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Abstract: Rice by-products are extensively abundant agricultural wastes from the rice industry.
This study was designed to optimize experimental conditions for maximum recovery of free and
bound phenolic compounds from rice by-products. Optimized conditions were determined using
response surface methodology based on total phenolic content (TPC), ABTS radical scavenging
activity and ferric reducing power (FRAP). A Box-Behnken design was used to investigate the effects
of ethanol concentration, extraction time and temperature, and NaOH concentration, hydrolysis
time and temperature for free and bound fractions, respectively. The optimal conditions for the free
phenolics were 41–56%, 40 ◦C, 10 min, whereas for bound phenolics were 2.5–3.6 M, 80 ◦C, 120 min.
Under these conditions free TPC, ABTS and FRAP values in the bran were approximately 2-times
higher than in the husk. However, bound TPC and FRAP values in the husk were 1.9- and 1.2-times
higher than those in the bran, respectively, while bran fraction observed the highest ABTS value.
Ferulic acid was most evident in the bran, whereas p-coumaric acid was mostly found in the husk.
Findings from this study demonstrates that rice by-products could be exploited as valuable sources
of bioactive components that could be used as ingredients of functional food and nutraceuticals.

Keywords: rice bran; rice husk; phenolics; antioxidant activity; response surface methodology;
optimization extraction; free extraction; alkaline hydrolysis

1. Introduction

Rice (Oryza sativa L.) is one of the most important crops worldwide and it is consumed as the main
staple food for many countries, particularly in Asia. Among by-products of rice processing, are rice
bran (RB) and husks (RH), which protect rice seeds during growth, accounting for 20% of the rough
rice [1]. RB, the outer layer of brown rice accounting for 8–10% of its weight, serves as a good source of
RB oil and bioactive compounds like γ-oryzanol, tocopherols, tocotrienols, phytosterols and phenolic
compounds that have antioxidant activities, as well as other reported health-beneficial properties [2].
In recent years, several studies evaluate RB as a potential food ingredient designed to improve quality
and nutrition profile [3,4].

RH consist mainly of cellulose, hemicellulose, lignin and hydrated silica. Traditionally it is used
as a biofuel, incinerated in boilers to produce electricity, but it is mostly wasted because of its low-cost
value as feedstock due to low digestibility, peculiarize, low bulk density, high ash/silica contents and
its abrasive characteristics [5]. It is used mainly in various non-food applications, although it contains
polyphenolic compounds to protect the inner materials from oxidative stress [6]. The phytochemical
compounds and antioxidant activity of RB has been extensively reported [7–9]; however, RH is not
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deeply exploited as a source of phytochemicals. Although numerous studies have shown the potential
applications of RB in functional foods development, limited information exists about the RH [10,11].

Many studies have focused on the determination of the soluble-free and in-soluble-bound
phenolics of RB, but few studies are concentrated on the extraction optimization [9,12,13].
However, most of them are concentrated on free phenolics and no studies are available for the
bound form. On the other hand, one empirical approach has been carried out in order to optimize
phenolic compounds after acid/alkaline digestion of RH [10]. Up to now, no statistical methods
exist on the optimization of ultrasonic-assisted extraction (UAE) conditions for both free and bound
phenolic acids in rice by-products and this would be helpful for their exploitation in the food industry.
Therefore, the aim of this study was to optimize UAE variables such as temperature, time and
concentration of solvents or alkalines in order to maximize total phenolic content and antioxidant
activity of free and bound phenolics from RB and RH by Response Surface Methodology (RSM).
In addition, the phenolic acids composition in the extracts obtained at optimal conditions were
analyzed by High Performance Liquid Chromatography (HPLC).

2. Materials and Methods

2.1. Chemicals

2,2′-azino-bis (3-ethylbenzthiazoline sulfonate) (ABTS), 2,4,6-tripyridyl-s-triazine (TPTZ),
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and Folin–Ciocalteu reagent were
purchased from Sigma–Aldrich (Steinheim, Germany). High purity analytical standards (>98%) of
gallic acid (GA), vanillic acid (VA), syringic acid (SRA), 4-hydroxybenzoic acid (4HBA), p-coumaric
acid (pCA), ferulic acid (FA), sinapic acid, protocatechuic acid, caffeic acid and chlorogenic acid
were supplied by Sigma-Aldrich (Steinheim, Germany). All other reagents obtained from Chem-Lab
(Zedelgem, Belgium) were of analytical or HPLC grade.

2.2. Plant Materials

Dried paddy rice grains from Axios variety were collected from the experimental farm of Institute
of Plant Breeding and Genetic Resources (Thessaloniki, Greece). RH were obtained after dehulling
rice grains using dehusker (Taka Yama, TW Grandeur Machinery Co., Taichung, Taiwan), whereas RB
fraction including germ was produced after polishing brown rice using a debranning machine (Satake
Engineering Co., Tokyo, Japan) and defatting on a Soxhlet device. Both fractions (hull and bran) were
ground in a laboratory mill (ZM 1000, Retsch GmbH, Haan, Germany) to pass a 0.50 mm sieve and
stored in a glass jar at −20 ◦C until analysis.

2.3. Ultrasound-Assisted Extraction

2.3.1. Free Phenolic Extracts

200 mg powdered RB or RH was sonicated with 5 mL of different ethanol/water mixtures
for different extraction times and temperatures in an ultrasonic bath (Elma, Fisher Scientific Ltd.,
Leicestershire, UK). Then, the extracts were centrifuged at 1500× g (10 min, 4 ◦C) and the supernatants
were stored at −25 ◦C until analysis.

2.3.2. Bound Phenolic Extracts

The extraction was performed by applying an alkaline hydrolysis according to Irakli et al. [14].
A sample of 200 mg of powdered RB or RH was extracted under the optimized conditions following the
procedure described above. Supernatants were discarded and the remaining residue was used for the
next alkaline hydrolysis step. The residue was suspended in 10 mL NaOH of different concentrations
and the hydrolysis was performed under sonication at different times and temperatures. The mixture
was then acidified to pH 2 with concentrated HCl, the supernatant was recovered by centrifugation
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at 1500× g for 5 min and then extracted three times with 25 mL ethyl acetate. The ethyl acetate
fractions were mixed and vacuum evaporated at 40 ◦C and the residue was reconstituted in 5 mL of
the ethanol/water mixture (50:50, v/v) and stored at −25 ◦C until analysis.

2.4. Total Phenolic Content Determination

The analyses of total phenolic contents (TPC) from free and bound fraction were performed using
the Folin–Ciocalteu’s method according to Singleton et al. [15] with some modifications. Briefly, 0.2 mL
of extract was transferred into a test tube and mixed with 0.8 mL of the Folin–Ciocalteu reagent.
Ethanol/water mixture (50:50, v/v) was used as blank. After incubation for 2 min, 2 mL sodium
carbonate (7.5% w/v) solution was added to the reaction mixture and the volume was adjusted to
10 mL with distilled water. The mixture was allowed to stand for 60 min in a dark place and then
the absorbance at 725 nm was recorded. The analyses were performed in triplicate and results were
expressed as mg of GA equivalents (GAE) per 100 g of sample.

2.5. ABTS Assay

Radical scavenging activity of rice by-products extracts against ABTS radical cation was evaluated
according to the protocol of Re et al. [16] and appropriately adjusted. Briefly, ABTS + solution was
obtained by reacting 2 mmol/L ABTS stock solution with 0.73 mmol/L potassium persulfate and the
mixture was left to stand in the dark at room temperature for 12–16 h before use. The ABTS + solution
was diluted with water to an absorbance at 734 nm of 0.70 ± 0.02. After the addition of 100 µL of
phenolic extract to 3.9 mL of diluted ABTS + solution, the absorbance was measured against a blank
at 734 nm after 4 min. Inhibition of ABTS radical cation (%) was calculated by using the following
equation: Inhibition (%) = ((A0 − As)/A0) × 100, where A0 is the absorbance of the blank sample and
As is the absorbance of the sample at 4 min. The results were expressed as mg Trolox equivalents (TE)
per 100 g of sample.

2.6. Ferric Reducing Antioxidant Power

The reducing power of extracts was determined according to the method of Benzie and Strain [17].
0.1 mL aliquot of extract was reacted with 3 mL of FRAP solution at 37 ◦C for exactly 4 min under dark
conditions. Readings of the colored product were then taken at 593 nm against blank and the results
were expressed as mg TE per 100 g of sample.

2.7. HPLC Analysis of Phenolic Acids

Phenolic extracts from both free and bound fractions were filtered (pore size 0.2 µm) and the HPLC
analysis was performed and applied to chromatographic conditions as described by Irakli et al. [14].
Detected phenolic acids in sample extracts were identified by comparison of their retention times with
those of pure standards, and quantification was performed using the corresponding calibration curves.
The results were expressed as mg per 100 g of sample.

2.8. Experimental Design

RSM using Box-Behnken Design (BBD) with three factors (X1, X2 and X3) on three levels (−1, 0, +1)
was applied to optimize the conditions for extraction free and bound phenolics from RB and RH under
the variables studied. The investigated independent variables for free phenolic extraction were ethanol
concentration in water (X1 = 40–80%), extraction time (X2 = 10–60 min) and extraction temperature
(X3 = 40–80 ◦C), whereas for bound phenolic extraction were NaOH concentration (X1 = 1–4 M), time
of alkaline hydrolysis (X2 = 60–120 min) and temperature of hydrolysis (X3 = 40–80 ◦C). The response
values were TPC, ABTS and FRAP values. A total of 15 runs were performed with 3 center points.
All extractions were performed in triplicate and the average values were taken as the response, Y.
Experimental data were fitted to a second-order polynomial model and regression coefficients were
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obtained. A mathematical regression model for the response of Y (the predicted response) was fitted
as follows:

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

k−1

∑
j=2

βijXiXj +
k

∑
i=1

βiiX2
i

where Y is the measured response, Xi and Xj are the independent variables affecting the response
and β0, βi, βii, and βij are the regression coefficients for intercept, linear, quadratic and interaction
terms, respectively.

An analysis of variance (ANOVA) with 95% confidence level was generated and the effect
and regression coefficients of individual linear, quadratic and interaction terms were determined.
The significances of all terms were judged statistically by computing the F-value at a probability
p ≤ 0.05. The p-value of lack-of-fit was used to verify the adequacy of the model. The maximum value
of each variable was set as a goal of the experiment. Statistical analysis was performed using the
Minitab 17 (Minitab Inc., State College, PA, USA) software and fitted to a second-order polynominal
regression model containing the coefficient of linear, quadratic and interaction terms.

3. Results and Discussion

3.1. Impact of Free Phenolics Extraction Parameters from Rice By-Products

In this study ethanol, methanol, acetone, hexane and ethyl acetate were tested as extraction
solvents. Among them, ethanol and methanol had higher free phenolic contents than others [13].
However, ethanol was selected as an extraction solvent, as it is a green solvent, low-cost, completely
biodegradable and easily available in high purity [18].

The experimental values of the responses of each experiment were listed in Table 1. According to
the applied experimental design, TPC of the extracts obtained from RB and RH with UAE ranged
from 206 to 464 mg GAE/100 g and 67 to 233, respectively. ABTS values ranged from 508 to 686 mg
TE/100 g and 85 to 273 mg TE/100 g, whereas FRAP values ranged from 305 to 653 and 110 to 351 mg
TE/100 g for RB and RH, respectively. According to these experimental ranges, maximum TPC and
FRAP values were obtained at run 12 (80 ◦C, 60 min and 60% ethanol) and maximum ABTS values
were observed in the run 10 (40 ◦C, 60 min and 60% ethanol). While the lowest TPC, ABTS and FRAP
values were observed in the run 4 (60 ◦C, 60 min and 80% ethanol). On the other hand, the maximum
TPC, FRAP and ABTS values in RH were obtained at run 7 (80 ◦C, 35 min and 40% ethanol) and run
3 (60 ◦C, 60 min and 40% ethanol), respectively, whereas the lowest one at run 4 (60 ◦C, 60 min and
80% ethanol).

It can be seen from the Table 2 that the variables with the highest effect in the free phenolic
extracts of RB and RH were the linear terms of ethanol concentration (X1) and its quadratic term (X1

2),
while extraction time and temperature had a insignificant effect (p > 0.05). The model shows high
significant and good fit for the most examined variables except TPC, presenting less variation around
the mean (R2 ranged from 0.8001 to 0.9191). The non-significant lack-of-fit indicates that the model is
adequate for the observed data at 95% confidence level.
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Table 1. Box-Behnken design for the independent variables and response values for free and bound phenolics.

Run Independent Variables Response Variables

X1 X2 X3 Rice Bran Rice Husk

(% or M) (min) (oC) TPC ABTS FRAP TPC ABTS FRAP

1
40 10 60 409 ± 28 684 ± 12 537 ± 21 190 ± 8 227 ± 4 245 ± 2
1 60 60 185 ± 18 764 ± 24 415 ± 14 496 ± 14 543 ± 22 493 ± 10

2
80 10 60 326 ± 25 614 ± 5 404 ± 22 142 ± 12 147 ± 9 152 ± 25
4 60 60 263 ± 15 810 ± 25 493 ± 23 447 ± 23 556 ± 7 506 ± 5

3
40 60 60 401 ± 2 669 ± 12 595 ± 38 200 ± 5 273 ± 18 309 ± 7
1 120 60 245 ± 12 793 ± 28 475 ± 18 520 ± 17 580 ± 12 531 ± 10

4
80 60 60 206 ± 12 508 ± 8 305 ± 19 87 ± 6 85 ± 8 110 ± 10
4 120 60 260 ± 23 825 ± 18 560 ± 32 631 ± 25 680 ± 40 630 ± 22

5
40 35 40 412 ± 15 681 ± 5 475 ± 24 195 ± 5 261 ± 27 242 ± 4
1 90 40 216 ± 15 800 ± 35 446 ± 20 346 ± 16 443 ± 6 393 ± 3

6
80 35 40 334 ± 6 598 ± 6 389 ± 14 103 ± 4 123 ± 28 140 ± 15
4 90 40 314 ± 17 825 ± 32 544 ± 12 465 ± 15 510 ± 20 460 ± 13

7
40 35 80 407 ± 12 659 ± 14 586 ± 20 233 ± 10 235 ± 9 351 ± 11
1 90 80 282 ± 12 817 ± 30 512 ± 29 522 ± 12 635 ± 8 585 ± 19

8
80 35 80 277 ± 8 558 ± 12 404 ± 21 67 ± 2 143 ± 3 136 ± 1
4 90 80 321 ± 22 833 ± 18 551 ± 21 569 ± 12 732 ± 18 682 ± 7

9
60 10 40 380 ± 5 613 ± 6 430 ± 25 112 ± 5 145 ± 11 163 ± 9
2.5 60 40 220 ± 14 788 ± 28 450 ± 28 349 ± 10 468 ± 22 418 ± 13

10
60 60 40 411 ± 16 686 ± 8 545 ± 36 193 ± 3 230 ± 10 301 ± 2
2.5 120 40 265 ± 25 804 ± 35 495 ± 24 476 ± 16 523 ± 5 473 ± 16

11
60 10 80 434 ± 22 679 ± 10 565 ± 32 83 ± 5 201 ± 25 249 ± 24
2.5 60 80 295 ± 24 820 ± 25 525 ± 32 620 ± 10 663 ± 45 649 ± 10

12
60 60 80 464 ± 12 628 ± 18 653 ± 40 144 ± 8 240 ± 15 350 ± 20
2.5 120 80 340 ± 20 851 ± 30 570 ± 20 660 ± 18 738 ± 18 688 ± 3

13
60 35 60 395 ± 8 654 ± 9 520 ± 10 110 ± 2 233 ± 20 315 ± 22
2.5 90 60 278 ± 16 800 ± 28 508 ± 28 533 ± 13 616 ± 8 566 ± 11

14
60 35 60 354 ± 10 648 ± 24 487 ± 8 145 ± 7 210 ± 16 260 ± 10
2.5 90 60 260 ± 14 797 ± 14 490 ± 12 544 ± 18 615 ± 18 565 ± 14

15
60 35 60 403 ± 20 674 ± 10 565 ± 28 109 ± 2 224 ± 17 305 ± 3
25 90 60 239 ± 16 810 ± 32 469 ± 30 462 ± 15 580 ± 22 471 ± 16

For phenolic extraction: X1, ethanol concentration; X2, extraction time; X3, temperature extraction. For phenolic hydrolysis: X1, NaOH concentration; X2, hydrolysis time; X3, temperature
hydrolysis. TPC: total phenolic content (mg GAE/100 g); ABTS: ABTS radical scavenging activity (mg TE/100 g); FRAP: ferric reducing antioxidant power (mg TE/100 g). Bold values
indicate bound phenolics.
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Table 2. F-values and coefficient of determination of the predicted second order polynomial models for free and bound phenolics.

Source Rice Bran Rice Husk

TPC ABTS FRAP TPC ABTS FRAP

Free Bound Free Bound Free Bound Free Bound Free Bound Free Bound

Model 3.12 6.75 * 4.86 * 4.53 * 4.06 * 8.39 * 2.22 5.65 * 6.31 * 47.39 *** 5.87 * 9.15 *
X1 16.05 ** 17.69 ** 28.34 ** 13.50 * 19.59 ** 31.85 ** 15.21 ** 2.73 * 44.03 *** 37.72 ** 27.68 ** 6.92 *
X2 0.39 7.37 * 1.62 7.57 * 1.10 16.89 ** 0.82 8.79 * 2.10 * 41.71 *** 5.46 5.87 *
X3 0.09 16.71 ** 0.47 10.22 * 5.60 17.71 ** 0.50 32.16 ** 0.63 334.03 *** 4.65 66.80 ***
X1

2 6.71 * 0.76 5.58 0.02 6.64 * 0.00 1.62 0.58 3.66 3.64 10.87 * 0.29
X2

2 0.18 1.40 0.18 0.36 0.14 0.10 0.19 1.45 0.88 0.07 0.81 0.73
X3

2 1.94 10.80 * 0.01 8.09 * 0.23 8.20* 0.03 0.40 0.16 0.91 0.07 0.11
X1X2 1.68 2.65 2.76 0.34 2.01 0.03 0.58 3.25 4.24 7.29 1.69 1.34
X1X3 0.37 2.36 0.11 0.15 0.76 2.53 0.73 0.33 0.74 0.85 1.92 0.16
X2X3 0.01 0.00 4.99 0.43 0.06 0.00 0.95 0.95 0.74 0.38 0.10 0.05

Lack-of-fit 3.74 0.96 6.37 4.09 2.61 0.87 4.89 1.00 8.15 0.36 2.66 0.12
R2 0.8490 0.8949 0.8979 0.8915 0.8980 0.9379 0.8001 0.9104 0.9191 0.9884 0.9135 0.9428

*** Significant at p ≤ 0.001; ** significant at p ≤ 0.01; * significant at p ≤ 0.05; X1: ethanol or NaOH concentration; X2: extraction or hydrolysis time: X3: temperature extraction;
TPC: total phenolic content (mg GAE/100 g); ABTS: ABTS radical scavenging activity (mg TE/100 g); FRAP: ferric reducing antioxidant power (mg TE/100 g).
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The 3D response surface plots for TPC (Figure 1), ABTS radical scavenging activity and ferric
reducing antioxidant power (Figures S1 and S2) demonstrate the relationship between extraction or
hydrolysis parameters and responses. From the Figure 1, it can be seen that TPC values in RB extracts
increased with the increase of the ethanol concentration and between 55–58% reached a peak. After that
value, ethanol concentration had a negative effect on responses and this effect may be attributed to
the change of solvent polarity. Longer extraction time at higher temperatures had insignificant effects
(p > 0.05) on the TPC. According to these findings, we kept them at the minimum values (10 min
and 40 ◦C) in order to shorten the time analysis and decrease the cost of energy. Similarly, Tabaraki
and Nateghi [13] found that 65–67% ethanol concentration and its quadratic effect were the most
pronounced factors influenced the TPC and antioxidant activity of RB under UAE.
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Figure 1. Effect of ethanol concentration, time and temperature extraction on total phenolic content
(TPC, mg GAE/100 g) of free phenolics from (A) rice bran and (B) rice husk fractions.

On the other hand, the TPC and ABTS values in RH extracts decreased sharply as the
ethanol concentration increased (Figure 1 and Figure S1). However, FRAP values increased with
increased ethanol concentration up to 50%, followed by a sharp decrease afterwards (Figure S1).
Additionally, time extraction of RH increased insignificantly (p > 0.05) with the increase of temperature
up to 60 min for all responses. A similar trend was observed for the temperature extraction except for
the TPC where a slight decrease was noticed as the temperature increased up to 80 ◦C. Similar to our
results, Vadivel and Brindha [11] found that the best extraction time for UAE of phenolics from RH
with 75% ethanol was 25 min.

3.2. Impact of Bound Phenolics Extraction Parameters from Rice By-Products

Significant amounts of phenolic compounds in foods are bound to cell walls via linking with
cellulose, hemicellulose, lignin, pectin and rod-shaped structural proteins and acid/alkali hydrolysis
is the most common means of releasing phenolic compounds by breaking ether and ester bonds [19].
Phenolic compounds are better released with alkaline hydrolysis than in acid hydrolysis conditions
giving maximum phenolic recovery [11]. However, severe or prolonged alkaline treatment may
result in degradation of the released phenolic acids, and different compounds may have variable
susceptibility to degradation. In the current study, the effects of alkaline concentration (X1), hydrolysis
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time (X2) and temperature (X3) on the release of bound phenolic compounds from rice by-products
were investigated (Table 1).

TPC of RB and RH after alkaline hydrolysis ranged from 185 to 340 mg GAE/100 g and 346 to
660 mg GAE/100 g, respectively. ABTS values ranged from 764 to 851 mg TE/100 g and 443 to 738 mg
TE/100 g, whereas FRAP values ranged from 415 to 570 mg TE/100 g and 393 to 688 mg TE/100 g,
respectively. According to these experimental ranges, the maximum responses were obtained at run
12 (80 ◦C, 120 min and 2.5 M), while the lowest were observed at run 1 (60 ◦C, 60 min and 1 M).
Similarly, the maximum responses in RH extracts were obtained at run 12 (80 ◦C, 120 min and 2.5 M),
however, the lowest values at run 5 (40 ◦C, 90 min and 1 M).

The ANOVA indicated that all the evaluated factors had a significant linear effect (p < 0.05) on the
TPC, ABTS and FRAP values (Table 2). The model was insignificant (p > 0.05) and had good fit for all
variables presenting a higher coefficient of determination (R2 ranged from 0.8915 to 0.9884) than the
obtained results for the free phenolic extraction.

The 3D response surface plots were constructed to illustrate the effects of independent variables
and their interactions on the responses (Figure 2 and Figure S2). According to Figure 2, the TPC of RB
extracts increased significantly with the increasing of NaOH concentration and hydrolysis time at 60 ◦C,
but their interaction was insignificant. The same behavior was observed for the relationships of NaOH
concentration and hydrolysis time at a constant time of 90 min as well as of time and temperature
hydrolysis at a constant NaOH concentration of 2.5 M. However, the effect of NaOH concentration
in the case of RH extract followed a different trend. The TPC increased with the increasing NaOH
concentration up to 2.5 M and was followed by a decrease afterwards. These results have demonstrated
that the alkaline concentration was a key factor in the release of the phenolic compounds from the
cell walls of RH. This leads to the notifications that milder conditions may successfully lead to release
of ester-linked phenolic acids, whereas more severe conditions can stimulate product degradation,
likely due to redox reactions [20].
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(TPC, mg GAE/100 g) of bound phenolics from (A) rice bran and (B) rice husk fractions.

The effect of hydrolysis time on TPC from both substrates showed a similar trend except some
little discrepancies. In the case of RB extracts, the TPC increased rapidly with an increase in the
hydrolysis time up to 100 min and then it was constant until 120 min, whereas longer hydrolysis times
are required in the RH. In agreement to our work, some previous research reports indicated that up
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to 120 min is appropriate for recovery polyphenols from different plant materials [11]. In addition,
elevated hydrolysis temperatures favor the release of more phenolic compounds from both substrates,
as can be seen in Figure 2. Hayat et al. [21] showed that the bound phenolic acids, as extracted by
microwave-assisted extraction or UAE, gave better recoveries compared to conventional extractions.
Therefore, higher amounts of phenolic compounds were extracted when hydrolysis was performed at
a middle level of alkaline concentration for prolonged time and elevated temperatures.

3.3. Optimization of the Extraction and Hydrolysis Processes

In order to validate the adequacy of the model equation, a verification experiment was carried
out under the optimized conditions for each substrate as well as for free and bound phenolics (Table 3).
Under the optimal conditions for the RB, namely 40 ◦C, 10 min and 56%, resulted optimal free TPC
(378 ± 5 mg GAE/100 g), ABTS (612 ± 24 mg TE/100 g) and FRAP values (606 ± 31 mg TE/100 g).
These results are in the range of 2.51–3.59 mg GAE/g reported by Iqbal et al. [22] for commercially
varieties of RB extracts, but lower than those reported by Tabaraki and Nateghi [13]. On the other
hand, extraction at 40 ◦C for 60 min with 41% ethanol, can result in optimal free TPC (168 ± 3 mg
GAE/100 g), ABTS (236 ± 11 mg TE/100 g) and FRAP values (338 ± 10 mg TE/100 g) from RH.
Jha et al. [23] also reported similar values of TPC for extraction polyphenols from black RH.

Table 3. Experiment data of the validation of predicted value at estimated optimum conditions.

Rice Bran Rice Husk

Free Phenolics Bound Phenolics Free Phenolics Bound Phenolics

Response
variable

Predicted
Value 1

Experimental
Value 2

Predicted
Value 1

Experimental
Value 2

Predicted
Value 1

Experimental
Value 2

Predicted
Value 1

Experimental
Value 2

TPC 417 378 ± 15 339 366 ± 18 191 168 ± 13 647 696 ± 1
ABTS 647 612 ± 24 838 818 ± 14 262 236 ± 11 742 723 ± 11
FRAP 553 606 ± 31 569 592 ± 19 324 338 ± 10 680 687 ± 16

1 Calculated using the predicted equations for response variables at optimal condition, 2 Means of three replicates
± standard deviation; TPC: total phenolic content (mg GAE/100 g); ABTS: ABTS radical scavenging activity
(mg TE/100 g); FRAP: ferric reducing antioxidant power (mg TE/100 g).

Bound phenolics were performed under the optimal conditions for the RB (hydrolysis with 3.4 M
NaOH at 80 ◦C for 110 min), resulted optimal TPC (366 ± 18 mg GAE/100 g), ABTS (818 ± 14 mg
TE/100 g) and FRAP values (592 ± 19 mg TE/100 g). These results are in the range of 147.7–1914.2 mg
GAE/100 g reported by Begum et al. [24] for the phenolic profile in bran of most cultivated rice
varieties in India. In our study, the contribution of bound phenolics to the TPC was approximately 50%
as the free fraction, as was already reported by several studies [8,25]. However, many studies reported
a higher amount of bound phenolics than free phenolics et al. [25].

On the other hand, hydrolysis with 2.5 M NaOH at 80 ◦C for 120 min, can result in optimal bound
TPC (696 ± 1 mg GAE/100 g), bound ABTS (723 ± 11 mg TE/100 g) and bound FRAP values (687 ±
16 mg TE/100 g) from RH. In contrast to RB, bound phenolic content in RH was approximately 4-times
higher than free phenolics. Similarly, Butsat and Siriamornpun [26] showed that the phenolic content
in RH ◦C occurred mostly in the bound form rather than free form.

The predicted results, obtained based on the model equation taking into account only the
significant factors, matched well with the experimental results obtained using optimum extraction
conditions with a good correlation. The difference between the values obtained by the model and
experimentally was lower than 7%. These results confirm the predictability of the model for the
extraction of free phenolics from RB and RH.

3.4. Comparison between RB and RH Phenolic Extracts

TPC and antioxidant activity of free and bound extracts of rice by-products by applying the
optimized conditions, are shown in Figure 3a. The bound TPC of RH fraction had the highest value
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(864 mg GAE/100 g) whilst its free fraction had the lowest TPC (168 mg GAE/100 g). Both RB fractions
presented moderate TPC values with non-significant differences between free and bound extracts.
Comparing the TPC of the RB and RH fractions, the total values (free and bound) of RH were 1.2-times
higher than those of RB, indicating that RH would be an equally source of phenolics as RB.

Both bound fractions exhibited remarkably higher ABTS values when compared to free
fractions, possibly due to high concentration of phenolic compounds released by alkali treatment.
However, the bound extracts of RB fraction showed greater ABTS values (818 mg TE/100 g) than
that of RH (710 mg TE/100 g), in contrast to the TPC. In free fractions, RB had relatively higher
ABTS values (612 mg TE/100 g) than RH (236 mg TE/100 g), that was in accordance with Butsat and
Siriamornpun [26]. There are no available data in the literature examining bound antioxidant activity
in RB and RH in order to compare our findings. It is well known that other bioactive compounds
such as tocopherols and γ-oryzanol present in RB contribute to antioxidant activity in contrast to the
major antioxidant components found in RH fraction which may be phenolic acids [26,27]. The FRAP
value of free extracts indicated that the RB fraction had the greatest reducing power (607 mg TE/100 g)
followed by RH (338 mg TE/100 g), however the bound extracts of RH fraction gave higher reducing
power (687 mg TE/100 g) than RB (592 mg TE/100 g). The results showed that the FRAP values were
dependent on the variations in TPC.
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3.5. HPLC Analysis of Phenolic Acids in Rice By-Products Extracts

The distribution of main phenolic acids namely VA, SRA, pCA and FA, found in the free and
bound extracts of RB and RH, are given in Figure 3b. Minor phenolic acids were protocatechuic, caffeic
and sinapic acids, whereas gallic and chlorogenic acids were not detected. The major phenolic acid
in RB extracts is FA, whereas pCA followed by FA and SRA were the most abundant phenolic acids
in RH. In the bound form of RB extract, FA was the most abundant phenolic acid followed by pCA,
accounting for 64% and 35% of the total phenolic acids, respectively. On the other hand, the main
bound phenolic acids in RH extracts were pCA, followed by FA and VA, accounting for 93%, 5% and
1% of the phenolic acids, respectively. Sun et al. [28] indicated that pCA is linked to lignin mainly
by ester bonds, whereas FA is linked to lignin by both ether and ester bond. Hence, it is very likely
that some phenolic esters are liberated during the saponification in alkaline solution. The results
showed that bound FA in RB and RH extracts was on an average 10- and 150-times higher than free
FA, respectively, while pCA in bound form was 75- and 300-times higher than free form, respectively.
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Nenadis et al. [10] also confirmed that pCA and FA were the major phenolic acids in from some rice
varieties cultivated in Greece. As would be expected, RH contained substantial contents of phenolic
acids, with higher bound phenolic acids than free phenolic acids.

4. Conclusions

In summary, the application of the optimized conditions to RB and RH showed that significant
amounts of TPC could be recovered, leading to extracts with high ABTS scavenging efficiency and
reducing power. The total antioxidant activity of RB was found to be higher than that of RH,
although RB contained lower TPC than RH. This may be due to the fact that other bioactive compounds
present in RB contribute to antioxidant activity in contrast to that of the major antioxidant components
found in RH which may be phenolic acids. The overall results of this research demonstrated the
potential of rice by-products to be an abundant source of natural antioxidants suitable for further
development into dietary supplements and various food additives, leading to the development of
innovative products of high economic importance.

Supplementary Materials: Supplementary materials are available at http://www.mdpi.com/2304-8158/7/6/93/
s1. Figure S1. Effect of ethanol concentration, time and temperature extraction on ABTS radical scavenging activity
(ABTS, mg TE/100 g) of free phenolics from rice bran (a) and rice husk (c) fractions and ferric reducing antioxidant
power (FRAP, mg TE/100 g) of free phenolics from rice bran (b) and rice husk (d) fractions. Figure S2. Effect of
NaOH concentration, time and temperature hydrolysis on ABTS radical scavenging activity (ABTS, mg TE/100 g)
of bound phenolics from rice bran (a) and rice husk (c) fractions and ferric reducing antioxidant power (FRAP,
mg TE/100 g) of bound phenolics from rice bran (b) and rice husk (d) fractions.

Author Contributions: M.I. designed, coordinated, performed chromatographic analysis and wrote the study;
F.K. performed the experiments; K.K. produced and contributed plant material; and D.K. performed the
statistical analysis.

Funding: This study has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No. 690142.

Acknowledgments: We would also like to express our gratitude to Parthenopi Papageridou for her valuable
assistance on the materials preparation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Friedman, J. Rice brans, rice bran oils, and rice hulls: Composition, food and industrial uses, and bioactivities
in humans, animals, and cells. J. Agric. Food Chem. 2013, 61, 10626–10641. [CrossRef] [PubMed]

2. Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice bran nutraceutics: A comprehensive review.
Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. [CrossRef] [PubMed]

3. Irakli, M.; Katsantonis, D.; Kleisiaris, F. Evaluation of quality attributes, nutraceutical components and
antioxidant potential of wheat bread substituted with rice bran. J. Cereal Sci. 2015, 65, 74–80. [CrossRef]

4. Teng, Y.; Liu, C.; Bai, J.; Liang, J. Mixing, tensile and pasting properties of wheat flour mixed with raw and
enzyme treated rice bran. J. Food Sci. Technol. 2015, 52, 3014–3021. [CrossRef] [PubMed]

5. Lim, J.S.; Manan, Z.A.; Alwi, S.R.W.; Hashim, H. A review on utilization of biomass from rice industry as a
source of renewable energy. Renew. Sustain. Energy Rev. 2012, 16, 3084–3094. [CrossRef]

6. Ramarathnam, N.; Osawa, T.; Namiki, M.; Kawakishi, S. Chemical studies on novel rice hull antioxidants.
Isolation, fractionation, and partial characterization. J. Agric. Food Chem. 1988, 36, 732–737. [CrossRef]

7. Chen, M.H.; Bergman, C.J. Influence of kernel maturity, milling degree, and milling quality on rice bran
phytochemical concentrations. Cereal Chem. 2005, 82, 4–8. [CrossRef]

8. Min, B.; McClung, A.M.; Chen, M.H. Phytochemicals and antioxidant capacities in rice brans of different
color. J. Food Sci. 2011, 76, C117–C126. [CrossRef] [PubMed]

9. Das, A.B.; Goud, V.V.; Das, C. Extraction of phenolic compounds and anthocyanin from black and purple rice
bran (Oryza sativa L.) using ultrasound: A comparative analysis and phytochemical profiling. Ind. Crops Prod.
2017, 95, 332–341. [CrossRef]

10. Nenadis, N.; Kyriakoudi, A.; Tsimidou, M.Z. Impact of alkaline or acid digestion to antioxidant activity,
phenolic content and composition of rice hull extracts. LWT Food Sci. Technol. 2013, 54, 207–215. [CrossRef]

http://www.mdpi.com/2304-8158/7/6/93/s1
http://www.mdpi.com/2304-8158/7/6/93/s1
http://dx.doi.org/10.1021/jf403635v
http://www.ncbi.nlm.nih.gov/pubmed/24175575
http://dx.doi.org/10.1080/10408398.2016.1164120
http://www.ncbi.nlm.nih.gov/pubmed/27015585
http://dx.doi.org/10.1016/j.jcs.2015.06.010
http://dx.doi.org/10.1007/s13197-014-1366-y
http://www.ncbi.nlm.nih.gov/pubmed/25892803
http://dx.doi.org/10.1016/j.rser.2012.02.051
http://dx.doi.org/10.1021/jf00082a014
http://dx.doi.org/10.1094/CC-82-0004
http://dx.doi.org/10.1111/j.1750-3841.2010.01929.x
http://www.ncbi.nlm.nih.gov/pubmed/21535639
http://dx.doi.org/10.1016/j.indcrop.2016.10.041
http://dx.doi.org/10.1016/j.lwt.2013.05.005


Foods 2018, 7, 93 12 of 12

11. Vadivel, V.; Brindha, P. Antioxidant property of solvent extract and acid/alkali hydrolysates from rice hulls.
Food Biosci. 2015, 11, 85–91. [CrossRef]

12. Devi, R.R.; Arumughan, C. Phytochemical characterization of defatted rice bran and optimization of a
process for their extraction and enrichment. Bioresour. Technol. 2007, 98, 3037–3043. [CrossRef] [PubMed]

13. Tabaraki, R.; Nateghi, A. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice
bran using response surface methodology. Ultras Sonochem. 2011, 18, 1279–1286. [CrossRef] [PubMed]

14. Irakli, M.N.; Samanidou, V.F.; Biliaderis, C.G.; Papadoyannis, I.N. Development and validation of an
HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction.
Food Chem. 2012, 134, 1624–1632. [CrossRef] [PubMed]

15. Singleton, V.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates
and antioxidants by means of Folin-Ciocalteu reagents. Methods Enzymol. 1999, 299, 152–178.

16. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applying
an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]

17. Benzie, F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity
of biological fluids and modified version for simultaneous measurement of total antioxidant power and
ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–23. [PubMed]

18. Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles—Review.
Int. J. Mol. Sci. 2012, 13, 8615–8627. [CrossRef] [PubMed]

19. Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review.
Food Chem. 2014, 152, 46–55. [CrossRef] [PubMed]

20. Torre, P.; Aliakbarian, B.; Riva, B.; Dominguez, J.M.; Converti, A. Release of ferulic acid from corn cobs by
alkaline hydrolysis. Biochem. Eng. J. 2008, 40, 500–506. [CrossRef]

21. Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized
microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant
activity in vitro. Sep. Purif. Technol. 2009, 70, 63–70. [CrossRef]

22. Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of some commercially available
varieties of rice bran in Pakistan. Food Chem. 2005, 93, 265–272. [CrossRef]

23. Jha, P.; Das, A.J.; Deka, S.C. Optimization of ultrasound and microwave assisted extractions of polyphenols
from black rice (Oryza sativa cv. Poireton) husk. J. Food Sci. Technol. 2017, 54, 3847–3858. [CrossRef] [PubMed]

24. Begum, A.; Goswami, A.; Chowdhury, P. A comparative study on free and bound phenolic acid content and
their antioxidant activity in bran of rice (Oryza sativa L.) cultivars of Eastern Himalayan range. Int. J. Food
Sci. Technol. 2015, 50, 2529–2536. [CrossRef]

25. Sumczynski, D.; Kotásková, E.; Druzbíková, H.; Mlček, J. Determination of contents and antioxidant
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