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Abstract: Procyanidin C1 is by far the main flavan-3-ol trimer in cocoa. Like other flavan-3-ols,
however, it suffers a lot during heat treatments such as roasting. RP-HPLC-HRMS/MS(ESI(−))analysis
applied to an aqueous model medium containing commercial procyanidin C1 proved that
epimerization is the main reaction involved in its degradation (accounting for 62% of degradation
products). In addition to depolymerization, cocoa procyanidin C1 also proved sensitive to oxidation,
yielding once- and twice-oxidized dimers. No chemical oligomer involving the native trimer was
found in either model medium or cocoa, while two C1 isomers were retrieved. C1 degradation
products exhibited antioxidant activity (monitored by RP-HPLC-Online TEAC) close to that of C1
(when expressed in µM TE/mg·kg−1).

Keywords: Procyanidin C1; epimers; online TEAC; model medium; flavan-3-ols

1. Introduction

Procyanidins, also called condensed tannins, are a group of phytoallexins widely distributed
within the plant kingdom and composed mainly of flavan-3-ol monomers and oligomers.
These chemicals have several health benefits, linked notably to antioxidant, antibacterial, anticancer,
and antidiabetic effects [1–7]. Procyanidins are well represented in cocoa, making it one of the richest
sources in the human diet [8].

Procyanidin C1 ((−)-epicatechin-(C4-C8)-(−)-epicatechin-(C4-C8)-(−)-epicatechin) is the main
flavan-3-ol trimer found in cocoa. It is also found in cinnamon, tea, apple, litchi, grape, peach,
and various red and blue berries [9]. The composition of the procyanidin pool varies according to
the availability of flavan-3-ol monomers. Procyanidin C2 ((+)-catechin-(C4-C8)-(+)-catechin-(C4-C8)
-(+)-catechin) is another B-type trimer, absent from cocoa but found in high quantity in barley and
grapes, where (+)-catechin is the main monomeric building block [10,11].

An additional C2-O-C7 ether bond turns B-type into A-type procyanidins, the second most
common type of procyanidins in plants. B2 can thus convert to A2, and conversion of B-type to A-type
trimers is also reported in the literature. To date, two once-oxidized trimers, primarily evidenced in
cinnamon, are known: cinnamtannin B1 ((−)-epicatechin-(C4-C8,C2-O-C7)-(−)-epicatechin-(C4-C8)
-(−)-epicatechin) and cinnamtannin D1 ((−)-epicatechin-(C4-C8,C2-O-C7)-(−)-epicatechin-(C4-C8)
-(+)-catechin) [12]. A-type oligomers arise from B-type equivalents either enzymatically (e.g., through
the action of polyphenol oxidase) or chemically (e.g., in the presence of DPPH). In the latter case,
a quinone methide mechanism has been evidenced [13]. The once-oxidized cinnamtannins can
undergo further oxidation, giving rise to the twice-oxidized trimer ((−)-epicatechin-(C4-C8,C2-O-C7)
-(−)-epicatechin-(C4-C8,C2-O-C7)-(−)-epicatechin from B1 and (−)-epicatechin-(C4-C8,C2-O-C7)-(−)
-epicatechin-(C4-C8,C2-O-C7)-(+)-catechin from D1).
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C1 is partially degraded through chocolate processing, especially during fermentation [14],
roasting [15], and conching [16]. Yet when polyphenols are thermally degraded, most derived products
are potentially antioxidant. Furthermore, C1 is regenerated from higher procyanidins when the
medium is sufficiently liquid for depolymerization (e.g., during liquid conching at 90 ◦C applied after
dry conching at 60 ◦C [17]). These conditions were selected in a patent aiming at higher antioxidant
production [16].

The aim of the present work was to assess how procyanidin C1 degradation products might
contribute to the antioxidant activity of a chocolate. First, HPLC-HRMS/MS-ESI(−) was used to
evidence the degradation compounds issued from C1 in an aqueous model medium heated at 90 ◦C.
A similar investigation focusing on procyanidin B2 recently showed that in this simple medium, one
can readily identify molecules that would be generated in more complex lipidic media [18]. The C1
medium was further analyzed by RP-HPLC-online TEAC to assess the relative antioxidant capacity
of each new compound. Finally, mass spectrometry in the SRM mode was used to see if the new
compounds occur in raw cocoa beans and to determine their fate during fermentation and roasting.

2. Materials and Methods

2.1. Chemicals

Acetonitrile (99.9%) and methanol (99.9%) were supplied by VWR (Leuven, Belgium).
Formic acid (99%) was obtained from Acros Organic (Geel, Belgium). (−)-Epicatechin (98%),
(+)-catechin (98%), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and Trolox
(6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) were supplied by Sigma-Aldrich (Bornem,
Belgium). (−)-Epicatechin -4-8-(−)-epicatechin (procyanidin B2, 99%) and (−)-epicatechin-4-8-(−)
-epicatechin-4-8-(−)-epicatechin (procyanidin C1, 99%) were supplied by PhytoLab GmbH&Co. KG
(Vestenbergsgreuth, Germany). Aqueous solutions were made with Milli-Q water (resistance=18 mΩ)
(Millipore, Bedford, MA, USA).

2.2. Cocoa Samples

Raw and fermented UF 654 (Trinitario) cocoa beans from Cuba were provided by the Instituto de
Investigaciones para la Industria Alimenticia (Habana, Cuba). German Cocoa (Forastero) and ICS 40
(Trinitario) cocoa samples were collected in the area of Ngoumou and Nkomvoene (Cameroon).
Forastero beans from Bahia, Brazil, were provided by Le Cercle du Cacao (Brussels, Belgium).
The beans were roasted in a ventilated heat chamber (30 min at 150 ◦C) and allowed to cool down at
room temperature before analysis.

2.3. Preparation of Procyanidin Model Media

Aqueous model media were prepared by diluting procyanidin C1 to 1000 mg/L in ultrapure
water (10,000 mg/L stock solution prepared in methanol) before heat treatment at 90 ◦C for 12 h
(chosen on the basis of our previous work [18]). After filtration (0.22 µm), the samples were kept at
−80 ◦C before injection.

2.4. Extraction of Flavan-3-ols from Cocoa Beans/Chocolate

This method was adapted from that developed in our laboratory for the analysis of flavan-3-ols in
chocolate [19]. All extraction steps were done in duplicate. Seven grams of cocoa beans/chocolate were
defatted with diethyl ether (3× 50 mL) at room temperature under gentle stirring. After centrifugation,
the samples were dried under vacuum. Defatted samples spiked with 500 µL kaempferol at
10,000 mg/L in methanol (used as internal standard; 714 mg/kg bean or chocolate weight) were
extracted with 3 × 50 mL acetone:water:acetic acid (70:28:2, v/v/v). The three extracts from each
sample were kept under nitrogen and then mixed together. The resulting sample was concentrated by
rotary evaporation and freeze-dried.
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2.5. HRMS/MS Identification.

High-resolution MS/MS analyses were performed on a C18 Prevail column (150 × 2.1 mm,
2.7 µm) (Grace, Deerfield, IL, USA) eluted with a multilinear gradient made with A (water containing
1% acetonitrile and 2% formic acid) and B (acetonitrile containing 2% formic acid). Gradient elution
was as follows: from 97% A to 91% in 5 min, 91% to 85% in 25 min, from 85% to 64% in 35 min,
from 64% to 10% in 10 min, and isocratic for 20 min at 200 µL/min flow rate. Five microliters of the
sample were injected onto the column kept at 20 ◦C. The Exactive system was composed of Accela LC
coupled to the Orbitrap mass spectrometer and controlled with the Xcalibur software version 2.0.7
(Thermo Fisher Scientific, Austin, TX, USA).

2.6. RP-HPLC-DAD-ESI(−)-MS/MS Semi Quantitation.

Quantitations were done by connecting the same column with the same elution program to a
SpectraSystem equipped with an AS3000 autosampler and a P4000 quaternary pump. The system was
controlled with the Xcalibur software version 1.2 (ThermoFisher). Compounds were monitored from
200 to 800 nm with a UV6000LP diode array detector. Mass spectra were acquired with an LCQ ion
trap mass spectrometer equipped with an ESI source (ThermoFisher). Collision-induced dissociation
spectra were recorded at a relative collision energy of 30, 35, and 40%, respectively, for singly charged
[M−H]−1 ions of monomers (m/z 289), dimers (m/z 577, 575), and trimers (m/z 865, 863, 861). The ESI
inlet conditions were as follows: source voltage, 4.9 kV; capillary voltage, –4 V; capillary temperature,
200 ◦C; sheath gas, 39 psi. Semi-quantitations were done with the calibration curves of C1 for all
C1-derived compounds except catechin, epicatechin, and B2, for which their own respective calibration
curves were used.

2.7. RP-HPLC-online TEAC

RP-HPLC-online TEAC was performed according to the method of Leitao et al. [20] with slight
modifications [21]. Contrary to global TEAC, this online method allows the antioxidant capacity of each
compound to be evaluated separately after elution on a HPLC column. Ten mg ABTS was dissolved in
2.6 mL of an aqueous solution of potassium persulfate (2.5 mM) (final concentration: 7 mM ABTS+•).
After 12–16 h storage in the dark at room temperature to ensure the stabilization of the radical, the
ABTS+• stock solution was diluted 200 times with ethanol to reach an absorbance of 0.77 ± 0.02 at
642 nm (working solution). The HPLC system (Waters, Milford, MA, USA) consisted of a 1525 binary
pump and a 2489 UV/vis detector set at 280 nm. Separation of sample constituents (5 µL) was carried
out on the same C18 Prevail column as described above with the same gradient conditions. Data were
analyzed with the Breeze 2 software (Waters). After detection at 280 nm, the ABTS+• working solution
was added to a reaction coil (stainless steel, 8 m × 0.25 mm) with a mixing tee (flow rate: 100 µL/min).
The decolorization occurring when ABTS+• was trapped by a compound in the eluate was monitored
with a second 2487 UV/vis detector (Waters) set at 642 nm. The antioxidant activity of each compound
was calculated in Trolox equivalents (TE).

3. Results and Discussion

3.1. Degradation of Procyanidin C1 at 90 ◦C

An aqueous model medium containing 1000 mg/kg of commercially available procyanidin C1 was
subjected to thermal treatment (12 h at 90 ◦C). As previously observed for B2 [18], depolymerization
occurred, leading here to procyanidin B2 (compound 12) and (−)-epicatechin (6). Once created,
epimerization also took place both on monomers and on dimers, yielding (−)-catechin (5) and epimers
of B2 (10, 11, and 13), respectively (Figure 1a,b).
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Figure 1. RP-HPLC-MS/MS(ESI(−)) chromatograms, recorded at (a) m/z=289, (b) m/z=577, (c) 
m/z=865, (d) m/z=863, and (e) m/z=861, of procyanidin C1 model medium  heated for 12 h at 90 °C. 
Corresponding structures in Table 1. 

  

 

Figure 1. RP-HPLC-MS/MS(ESI(−)) chromatograms, recorded at (a) m/z = 289, (b) m/z = 577,
(c) m/z = 865, (d) m/z = 863, and (e) m/z = 861, of procyanidin C1 model medium heated for 12 h at
90 ◦C. Corresponding structures in Table 1.
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Table 1. Structure and MS/MS-ESI(−) fragmentation of degradation products formed in procyanidin
C1 model medium heated for 12 h at 90 ◦C.

Name
(peak)

Retention Time
(min) (M−H)−1 Structure MS/MS

(−)-Catechin
(5) 15.0 289
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Table 1. Cont.

Name
(peak)

Retention time
(min) (M−H)−1 Structure MS/MS

Once-oxidized
trimer
(38,39)

18.7
28.4 863
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Trimer C1 (30) was also found to epimerize, yielding compounds 31 to 37 (Figure 1c), all exhibiting
the same HRMS/MS spectrum at m/z 865 (Figure 2a). As expected, seven peaks were found, accounting
for 62% of the initial amount of C1 and corresponding to 3 (−)-epicatechin moieties able to epimerize
to (−)-catechin. As these epimers are all commercially unavailable, complete identification remains
delicate, even though (−)-catechin epimers probably elute first [17].Foods 2017, 6, 18  7 of 15 
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displaying an HRMS/MS spectrum very different from that of C1 and its epimers (Figure 2b). Intense 
peaks occurred for both compounds at m/z 411 (411.07190; C21H15O9; δ = 1.82 ppm), 712 (712.13928; 
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δ = 3.64 ppm), instead of 577 and 287 in C1, indicating that the upper and lower methide quinone 
fragmentations did not occur in the same way. Hypothetical structures meeting the exact mass 
requirements are proposed in Table 1 and Figure 2. 
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Worth stressing is the presence of two other compounds (41 and 42 in Figure 1c and Table 1)
displaying an HRMS/MS spectrum very different from that of C1 and its epimers (Figure 2b). Intense
peaks occurred for both compounds at m/z 411 (411.07190; C21H15O9; δ = 1.82 ppm), 712 (712.13928;
C44H24O10; δ = 3.79 ppm), 574 (574.10710; C37H1207; δ = 4.20 ppm) and 289 (289.07170; C15H13O6;
δ = 3.64 ppm), instead of 577 and 287 in C1, indicating that the upper and lower methide quinone
fragmentations did not occur in the same way. Hypothetical structures meeting the exact mass
requirements are proposed in Table 1 and Figure 2.

As for A2, which has been found in a model B2 degradation medium [18], oxidation occurred on
procyanidin C1, leading to two compounds (38 and 39, Table 1) monitored in ESI-(−) at m/z = 863
(Figure 1d). This oxidation occurred either between two extension units ((−)-epicatechin-(C4-C8,
C2-O-C7)-(−)-epicatechin-(C4-C8)-(−)-epicatechin, also known as cinnamtannin B1) or with the
terminal unit ((−)-epicatechin-(C4-C8)-(-)-epicatechin-(C4-C8, C2-O-C7)-(−)-epicatechin).

If oxidation continues on both once-oxidized trimers, a trimer with m/z = 861 is formed
(40; RT=21.5 min), corresponding to (−)-epicatechin-(C4-C8, C2-O-C7)-(−)-epicatechin-(C4-C8,
C2-O-C7)-(−)-epicatechin. (Figure 1e, Table 1).

In model media containing the monomer (-)-epicatechin or the dimer B2, oxidation also led to
chemical oligomers (dimers and a trimer), possessing a C2’/5’/6’-C8 interflavan linkage instead of
the C4-C8 linkage encountered in native flavan-3-ol oligomers [18]. In the C1 degradation medium,
no such oxidation products were found, suggesting that depolymerization/epimerization occurs much
more than chemical polymerization.

After 12 h at 90 ◦C, only 209 mg/kg of procyanidin C1 remained (21%). All m/z = 865
isomers accounted for up to 47% of the initial C1 concentration, while once-oxidized dimers and
twice-oxidized dimers accounted for 7% and 2%, respectively. C1 proved to be slightly more resistant
than (−)-epicatechin and dimer B2 [18], (−79% versus −80% and −84%, respectively).

3.2. Antioxidant Capacity of C1 Degradation Products

To assess the antioxidant activity of procyanidin C1 degradation products, the model medium
was further analyzed by RP-HPLC hyphenated to online TEAC (Figure 3).
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As shown in Figure 4, catechin, epicatechin, B2, and all the peaks detected at m/z 865 exhibit
antioxidant activity. As shown in Table 2, the antioxidant activity of most degradation products was
very close to that of C1. As epimerization affects neither the catechol moiety nor the C5/C7 OH groups
on the A-ring (both recognized as sites of antioxidant capacity), similar TEAC values were found.
(−)-Catechin (5), (−)-epicatechin (6), and procyanidin B2 (12)) exhibited lower TEAC values when
expressed in µM TE/µM but similar values when expressed in µM TE/mg·kg−1.Foods 2017, 6, 18  9 of 15 
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HPLC-online TEAC chromatogram after the reaction with ABTS+• (642 nm) for procyanidin C1 model 
medium heated for 12 h at 90 °C. 
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Figure 4. (a) RP-HPLC-MSMS(ESI(−)) chromatograms recorded at m/z = 865, 577, and 289.
(b) RP-HPLC-online TEAC chromatogram after the reaction with ABTS+• (642 nm) for procyanidin C1
model medium heated for 12 h at 90 ◦C.
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Table 2. Antioxidant capacity of degradation products formed in procyanidin C1 model medium
heated for 12 h at 90 ◦C.

Compound
(peak)

Source
TEAC

µM TE/µM µM TE/mg·kg−1

Catechin
(5) a 0.6 2.3

Epicatehin
(6) a 0.7 2.5

Procyanidin B2
(12) a 1.3 2.4

Procyanidin C1
(30) a.b 2.2 2.5

C1E1

(31)
b 2.1 2.5

C1E2

(32)
b 2.2 2.6

C1E3

(33)
b * *

C1E4

(34)
b 2.1 2.5

C1E5

(35)
b 2.3 2.6

C1E6

(36)
b 2.0 2.4

C1E7

(37)
b 2.2 2.5

38 and 39 b * *
40 b * *

41 and 42 b * *
Trolox a 1 4

a = injection of commercial standard; b = issued from model medium; * unresolved in online TEAC.

3.3. Occurrence of C1 Degradation Compounds in Cocoa Beans and Chocolate

In all the raw cocoa beans investigated here, RP-HPLC analyses showed that in addition to
procyanidin C1 (30), two epimers (C1E3 (33) and C1E7 (37)) and one isomer (42) were found (Figure 5a).
The concentration of the epimers and isomer dropped strongly during fermentation (Figures 5b and 6)
and subsequent roasting (Figures 5c and 6): C1E7 (37) completely disappeared while C1E3 (33) was no
longer quantifiable. Compound 42 was less degraded.

In fermented dried beans (Figure 7a), C1 and its smaller degradation products here evidenced
exhibited antioxidant activity. In chocolate (Figure 7b), the loss of flavan-3-ols is obvious in regard
of the methylxanthines (caffeine and theobromine), but the same compounds as recorded before still
showed antioxidant activity. Furthermore, an interesting pool of antioxidant compounds appeared
and issued from the chocolate manufacturing. This pool eluted much later on our C18 column,
indicating the relative lower polarity of its constituents. Therefore, we suspect these molecules to be
oxidation products of native cocoa oligomers. As it was shown with our C1 model medium, oxidation
does not lead to polymerized compounds with more than three units linked chemically. However,
intra-oxidation is a much favored way leading to new interflavane linkages within native bigger
oligomers present in cocoa and hence absent from our model medium.
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Figure 5. RP-HPLC-MS/MS(ESI(−)) chromatograms of extracts of (a) raw (m/z = 865), (b) fermented
(m/z = 865), and (c) roasted (m/z = 861, 863, and 865) Criollo cocoa beans from Cuba (C 411).
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Figure 7. RP-HPLC-online TEAC chromatogram before (280 nm, above) and after (642 nm, below) the 
reaction with ABTS+• of (a) fermented dried beans and (b) chocolate extract. 

4. Conclusion 

In conclusion, we observed here that epimerization is the main reaction involved in the 
degradation of procyanidin C1 (62% of degradation products). Depolymerization is the second main 
degradation pathway while oxidation affected it to a lesser extent. This last mechanism led to  
once- and twice-oxidized dimers while no chemical oligomer involving the native trimer was found, 
neither in the model medium nor in the cocoa. Yet, two C1 isomers were retrieved in the beans. 
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4. Conclusions

In conclusion, we observed here that epimerization is the main reaction involved in the
degradation of procyanidin C1 (62% of degradation products). Depolymerization is the second
main degradation pathway while oxidation affected it to a lesser extent. This last mechanism led to
once- and twice-oxidized dimers while no chemical oligomer involving the native trimer was found,
neither in the model medium nor in the cocoa. Yet, two C1 isomers were retrieved in the beans. Finally,
RP-HPLC-Online TEAC allowed us to evidence that C1 degradation products showed an antioxidant
activity close to that of C1 (when expressed in µM TE/mg·kg−1).
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