represented
the main contributors to the antioxidant properties in the defatted matter. In addition to this, the
authors recommended a separate determination of antioxidant capacity in the oil and defatted matter
of walnut [39]. Rufino et al. [40] studied the antioxidant activity of a tropical fruit with a fat content of
about 20% by taking into consideration its defatted matter and oil and paying particular attention to
the polar and apolar fractions obtained from oil extraction. Generally, further research is needed in
this direction.

Considering that only small amounts of vegetables are consumed raw, whereas most food
is consumed after being cooked or processed, it is important to study the effect of processing on
antioxidant properties [41,42] as well as the antioxidant properties of complex food matrices and
ready-to-eat dishes that take into account both the formulation and the technological process [43,44].
In particular, Durazzo et al. [45], by studying the antioxidant properties of some traditional Italian
dishes, have shown that in spaghetti alle vongole, pomodori al riso, gateau di patate and pan di Spagna,
extractable polyphenols contributed less than 15% to the total antioxidant activity, while hydrolyzable
polyphenols gave a major contribution. Carciofi alla romana, instead, showed an inverse trend.

It is worth mentioning the recent investigations on extractable and non-extractable antioxidants
of fruit waste [46–49] and vegetable waste [50] as examples of innovative applications of studies on
antioxidants in circular bioeconomy and biorefinery.

3. Two Complementary Approaches: From the Monitoring of the Antioxidant Behavior of
Standard Compounds and Their Interactions to the Study of Contributions of Biologically
Different Active Compound-Rich Extracts to Total Antioxidant Capacity

The investigation of antioxidant effects of food extracts starts with the analysis of the
antioxidant properties of pure compounds, i.e., terpenoids, carotenoids, limonoids, phytosterols,
glucosinolates, polyphenols, flavonoids, isoflavonoids and anthocyanidins and/or their mixtures.
Targeted investigations were carried out on the antioxidant properties of standards or reference
compounds for the evaluation of food extracts, with particular attention also paid to the comparison of
different classes of compounds [51–56]. In regards to this, the study of Tabart et al. [56] that compares the
antioxidant properties of standard compounds, i.e., phenolic compounds, ascorbic acid, and glutathione
as measured by various assays is interesting.

In the context of such investigations, we reported, as examples, the case study of lignans and
glucosinolates, two classes of compounds that have a different range of antioxidant properties.

Lignans and their active metabolites are known for their structure which is similar to that of
estrogenic compounds; several authors have reported differences in antioxidant properties between
plant lignans and enterolignans [25,55,57]. Niemeyer and Metzler, [55] hypothesized that the observed
differences are presumably related to the methoxy group. Eklund et al. [57], by monitoring the
radical-scavenging activity using DPPH (2,2-diphenyl-1-picrylhydrazyl), showed and concluded that
compounds with catechol (3,4-dihydroxyphenyl) moieties had the highest radical-scavenging activity.

The research of Durazzo et al. [25], by monitoring antioxidant properties by means of FRAP assay,
found not only significantly higher FRAP values in plant lignans compared to enterolignans, but also
noticed the highest concentration of antioxidant properties in matairesinol.

With regards to glucosinolates, Barillari et al. [58] have studied the direct antioxidant activity
of purified glucoerucin, isolated and purified from rocket seeds and sprouts: glucoerucin and its
metabolite erucin possess good direct antioxidant activity as hydroperoxide-scavenging preventive
antioxidants. Flavonoid and hydroxycinnamic acids are responsible for antioxidant properties in
cruciferous vegetables rather than their main class of compounds, glucosinolates [59]. The recent
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investigation of Natella et al. [60], which, by studying the in vitro redox behavior of 15 glucosinolates
by means of different methodologies, is interesting; it showed that sinalbin and gluconasturtiin
were highly active in scavenging ABTS radicals and in protecting LDL (low-density lipoprotein)
from copper-catalyzed oxidation and concluded that few glucosinolates can act as antioxidants.
Further research should be conducted on investigating the antioxidant capacity of glucosinolates and
their metabolites.

The core element is the evaluation of concerted and synergistic actions, of antagonist interactions
or of no effect among active compounds that depends both on the nature and the peculiar combination
of antioxidants and on the complex structure of the food matrix [25,61–63].

Reber et al. [62] investigated the antioxidant capacity of the interactions and the chemical/
structural model of phenolic compounds found in strawberries: the antioxidant capacity of a whole
fruit exceeds the sum of the single antioxidant values in the fruit, and this underlies the presence
of the synergistic effect. Moreover, the study of the interactions among seven phenolic compounds
(p-coumaric acid, cyanidin, catechin, quercetin-3-glucoside, kaempferol, pelargonidin and ellagic
acid), taking into account the relative concentrations found in strawberries, underlined synergism or
antagonism in relation to the combination studied.

Palafox-Carlose et al. [63] have studied the interactions of four major phenolic compounds
(chlorogenic, gallic, protocatechuic and vanillic acid) found in “Ataulfo”: there was a synergistic
interaction between the studied phenolic compounds, except for vanillic acid, which appears to have
a negative effect.

Besides the evaluation of the contribution of extractable and non-extractable to total antioxidant
properties, an interesting and alternative study approach is represented by the isolation of biologically
active compound-rich extracts of each food matrix (i.e., limonoid-rich extracts, anthocyanin-rich
extracts, etc.) and the evaluation of their contributions to the total antioxidant capacity; one or more
fractions for each food can be identified and minor or major contributors to the antioxidant properties
can be highlighted.

The study of Mattera et al. [64] evaluated the radical-scavenging activity of a fat-soluble
vitamins–rich extract in an Italian cheese, related to the structure of the active substances present in
lipophilic extracts and their possible interactions, as an indicator of the antioxidant properties of cheese.

Durazzo et al. [65], by investigating the bioactive components of commercial carob flours, have
reported that the antioxidant properties found by means of the FRAP assay in lignan-rich extracts
matched those obtained from aqueous-organic extract and residue.

4. Conclusions

Studies on the evaluation of antioxidant properties should be integrated into a multidisciplinary
system of analysis, coupled with chemometrics, in order to develop an innovative study approach for
food research. This system should also include “green” procedures as Fourier transformed infrared
spectroscopy (FTIR) on attenuated total reflectance (ATR), etc. The studies on the identification of
extractable and non-extractable antioxidants represent the basis for further studies on the biological role
of these specific isolated fractions [48,66], in order to increase the application and uses of nutraceutical
and functional foods.
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6. Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen
Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays.
J. Agric. Food Chem. 2016, 64, 1028–1045. [CrossRef] [PubMed]

7. Luthria, D.L. Significance of sample preparation in developing analytical methodologies for accurate
estimation of bioactive compounds in functional foods. J. Sci. Food Agric. 2006, 86, 2266–2272. [CrossRef]

8. Ziaedini, A.; Jafari, A.; Zakeri, A. Extraction of Antioxidants and Caffeine from Green Tea (Camelia sinensis)
Leaves: Kinetics and Modeling. Food Sci. Technol. Int. 2010, 16, 505–510. [CrossRef] [PubMed]

9. Marquez, A.; Perez-Serratosa, M.; Varo, M.A.; Merida, J. Effect of temperature on the anthocyanin extraction
and color evolution during controlled dehydration of Tempranillo grapes. J. Agric. Food Chem. 2014, 62,
7897–7902. [CrossRef] [PubMed]

10. Wissam, Z.; Ali, A.; Rama, H. Optimization of extraction conditions for the recovery of phenolic compounds
and antioxidants from Syrian olive leaves. J. Pharm. Phytochem. 2016, 5, 390–394.

11. Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidants activity and total phenolics in selected fruits,
vegetables and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [CrossRef]

12. Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant properties of commercial soft and hard winter wheats
(Triticum aestivum L.) and their milling fractions. J. Sci. Food Agric. 2006, 86, 477–485. [CrossRef]

13. Celik, S.E.; Ozyürek, M.; Güçlü, K.; Apak, R. Solvent effects on the antioxidant capacity of lipophilic and
hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 2010, 81,
1300–1309. [CrossRef] [PubMed]

14. Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of some commercially available
varieties of rice bran in Pakistan. Food Chem. 2005, 93, 265–272. [CrossRef]

15. Rufino, M.d.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jimenez, J.; Saura-Calixto, F.; Mancini-Filo, J. Bioactive
compounds and antioxidant capacity of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121,
996–1002. [CrossRef]

16. Bennet, R.N.; Shiga, T.M.; Hassimoto, N.M.A.; Rosa, E.A.S.; Lajolo, F.M.; Cordenunsi, B.R. Phenolics and
antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminate Juss.)
cultivars. J. Agric. Food Chem. 2010, 54, 1646–1658.

17. Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic acid composition and antioxidant capacity of acid and alkali
hydrolysed wheat bran fractions. Food Chem. 2009, 116, 947–954. [CrossRef]

18. Delgrado-Andrade, C.; Conde-Aguilera, J.A.; Haro, A.; de la Cueva, S.P.; Rufian-Henares, J.A. A combined
procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 2010, 52, 239–246. [CrossRef]

19. White, B.L.; Howard, L.R.; Prior, R.L. Release of bound procyanidins from cranberry pomace by alkaline
hydrolysis. J. Agric. Food Chem. 2010, 58, 7572–7579. [CrossRef] [PubMed]

20. Navarro-Gonzalez, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical profile, functional and
antioxidant properties of tomato peel fiber. Food Res. Int. 2011, 44, 1528–1535. [CrossRef]

21. Royer, M.; Diouf, P.N.; Stevanovic, T. Polyphenol contents and radical scavenging capacities of red maple
(Acer rubrum L.) extracts. Food Chem. Toxicol. 2011, 49, 2180–2188. [CrossRef] [PubMed]

22. Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of phenolics, betanins and antioxidant
activities in seeds of three Chenopodium quinoa Willd. Genotypes. Food Chem. 2015, 166, 380–388. [CrossRef]
[PubMed]

23. Pérez-Jiménez, J.; Torres, J.L. Analysis of non-extractable phenolic compounds in foods: The current state of
the art. J. Agric. Food Chem. 2011, 59, 12713–12724. [CrossRef] [PubMed]

24. Saura-Calixto, F. Concept and health-related properties of non- extractable polyphenols: The missing dietary
polyphenols. J. Agric. Food Chem. 2012, 60, 11195–11200. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/jf0502698
http://www.ncbi.nlm.nih.gov/pubmed/15884874
http://dx.doi.org/10.1351/PAC-REP-12-07-15
http://dx.doi.org/10.1021/acs.jafc.5b04739
http://www.ncbi.nlm.nih.gov/pubmed/26728425
http://dx.doi.org/10.1021/acs.jafc.5b04743
http://www.ncbi.nlm.nih.gov/pubmed/26805392
http://dx.doi.org/10.1002/jsfa.2666
http://dx.doi.org/10.1177/1082013210367567
http://www.ncbi.nlm.nih.gov/pubmed/21339166
http://dx.doi.org/10.1021/jf502235b
http://www.ncbi.nlm.nih.gov/pubmed/25030077
http://dx.doi.org/10.1021/jf9801973
http://dx.doi.org/10.1002/jsfa.2374
http://dx.doi.org/10.1016/j.talanta.2010.02.025
http://www.ncbi.nlm.nih.gov/pubmed/20441899
http://dx.doi.org/10.1016/j.foodchem.2004.09.024
http://dx.doi.org/10.1016/j.foodchem.2010.01.037
http://dx.doi.org/10.1016/j.foodchem.2009.03.060
http://dx.doi.org/10.1016/j.jcs.2010.05.013
http://dx.doi.org/10.1021/jf100700p
http://www.ncbi.nlm.nih.gov/pubmed/20527966
http://dx.doi.org/10.1016/j.foodres.2011.04.005
http://dx.doi.org/10.1016/j.fct.2011.06.003
http://www.ncbi.nlm.nih.gov/pubmed/21683113
http://dx.doi.org/10.1016/j.foodchem.2014.06.018
http://www.ncbi.nlm.nih.gov/pubmed/25053071
http://dx.doi.org/10.1021/jf203372w
http://www.ncbi.nlm.nih.gov/pubmed/22070088
http://dx.doi.org/10.1021/jf303758j
http://www.ncbi.nlm.nih.gov/pubmed/23095074


Foods 2017, 6, 17 6 of 7

25. Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of
legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [CrossRef] [PubMed]

26. Arranz, S.; Saura-calixto, F.; Shaha, S.; Kroon, P.A. High contents of non-extractable polyphenols in fruits
suggest that polyphenol contents of plant foods have been underestimated. J. Agric. Food Chem. 2009, 57,
7298–7303. [CrossRef] [PubMed]

27. Tarascou, I.; Souquet, J.M.; Mazauric, J.P.; Carrillo, S.; Coq, S.; Canon, F.; Fulcrand, H.; Cheynier, V. The
hidden face of food phenolic composition. Arch. Biochem. Biophys. 2010, 501, 16–22. [CrossRef] [PubMed]

28. Pérez-Jiménez, J.; Diaz-Rubio, M.E.; Saura-Calixto, F. Non-extractable polyphenols, a major dietary
antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev. 2013, 26, 118–129. [CrossRef]
[PubMed]

29. Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet.
Food Chem. 2007, 101, 492–501. [CrossRef]

30. Serrano, J.; Goñi, I.; Saura-Calixto, F. Food antioxidant capacity determined by chemical methods may
underestimate the physiological antioxidant capacity. Food Res. Int. 2007, 40, 15–21. [CrossRef]

31. Gruz, J.; Ayaz, F.A.; Torun, H.; Strnad, M. Phenolic acid content and radical scavenging activity of extracts
from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 2011, 124, 271–277.
[CrossRef]

32. Kristl, J.; Slekovec, M.; Tojnko, S.; Unuk, T. Extractable antioxidants and non-extractable phenolics in the
total antioxidant activity of selected plum cultivars (Prunus domestica L.): Evolution during on-tree ripening.
Food Chem. 2011, 125, 29–34. [CrossRef]

33. Hellstrom, J.K.; Mattila, P.H. HPLC determination of extractable and unextractable proanthocyanidins in
plant materials. J. Agric. Food Chem. 2008, 56, 7617–7624. [CrossRef] [PubMed]

34. Perez-Jimenez, J.; Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of
cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. [CrossRef] [PubMed]

35. Chandrasekara, A.; Shahidi, F. Content of insoluble bound phenolics in millets and their contribution to
antioxidant capacity. J. Agric. Food Chem. 2010, 58, 6706–6714. [CrossRef] [PubMed]

36. Camelo-Méndez, G.A.; Bello-Pérez, L.A. Antioxidant capacity of extractable and non-extractable polyphenols
of pigmented maize. J. Chem. Biol. Phys. Sci. 2014, 4, 6–13.

37. Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Antioxidant properties of experimental pastas
made with different wholegrain cereals. J. Food Res. 2014, 3, 4. [CrossRef]

38. Durazzo, A.; Casale, G.; Melini, V.; Maiani, G.; Acquistucci, R. Total polyphenol content and antioxidant
properties of solina (Triticum aestivum L.) and derivatives thereof Ital. J. Food Sci. 2016, 28, 221–229.

39. Arranz, S.; Perez-Jimenez, J.; Saura-Calixto, F. Antioxidant capacity of walnut (Juglans regia L.): Contribution
of oil and defatted matter. Eur. Food Res. Technol. 2008, 227, 425–431. [CrossRef]

40. Rufino, M.d.S.M.; Pérez-Jiménez, J.; Arranz, S.; Elesbão Alves, R.; de Brito, E.S.; Oliveira, M.S.P.;
Saura-Calixto, F. Açaí (Euterpe oleraceae) ‘BRS Pará’: A tropical fruit source of antioxidant dietary fiber and
high antioxidant capacity oil. Food Res. Int. 2011, 44, 2100–2106. [CrossRef]

41. Ebun, O.; Santosh, K. Effect of domestic cooking on the polyphenolic content and antioxidant capacity of
plantain (Musa paradisiaca). World J. Dairy Food Sci. 2011, 6, 189–194.

42. Vilela, W.F.; Leão, D.P.; Franca, A.S.; Oliveira, L.S. Effect of peroxide treatment on functional and technological
properties of fiber-rich powders based on spent coffee grounds. Int. J. Food Eng. 2016, 2, 42–47.

43. Greco, L.; Riccio, R.; Bergero, S.; Del Re, A.A.M.; Trevisan, M. Total reducing capacity of fresh sweet peppers
and five different Italian pepper recipes. Food Chem. 2007, 103, 1127–1133. [CrossRef]

44. Ioannou, I. Comparative study of antioxidant activity between basic and convenience foods. J. Food Res.
2012, 1, 143–156. [CrossRef]

45. Durazzo, A.; Lisciani, S.; Camilli, E.; Gabrielli, P.; Marconi, S.; Gambelli, L.; Aguzzi, A.; Lucarini, M.;
Maiani, G.; Casale, G.; et al. Nutritional composition and antioxidant properties of traditional Italian dishes.
Food Chem. 2017, 218, 70–77. [CrossRef] [PubMed]

46. Esparza-Martínez, F.J.; Miranda-López, R.; Guzman-Maldonado, S.H. Effect of air-Drying temperature on
extractable and non-extractable phenolics and antioxidant capacity of lime wastes. Ind. Crop. Prod. 2016, 84,
1–6. [CrossRef]

http://dx.doi.org/10.1016/j.foodchem.2012.09.062
http://www.ncbi.nlm.nih.gov/pubmed/23692751
http://dx.doi.org/10.1021/jf9016652
http://www.ncbi.nlm.nih.gov/pubmed/19637929
http://dx.doi.org/10.1016/j.abb.2010.03.018
http://www.ncbi.nlm.nih.gov/pubmed/20363210
http://dx.doi.org/10.1017/S0954422413000097
http://www.ncbi.nlm.nih.gov/pubmed/23930641
http://dx.doi.org/10.1016/j.foodchem.2006.02.006
http://dx.doi.org/10.1016/j.foodres.2006.07.010
http://dx.doi.org/10.1016/j.foodchem.2010.06.030
http://dx.doi.org/10.1016/j.foodchem.2010.08.027
http://dx.doi.org/10.1021/jf801336s
http://www.ncbi.nlm.nih.gov/pubmed/18672884
http://dx.doi.org/10.1021/jf050049u
http://www.ncbi.nlm.nih.gov/pubmed/15941353
http://dx.doi.org/10.1021/jf100868b
http://www.ncbi.nlm.nih.gov/pubmed/20465288
http://dx.doi.org/10.5539/jfr.v3n4p33
http://dx.doi.org/10.1007/s00217-007-0737-2
http://dx.doi.org/10.1016/j.foodres.2010.09.011
http://dx.doi.org/10.1016/j.foodchem.2006.10.013
http://dx.doi.org/10.5539/jfr.v1n1p143
http://dx.doi.org/10.1016/j.foodchem.2016.08.120
http://www.ncbi.nlm.nih.gov/pubmed/27719959
http://dx.doi.org/10.1016/j.indcrop.2016.01.043


Foods 2017, 6, 17 7 of 7

47. Esparza-Martínez, F.J.; Miranda-López, R.; Mata-Sánchez, S.M.; Guzmán-Maldonado, S.H. Extractable and
non-extractable phenolics and antioxidant capacity of mandarin waste dried at different temperatures.
Plant Foods Hum. Nutr. 2016, 71, 294–300. [CrossRef] [PubMed]

48. Tow, W.W.; Premier, R.; Jing, H.; Ajlouni, S. Antioxidant and antiproliferation effects of extractable and non-
extractable polyphenols isolated from apple waste using different extraction methods. J. Food Sci. 2011, 76,
T163–T172. [CrossRef] [PubMed]

49. Toh, P.Y.; Leong, F.S.; Chang, S.K.; Khoo, H.E.; Yim, H.S. Optimization of extraction parameters on the
antioxidant properties of banana waste. Acta Sci. Pol. Technol. Aliment. 2016, 15, 65–78. [CrossRef] [PubMed]

50. Gonzales, G.B.; Raes, K.; Vanhoutte, H.; Coelus, S.; Smagghe, G.; Van Camp, J. Liquid chromatography-mass
spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable
and non-extractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams.
J. Chromatogr. A 2015, 1402, 60–70. [CrossRef] [PubMed]

51. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an
improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]

52. Awika, J.M.; Rooney, L.W.; Waniska, R.D. Anthocyanins from black sorghum and their antioxidant properties.
Food Chem. 2005, 90, 293–301. [CrossRef]

53. Yu, J.; Wang, L.; Walzem, R.L.; Miller, E.G.; Pike, L.M.; Patil, B.S. Antioxidant activity of citrus limonoids,
flavonoids, and coumarins. J. Agric. Food Chem. 2005, 53, 2009–2014. [CrossRef] [PubMed]

54. Mueller, L.; Boehm, V. Antioxidant activity of β-Carotene compounds in different in vitro assays. Molecules
2011, 16, 1055–1069. [CrossRef] [PubMed]

55. Niemeyer, H.B.; Metzler, M. Differences in the antioxidant activity of plant and mammalian lignans.
J. Food Eng. 2001, 56, 255–256. [CrossRef]

56. Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Comparative antioxidant capacities of
phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [CrossRef]

57. Eklund, P.C.; Långvik, O.K.; Wärnå, J.P.; Salmi, T.O.; Willför, S.M.; Sjöholm, R.E. Chemical studies on
antioxidant mechanisms and free radical scavenging properties of lignans. Org. Biomol. Chem. 2005, 3,
3336–3347. [CrossRef] [PubMed]

58. Barillari, J.; Canistro, D.; Paolini, M.; Ferroni, F.; Pedulli, G.F.; Iori, R.; Valgimigli, L. Direct antioxidant
activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.)
seeds and sprouts. J. Agric. Food Chem. 2005, 53, 2475–2482. [CrossRef] [PubMed]

59. Plumb, G.W.; Lambert, N.; Chambers, S.J.; Wanigatunga, S.; Heaney, R.K.; Plumb, J.A.; Auroma, O.I.;
Halliwell, B.; Miller, N.J.; Williamson, G. Are whole extracts and purified glucosinolates from cruciferous
vegetables antioxidants? Free Radic. Res. 1996, 25, 75–86. [CrossRef] [PubMed]

60. Natella, F.; Maldini, M.; Leoni, G.; Scaccini, C. Glucosinolates redox activities: Can they act as antioxidants?
Food Chem. 2014, 149, 226–232. [CrossRef] [PubMed]

61. Heo, H.; Kim, Y.; Chung, D.; Kim, D. Antioxidant capacities of individual and combined phenolics in a model
system. Food Chem. 2007, 104, 87–92. [CrossRef]

62. Reber, J.D.; Eggett, D.L.; Parker, T.L. Antioxidant capacity interactions and a chemical/structural model of
phenolic compounds found in strawberries. Int. J. Food Sci. Nutr. 2011, 62, 445–452. [CrossRef] [PubMed]

63. Palafox-Carlos, H.; Gil-Chávez, J.; Sotelo-Mundo, R.R.; Namiesnik, J.; Gorinstein, S.; González-Aguilar, G.A.
Antioxidant Interactions between Major Phenolic Compounds Found in ‘Ataulfo’ Mango Pulp: Chlorogenic,
Gallic, Protocatechuic and Vanillic Acids. Molecules 2012, 17, 12657–12664. [CrossRef] [PubMed]

64. Mattera, M.; Durazzo, A.; Nicoli, S.; Di Costanzo, M.G.; Manzi, P. Chemical, nutritional, physical and
antioxidant properties of Pecorino d’abruzzo cheese. Ital. J. Food Sci. 2016, 28, 579–597.

65. Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional characterisation and
bioactive components of commercial carobs flours. Food Chem. 2014, 153, 109–113. [CrossRef] [PubMed]

66. Cheng, A.; Han, C.; Fang, X.; Sun, J.; Chen, X.; Wan, F. Extractable and non-extractable polyphenols from
blueberries modulate LPS-induced expression of iNOS and COX-2 in RAW264.7 macrophages via the NF-κB
signalling pathway. J. Sci. Food Agric. 2016, 96, 3393–3400. [CrossRef] [PubMed]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11130-016-0559-0
http://www.ncbi.nlm.nih.gov/pubmed/27368409
http://dx.doi.org/10.1111/j.1750-3841.2011.02314.x
http://www.ncbi.nlm.nih.gov/pubmed/22417564
http://dx.doi.org/10.17306/J.AFS.2016.1.7
http://www.ncbi.nlm.nih.gov/pubmed/28071040
http://dx.doi.org/10.1016/j.chroma.2015.05.009
http://www.ncbi.nlm.nih.gov/pubmed/26008597
http://dx.doi.org/10.1016/S0891-5849(98)00315-3
http://dx.doi.org/10.1016/j.foodchem.2004.03.058
http://dx.doi.org/10.1021/jf0484632
http://www.ncbi.nlm.nih.gov/pubmed/15769128
http://dx.doi.org/10.3390/molecules16021055
http://www.ncbi.nlm.nih.gov/pubmed/21350393
http://dx.doi.org/10.1016/S0260-8774(02)00263-7
http://dx.doi.org/10.1016/j.foodchem.2008.08.013
http://dx.doi.org/10.1039/b506739a
http://www.ncbi.nlm.nih.gov/pubmed/16132095
http://dx.doi.org/10.1021/jf047945a
http://www.ncbi.nlm.nih.gov/pubmed/15796582
http://dx.doi.org/10.3109/10715769609145657
http://www.ncbi.nlm.nih.gov/pubmed/8814445
http://dx.doi.org/10.1016/j.foodchem.2013.10.134
http://www.ncbi.nlm.nih.gov/pubmed/24295700
http://dx.doi.org/10.1016/j.foodchem.2006.11.002
http://dx.doi.org/10.3109/09637486.2010.549115
http://www.ncbi.nlm.nih.gov/pubmed/21385007
http://dx.doi.org/10.3390/molecules171112657
http://www.ncbi.nlm.nih.gov/pubmed/23103532
http://dx.doi.org/10.1016/j.foodchem.2013.12.045
http://www.ncbi.nlm.nih.gov/pubmed/24491707
http://dx.doi.org/10.1002/jsfa.7519
http://www.ncbi.nlm.nih.gov/pubmed/26538333
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Main Phases of Study of Antioxidant Properties: Focus on Extraction Procedure 
	Extractable Antioxidants and Non-Extractable Antioxidants: Some Examples 
	Two Complementary Approaches: From the Monitoring of the Antioxidant Behavior of Standard Compounds and Their Interactions to the Study of Contributions of Biologically Different Active Compound-Rich Extracts to Total Antioxidant Capacity 
	Conclusions 

