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Abstract: Terpenoids, including monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids
(C15), constitute a large group of plant-derived naturally occurring secondary metabolites with
highly diverse chemical structures. A quantitative structure–activity relationship (QSAR) model to
predict terpenoid toxicity and to evaluate the influence of their chemical structures was developed in
this study by assessing in real time the toxicity of 27 terpenoid standards using the Gram-negative
bioluminescent Vibrio fischeri. Under the test conditions, at a concentration of 1 µM, the terpenoids
showed a toxicity level lower than 5%, with the exception of geraniol, citral, (S)-citronellal, geranic
acid, (±)-α-terpinyl acetate, and geranyl acetone. Moreover, the standards tested displayed a
toxicity level higher than 30% at concentrations of 50–100 µM, with the exception of (+)-valencene,
eucalyptol, (+)-borneol, guaiazulene, β-caryophellene, and linalool oxide. Regarding the functional
group, terpenoid toxicity was observed in the following order: alcohol > aldehyde ~ ketone >

ester > hydrocarbons. The CODESSA software was employed to develop QSAR models based on
the correlation of terpenoid toxicity and a pool of descriptors related to each chemical structure.
The QSAR models, based on t-test values, showed that terpenoid toxicity was mainly attributed
to geometric (e.g., asphericity) and electronic (e.g., maximum partial charge for a carbon (C) atom
(Zefirov’s partial charge (PC)) descriptors. Statistically, the most significant overall correlation was the
four-parameter equation with a training coefficient and test coefficient correlation higher than 0.810
and 0.535, respectively, and a square coefficient of cross-validation (Q2) higher than 0.689. According
to the obtained data, the QSAR models are suitable and rapid tools to predict terpenoid toxicity in a
diversity of food products.
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1. Introduction

Monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids (C15) constitute a large group
of plant-derived naturally occurring secondary metabolites with highly diverse chemical structures.
They have various biological activities as well as a wide range of applications, including their use as
agricultural products, flavorings, pharmaceuticals, and fragrances [1]. From a health point of view,
terpenoids are known for their antibacterial, anticancer, anti-inflammatory, anthelmintic, antiviral,
and antimalarial properties [2–5]. Terpenoids can function as antimicrobial agents to protect their
natural hosts, with antibacterial activity occurring via disruption of the lipid membrane, resulting
in the alteration of membrane organization and function [1,6]. As a result of lipophilic compounds
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partitioning into the lipid bilayer, damage occurs in the cell membrane by impairing vital functions
(e.g., loss of ions, metabolites, lipids, and proteins; and dissipation of the pH gradient and electrical
potential) [6–8]. Enzymes and DNA have also been mentioned as possible targets, as lipophilic
compounds tend to associate with the hydrophobic core of several proteins leading to conformational
changes, and consequently protein inactivation [6]. The toxicity level depends on the interaction with
membrane constituents, concentration, and location. The accumulation of lipophilic compounds can
occur at varying depths in the lipid bilayer. This depends on compound hydrophobicity as well as
the influence of membrane composition, or the effect of external factors (e.g., temperature on terpene
penetration ability) [8].

Several in vivo assays are available to measure chemical toxicity. Nevertheless, these experimental
assays are expensive, labor-intensive, and time-consuming, which encourage the development of
alternative more reliable, sensitive, and quick bioassays [9]. In recent years, a bioluminescence
inhibition assay based on Vibrio fischeri (Gram-negative bacterium) has been widely used to perform
toxicity measurements. This assay showed good reproducibility, sensitivity, cost-effectiveness, and
ease of operation and is an efficient ethical alternative to testing on higher species [10]. Researchers
have reported the V. fischeri bioluminescence assay as the most sensitive across a wide range of
chemicals compared to other bacterial assays, such as nitrification inhibition, respirometry, adenosine
triphosphate (ATP) luminescence, and enzyme inhibition [11,12]. This strain is also commercially
available in several test kits, i.e., Microtox, Aboatox, LUMIStox, and ToxAlert [13].

The quantitative structure–activity relationship (QSAR) analysis is usually used to develop
mathematical models that relate small variations of chemical structure, parameterized by empirical
physicochemical or theoretical molecular descriptors, to biological activity [14]. Different types of
numerical molecular descriptors have been employed, which are related to constitutional, topological,
geometrical, electronic, and quantum chemical origins [15]. Nevertheless, several steps should be
taken into consideration to develop a robust and sensitive QSAR model, such as (i) understanding the
interaction mechanism between chemical and biological systems, (ii) selection of a relevant descriptor
set that describes the relationship between the chemical and activity/property under consideration,
and (iii) selection of statistical tools [15–17].

Some studies have been performed on the relationship between toxicity and chemical structure of
several compounds, and QSARs models have been developed to predict V. fischeri toxicity for specific
groups using molecular and physicochemical descriptors [18–23]. The toxicity of narcotic compounds
against V. fischeri was predicted using molecular connectivity indices (topological descriptors), and the
data obtained suggested that the degree of branching and the compounds’ electronic characteristics
have a dominant role in the toxicity level [20]. Topological, electronic, and log P descriptors have
also been used to predict the toxicity of organic pollutants against V. fischeri [19]. Charge distribution
(e.g., maximum partial charge for a carbon (C) atom (Zefirov’s partial charge (PC)) and geometric
(e.g., shadow parameter) descriptors were used by Couling et al. [21] to assess the toxicity of a
diversity of ionic liquids against V. fischeri and Daphnia magna. In addition, Das et al. [18] developed
predictive QSAR models for the ecotoxicity of ionic liquids using the bacteria V. fischeri as an indicator
response species. Regarding terpenoids toxicity, Vinholes et al. [24] evaluated the hepatoprotection
effect of fifteen sesquiterpenoids with different chemical structures, commonly found in plants and
plant-derived foods and beverages, using a QSAR approach. With the exception of α-humulene,
all the sesquiterpenoids under study (1 mM) were effective in reducing the malonaldehyde levels
in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively [24]. QSAR
studies were performed in order to predict the insecticidal activity of terpene compounds, since insects
affect food production and human health (Dambolema 2016). Grodnitzky and Coats [25] developed
effective models to explain and predict the insect toxicity of monoterpenoids and their derivatives, and
the results showed that thymol and two ether derivatives had the greatest toxicity to the house fly.
Moreover, Chang et al. [26] developed a QSAR model to study the neuroprotective activity of thirteen
terpenoids on human neuroblastoma SH-SY5Y cells, and trans-caryophyllene turned out to be the most



Foods 2019, 8, 628 3 of 16

promising neuroprotective terpene among the thirteen terpenoids tested. The aim of the current study
was to evaluate the toxicity of 27 terpenoids (16 monoterpenoids, 8 sesquiterpenic compounds, and 3
norisoprenoids) at different concentrations (1, 10, 50, and 100 µM) and incubation times (0, 20, 40, 60, 80,
and 100 min) using the V. fischeri bioluminescence inhibition assay. The previous experimental data set
obtained was then used to develop QSAR models using the CODESSA (comprehensive descriptors for
structural and statistical analysis) software to predict the terpenoid-related chemical structure toxicity.

2. Materials and Methods

2.1. Reagents

Ethanol (99.9%), potassium dihydrogen phosphate (KH2PO4, 99%), glycerol (87%), peptone from
casein, meat extract, and tryptic soy agar (TSA) were obtained from Merck (Darmstadt, Germany).
Agar was obtained from Liofilchem (Teramo, Italy). Anhydrous sodium carbonate (99.8%), sodium
chloride (NaCl, 99%), sodium hydroxide (NaOH, 98%), and potassium chloride (KCl, 99%) were
purchased from Panreac (Barcelona, Spain) and sodium dihydrogen phosphate dihydrate (Na2HPO4

2H2O, 99%) was obtained from Fluka (Buchs, Switzerland).

2.2. Terpenoids Standards

Figure 1 shows the chemical structures of terpenoids used as authentic standards to evaluate toxicity.
Nerol (90%), β-caryophyllene (98.5%), (-)-α-cedrene (99%), (-)-α-neoclovene (95%), (+)-valencene
(70%), (Z)-nerolidol (95%), and (-)-α-bisabolol (95%) were purchased from Fluka (Buchs, Switzerland).
p-Cymene (99%), (R)-(+)-limonene (97%), (+)-borneol (97%), eucalyptol (99%), geraniol (98%), linalool
(98.5%), α-terpeniol (95%), β-citronellol (95%), (-)-menthol (99%), (R)-carvone (98%), citral (95%),
(S)-citronellal (96%), geranic acid (85%), linalool oxide (97%), (±)-α-terpinyl acetate (90%), β-ionone
(97%), geranyl acetone (98%), (±)-theaspirane (90%), and (E,E)-farnesol (96%) were obtained from
Sigma-Aldrich Química S.A. (Madrid, Spain). Guaiazulene (98%) was purchased from TCI Europe
N.V. (Zwijndrecht, Belgium). For each terpenoid standard, an ethanolic stock solution was prepared
(50 mM). From each stock solution, working solutions were prepared by diluting adequate amounts in
order to obtain a final concentration of 0.2, 1, 10, and 20 mM. All the solutions were stored at −20 ◦C.
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Figure 1. Chemical structures of terpenoids. 
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2.3. Assessment Terpenoid Toxicity

V. fischeri terpenoid exposures were conducted according to the methodology previously
described [27]. The bioluminescent marine bacterium V. fischeri ATCC 49387 (USA) was used.
It produces light without the addition of exogenous substrates, and the light emission is directly
proportional to its metabolic activity. Fresh plate cultures of bioluminescent V. fischeri were maintained
in solid BOSS medium (1% peptone, 0.3% beef extract, 0.1% glycerol, 3% NaCl, 1.5% agar, pH 7.3) at
4 ◦C. An NaCl concentration range from 20 to 40 g/L is needed to maintain the osmotic pressure of
cells that is required for natural light emission to occur. Before each bioassay, one isolated colony was
aseptically inoculated in 30 mL of liquid BOSS medium, and grown for 16 h at 25 ◦C under constant
stirring (120 rpm). An aliquot of this culture (240 µL) was subcultured in 30 mL of BOSS medium,
and grown overnight at 25 ◦C under stirring (120 rpm) to reach an optical density (OD620) of ≈1.0,
corresponding to ≈108 CFU/mL. For the bioassays, an overnight culture of V. fischeri was used after a
ten-fold dilution in phosphate-buffered saline (PBS: 30 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, and 0.24 g
KH2PO4 per liter; pH 7.4) to achieve a final concentration of 107 CFU/mL.

For each terpenoid experiment, 10 mL of bacterial suspension was aseptically distributed in
100 mL acid-washed, sterilized, glass beakers and 50 µL working stock solution of each standard (0.2, 2,
10, and 20 mM in hydroalcoholic solution) was added in order to achieve a final concentration of 1, 10,
50, and 100 µM, respectively. Then, all the beakers were wrapped with aluminum foil to protect from
light exposure and incubated under stirring (120 rpm) at 20–25 ◦C. A control experiment, consisting of
bacterial suspension and hydroalcoholic solution, instead of terpenoids, was carried out simultaneously.
Aliquots of 500 µL of the standard C10 and C15 terpenic compounds and norisoprenoids and the
control were collected at different times (0, 20, 40, 60, 80, and 100 min) and the bioluminescence signal
(peak wavelength detected at 420 nm, standard range 300–650 nm) was measured on a luminometer
(TD-20/20 Luminometer, Turner Designs, Inc., Sunnyvale, CA, USA). Three independent assays were
performed for each component and the control and the results were averaged.

2.4. Calibration of Bioluminescent Signal and Viable Cell Numbers

The correlation between the colony-forming units (CFU) and the bioluminescent signal (in
relative light units, RLU) of V. fischeri was performed. For this purpose, eight-fold serial dilutions of
the culture were prepared in PBS with 3% NaCl. The non-diluted (100) and diluted aliquots were
spread-plated in tryptic soy agar (TSA) with 3% NaCl (100 µL) to determine the number of viable cells
(CFU/mL), and simultaneously bioluminescence was read on the luminometer (500 µL) to determine the
bioluminescence signal. Both experiments were performed in triplicate and the results were averaged.
The toxicity result of each terpenoid concentration at different incubation times was calculated as
percentage inhibition, relative to the control sample (0 min), through the following equation:

% Inhibition = ((Gc − Gs)/Gc) ×100

where Gc specifies the arithmetic mean of the bioluminescence values of the control and Gs indicates
the bioluminescence value of a particular sample after incubation times.

2.5. QSAR Model Development

2.5.1. Geometry Optimization and Calculation of Molecular Descriptors

The three-dimensional chemical structures of the terpenoids were drawn and pre-optimized
using the AMBER force field model available in the HYPERCHEM 7.0 software (Hypercube Inc,
Gainsville, FL, USA). The final molecular geometries were refined using the quantum chemical
program package MOPAC 6.0 (Chicago, IL, USA). The Austin Model 1 (AM1) parameterization with
eigenvector following the geometry optimization procedure at a precision level 0.01 kcal/Å gradient
norm was used to calculate electronic and thermodynamic descriptors.
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The CODESSA software (Semichem Inc, Shawnee, KS, USA) was used to calculate a pool of
different molecular descriptors using the MOPAC output files, HyperChem structure files, and
additional descriptors calculated using the DRAGON software package (Chicago, IL, USA) [28]. In
total, more than 280 molecular descriptors were generated for each structure, which could be organized
into five groups, namely constitutional, topological, geometrical, electrostatic, and quantum chemical.
These molecular descriptors contain information about the connections, shape, symmetry, charge
distribution, and quantum chemical properties of the chemical structures under study.

2.5.2. Development and Validation of QSAR Models

An important step in QSAR model development is the selection of the best multilinear regression
equation among a given descriptor set. Once molecular descriptors are calculated, the selection was
performed using the heuristic method (HM) available in the framework of the CODESSA software,
which reduces the descriptors pool by eliminating descriptors (i) that are not available for all the
structures studied, (ii) that have a constant value for all the structures studied, (iii) with F-values below
1, (iv) with t-test values lower than 0.1 at a probability level of 0.05, and (v) that are highly correlated
and provide approximately identical information, if their pair-wise correlation coefficient exceeds
0.80 [29]. The selected descriptors were then used for developing the QSAR prediction models by
multiple linear regressions (MLRs), with a training subset composed of 22 terpenoids. The predictive
power of the resulting models was evaluated by a test subset of five terpenoids representative of
the biological activity of data set. For the training subset of the 22 terpenoids, not more than four
descriptors were considered for the correlation analysis, thereby keeping the ratio to a maximum of
4:1 [30].

The QSAR models derived from MLR analyses were then used in a validation study (in order to
select the reliable and robust models) by taking into account the highest squared correlation coefficient
(r2), square coefficient of cross validation (Q2), Fisher F-criterion value (ratio of regression and residual
variances and reflects the significance of the model), and Student’s t-test (reflects the significance of the
parameter within the model), as well as the lowest standard deviation (S). Generally, Q2 is used as a
criterion for both the robustness and predictive ability of QSAR models. Many researchers considered
high Q2 (for instance, Q2 higher than 0.50) as an indicator or even as the ultimate proof of the high
predictive power of QSAR models [28,31].

3. Results and Discussion

3.1. Toxicity of Terpenoids

A correlation between the colony-forming units (CFU) and the bioluminescent signal (in relative
light units, RLU) of overnight cultures of the V. fischeri bioluminescent strain was performed to evaluate
the viable bacterial abundance. A linear correlation, reflecting the viable bacterial abundance, was
observed (Figure 2). This section is divided by subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental conclusions
that can be drawn. Figure 3 Figure 4 Figure 5 and Tables S1–S3 show the inhibitory percentage of V.
fischeri exposed to 27 terpenoids (16 monoterpenoids, 8 sesquiterpenoids, and 3 norisoprenoids) at
different concentrations (1, 10, 50, and 100 µM) and incubation times (0, 20, 40, 60, 80, and 100 min).
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Figure 2. Relationship between the bioluminescence signal and viable counts of an overnight culture
of Vibrio fischeri (≈109 CFU/mL) serially diluted in phosphate buffer solution (PBS) with 3% NaCl.
Bioluminescence is expressed in relative light units (RLU) and viable counts in CFU/mL. Values
represent the mean of two independent experiments; error bars indicate the standard deviation.

At the concentration of 1 µM, geranic acid (20%), (±)-α-terpinyl acetate (11%), citral (9%), and
(S)-citronellal (8%) showed a higher toxicity level than the remaining terpenoids tested. At the
concentration of 10 µM, β-citronellol (52%) showed a considerable toxicity level, followed by
(±)-α-terpinyl acetate (32%), β-ionone (31%), geranyl acetone (28%), (Z)-nerolidol (28%), limonene
(28%), geranic acid (26%), (-)-α-bisabolol (26%), and (S)-citronellal (25%). The remaining terpenoids
under study showed toxicity lower than 21%. The results showed that toxicity was proportional to
standard concentration. At the concentration of 100 µM, the majority of terpenoids tested showed
toxicity higher than 50%, with the exception of (+)-valencene (14%), eucalyptol (15%), (+)-borneol (16%),
guaiazulene (16%), β-caryophellene (19%), linalool oxide (20%), (-)-menthol (29%), (+)-theaspirane
(30%), (R)-carvone (39%), and (-)-α-neoclovene (46%).

Regarding the incubation time, no remarkable differences were observed between 20 and 100 min,
indicating that greater toxicity occurred during the first 20 min. For this reason, this incubation time
was selected to develop the QSAR models to predict terpenoid toxicity. An overview could be achieved
based on the relationship between the toxicity of terpenoids and their chemical structures, as well as
their functional groups.
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Figure 3. Bioluminescence monitoring of V. fischeri exposed to monoterpenic compounds at different concentrations. The values are expressed as the means of three
independent experiments.
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Figure 4. Bioluminescence monitoring of V. fischeri exposed to sesquiterpenic compounds at different
concentrations. The values are expressed as the means of three independent experiments.
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Figure 5. Bioluminescence monitoring of V. fischeri exposed to norisoprenoids at different concentrations.
The values are expressed as the means of three independent experiments.

Concerning the functional groups, the highest toxicity level was observed in the following order:
alcohol (e.g., geraniol) > aldehyde (e.g., (S)-citronellal) ~ ketone (e.g., geranyl acetone) > ester (e.g.,
(±)-α-terpinyl acetate) > hydrocarbons (e.g., (+)-valencene). The toxicity of some C10 and C15 terpenoid
alcohols has been previously reported [32]. The presence of hydroxyl groups is crucial to the toxicity
level, suggesting that the binding sites may contain both hydrogen bond donors as well as hydrogen
bond receptors [33]. This could be confirmed by comparing the toxicity of α-terpineol with that of
eucalyptol. The toxicity of chemical structures of terpenoids could also increase due to the presence of
an oxygen-related function (e.g., geranyl acetone, β-ionone, (S)-citronellal, and citral). The presence of
these functional groups increases the structure electronegativity, which may interfere with biological
processes involving electron transfer and react with vital nitrogen components, such as proteins and
nucleic acids, and consequently inhibit bacterial growth [34]. Moreover, monoterpenes consisting of
aldehydes possess antimicrobial activity, which can be explained through their carbon double bond
arrangements creating high electronegativity (reviewed by Mahizan et al. [35]). The presence of the
acetate moiety in terpenoid chemical structures is also crucial to increase toxicity, which was confirmed
when the activity of α-terpineol against V. fischeri was compared to (±)-α-terpinyl acetate (Figure 3).
Similar results were reported for geraniol and (+)-borneol, where their toxicity was lower than the
acetates against a diversity of bacteria [34]. The toxicity of geraniol has been investigated in several
organisms and geraniol showed several biological properties, including antimicrobial, antioxidant,
and anti-inflammatory activities, together with negligible toxicity (reviewed by Chen at al. [36]). The
bacterial activity also depends on the alkyl substituent on the ring structure, which could be confirmed
when the antibacterial activity of (R)-(+)-limonene (alkenyl substituent) was compared with that of
p-cymene (alkyl substituent). The presence of a double bond in the chemical structures of C10 and C15

terpenoids and norisoprenoids contributed to an increase in their toxicities.
Finally, the terpene hydrocarbons (e.g., (+)-valencene, guaiazulene, and β-caryophyllene) showed

low toxicity compared to the other terpenoids in the study. This could be explained by their low water
solubility that limits their diffusion through the medium. This data are in agreement with a previous
study, in which the C10 and C15 terpene hydrocarbons were relatively inactive independent of their
chemical structure, due to their limited hydrogen capacity and water solubility [37]. The action sites
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of the terpene hydrocarbons appeared to be at the lipid bilayer, caused by biochemical mechanisms
catalyzed by the lipid bilayers of the cells. These processes included the inhibition of electron transport,
protein translocation, phosphorylation steps, and other enzyme-dependent reactions.

3.2. QSAR Models to Predict the Toxicity of Terpenoids

The heuristic method (HM) was applied to generate QSAR models with four descriptors. A subset
composed of 22 terpenoids was built and the remaining five terpenoids were used in an external
validation subset. The HM results are shown in Table 1. The QSAR models performed well, with a
training correlation coefficient (r2

training) and a test correlation coefficient (r2
test) subset higher than

0.810 and 0.535, respectively. The square coefficient of cross validation (Q2) values were higher than
0.689, which suggested a high predictive power. Although, the QSAR models developed to predict the
terpenoids’ chemical structure-related toxicity were characterized by good statistical parameters, such
as r2

training, r2
test, and Q2, a good QSAR model fit depends on the experimental data quality. An extreme

outlier was found in the QSAR model generated for the terpenoids at the concentration of 10 µM, and
for this QSAR model, (Z)-nerolidol (outlier) was removed in order to improve the statistical result
(Table 1). The four descriptors involved in the QSAR models obtained for the different concentrations of
each terpenoids are listed in Table 1, and included constitutional, topological, geometrical, electrostatic,
and quantum chemical descriptors.

Table 1. Quantitative structure–activity relationship (QSAR) models obtained for the different
concentrations of terpenoids against V. fischeri bacteria for an exposition time of 20 min.

(Terpenoids) (µM) Nº B t-Test Molecular Descriptors Statistical Parameters

1

0 18.36 8.56 Intercept r2
training = 0.952

1 209.81 14.73 Maximum partial charge for a C atom
(Zefirov’s PC) r2

test = 0.923

2 −10.28 −8.28 Maximum atomic orbital electronic
population F = 84.14

3 0.93 6.70 Kier shape index (3rd order) s2 = 1.05

4 −0.11 −3.90 WNSA-1 weighted PNSA
(PNSA1×TMSA/1000) (Zefirov’s PC) Q2 = 0.900

10a

0 31.85 7.68 Intercept r2
training = 0.873

1 42.92 8.06 Asphericity r2
test = 0.6987

2 −0.30 −6.50 PNSA-1 partial negative surface area
(Zefirov’s PC) F = 27.57

3 148.82 4.50 Maximum partial charge for a C atom
(Zefirov’s PC) s2 = 11.25

4 −3.92 −4.48 Log P Q2 = 0.794

50

0 39.71 1.07 Intercept r2
training = 0.810

1 110.40 7.40 Asphericity r2
test = 0.535

2 7.53 3.71 Kier and Hall index (2nd order) F = 18.17

3 −0.28 −2.81 PNSA-1 partial negative surface area
(Zefirov’s PC) s2 = 62.05

4 −77.99 −1.95 Minimum atomic orbital electronic
population Q2 = 0.689

100

0 19.48 0.94 Intercept r2
training = 0.846

1 195.98 8.58 Asphericity r2
test = 0.676

2 21.01 0.21 Kier and Hall index (2nd order) F = 23.39
3 −1.17 −4.54 XY shadow s2 = 103.69
4 −72.04 3.96 Relative number of single bonds Q2 = 0.734

a Ntraining = 21 (training group), Ntest = 5 (test group); Nº—number of descriptors; B—equation coefficient;
r2

training—training correlation coefficient; r2
test—test correlation coefficient; F—Fisher F-criterion value; s2—Student’s

t-test; Q2—square coefficient of cross validation; WNSA—weighted negative surface area; PNSA—partial negative
surface area; TMSA—total molecular surface area.

For the terpenoid concentration 1 µM (equation 1), the QSAR model was constituted by two
electronic (maximum partial charge for a C atom (Zefirov’s PC), Qc

max; and WNSA-1 weighted
PNSA (PNSA1×TMSA/1000) (Zefirov’s PC)), one topological (Kier shape index 3rd order, 3κ), and one
quantum chemical (maximum atomic orbital electronic population, Max-OP) descriptors. According
to the t-test, the most significant descriptor to predict terpenoid toxicity was Qc

max, followed by
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Max-OP, 3κ, and WNSA-1. Qc
max is an electronic descriptor calculated from Zerirov’s electronegativity

equation, and describes the most positively charged C atom in a molecule that is usually connected to
an electron-withdrawing functional group or atom [38]. The Max-OP descriptor for a given atomic
species in a molecule is a simplified index to describe the nucleophilicity of the molecule and could be
interpreted as its ability to undergo oxidation and start a degenerative metabolic process [39]. The
negative coefficient obtained for this quantum chemical descriptor indicated that the toxicity of the
terpenoids increased with a decrease in the Max-OP magnitude.

In 3κ, the shape of a molecule depends on the number of skeletal atoms, molecular branching,
and the ratio of the atomic radius and the radius on the carbon atom in the sp3 hybridization state [38].
The positive coefficient of the 3κ descriptor suggested that the increase in molecule branching and the
presence of heteroatoms promoted terpenoid toxicity. The WNSA-1 descriptor describes the negative
partial charge distribution information in a molecule and then could account for the electrostatic
interaction between the compound and its receptor [38]. A negative coefficient of the WNSA-1
descriptor implies that the activity increases as the value of this descriptor decreases. As observed, the
electronic descriptors involved in this model indicated that they are charged partial surface area (CPSA)
descriptors, which suggested that surface area alone, as a geometric descriptor, was not sufficient to
predict terpenoid toxicity. This is in agreement with previous studies that used CPSA descriptors to
assess molecule lipophilicity [30].

For the terpenoid concentration 10 µM (equation 2), the QSAR model was constituted by one
geometric (asphericity), two electronic (Qc

max, PNSA-1 partial negative surface area (Zefirov’s PC)),
and one physicochemical (log P) descriptors. According to the t-test, these descriptors obey the
following order of significance: asphericity > PNSA-1 > Qc

max ~ log P. Asphericity (Ω) is a geometric
descriptor which describes a molecule’s deviation from the spherical shape, and calculated from the
eigenvalue λi of the inertia matrix [40]. The positive sign of asphericity indicated that terpenoid toxicity
was promoted by linear (Ω = 1) and oblate (Ω ~ 1) structures of the molecules. PNSA-1 describes the
sum of the surface area of negative atoms, and as observed for the first model (equation 1, Table 1), the
negative sign of this electronic descriptor highlighted that a decrease in the magnitude of PNSA favored
terpenoid toxicity. Again, Qc

max showed a positively correlation with terpenoid toxicity. This result
is in agreement with literature as the Gram-negative outer layer membrane is composed primarily
by lipopolysaccharide molecules, and forms a hydrophilic permeability barrier providing protection
against the effects of highly hydrophobic compounds [33].

At 50 µM terpenoid concentration (equation 3), the QSAR model was also constituted by one
geometric (asphericity), one topological (Kier and Hall index 2nd order, 2χυ), one electronic (PNSA-1),
and one quantum chemical (minimum atomic orbital electronic population, Min-OP) descriptors.
According to the t-test, these descriptors obey the following order of significance: asphericity >
2χυ > PNSA-1 > Min-OP (equation 3, Table 1). As observed in QSAR model 2, asphericity and
PNSA-1 showed a positive and negative correlation, respectively, with terpenoid toxicity. 2χυ is a
valence connectivity topological descriptor, which reflects the branching molecule and also encodes the
molecule size. The positive sign of this descriptor indicated that high molecular branching promoted
less London dispersion, consequently increasing terpenoid toxicity. The Min-OP descriptor for a given
atomic species in a molecule is a simplified index to describe the electrophilic ability of the molecule
and connected to the hydrogen donor capabilities of the molecule.

At 100 µM terpenoid concentration (equation 4, Table 1), based on t-test, the most significant
descriptor in this model affecting terpenoid toxicity was asphericity followed by XY shadow, number
of single bonds (C1), and 2χυ, which indicated that toxicity was affected by geometric, topological,
and constitutional descriptors, but not by any electrostatic or quantum chemical descriptor. Again,
asphericity showed a positive correlation with terpenoid toxicity, which indicated that toxicity was
favored by an increase in asphericity magnitude, as observed in QSAR models 2 and 3 (Table 1). XY
shadow is defined as the area of shadows of a molecule as projected on the XY plane by the orientation
of the molecule in the space along the axes of inertia, which characterizes the size and geometrical
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shape of the molecule. Thus, it can act as a descriptor of van der Waals and dispersion interactions
between the chemical compound and lipids [41].

The QSAR models generated for each concentration suggested that the charge distribution over the
molecule as well as shape, size, and orientation of substituents remarkably influenced terpenoid toxicity.
Moreover, it can be concluded that the developed models corresponding to the terpenoid concentrations
of 10, 50, and 100 µM followed the same tendency, as according to the t-test values, the toxicity was
mainly affected by steric effects (e.g., asphericity), with β-citronellol (Ω = 0.71), (E,E)-farnesol (Ω = 0.69),
(S)-citronellal (Ω = 0.68), geranic acid (Ω = 0.63), (Z)-nerolidol (Ω = 0.63), geranyl acetone (Ω = 0.61),
citral (Ω = 0.61), (-)-α-bisabolol (Ω = 0.60), geraniol (Ω = 0.58), nerol (Ω = 0.57), linalool (Ω = 0.56),
and (±)-α-terpinyl acetate (Ω = 0.56) exhibiting the most toxicity. In sum, the presence of hydroxyl
groups as well as oxygen-related functions are crucial to terpenoid toxicity levels, since the presence
of these functional groups increases structure electronegativity, which may interfere with biological
processes involving electron transfer and react with vital nitrogen components (e.g., proteins and
nucleic acids). Other QSAR studies revealed that the number of conjugated carbons, the number of
phenolic and hydroxyl groups, and the number of acceptor atoms of hydrogen bonds are the most
important structural descriptors in the antimycobacterial activity of terpenes [42].

4. Conclusions

The current study reports the toxicity of terpenoids against V. fischeri bacteria. Concerning the
functional groups, terpenoid toxicity decreased in the following order: alcohol (e.g., geraniol) >

aldehyde (e.g., (S)-citronellal) ~ ketone (e.g., geranyl acetone) > ester (e.g., (±)-α-terpinyl acetate) >

hydrocarbons (e.g., (+)-valencene). The high sensibility of V. fischeri to the cytotoxic effect of terpene
alcohols could be explained by the involvement of the hydroxyl group in the formation of hydrogen
bonds with the membrane polar part, whereas the low sensibility of V. fischeri to the cytotoxic effect of
hydrocarbon terpenes could be explained by the fact that the Gram-negative outer layer membrane is
primarily composed of lipopolysaccharide molecules and forms a hydrophilic permeability barrier
providing protection against the effects of highly hydrophobic compounds.

The previous experimental data set was used to generate the QSAR models. The models performed
well, with high significant correlation obtained using the heuristic method indicating that a combination
of different molecular descriptor types resulted in the best correlation which could be used to predict the
chemical structure-related terpenoid toxicity. Among the obtained models, several common descriptors
were found, including two electronic (maximum partial charge for a C atom (Zefirov’s PC) and PNSA-1
partial negative surface area (Zefirov’s PC)), one geometric (asphericity), and one topological (Kier and
Hall index 2nd order) descriptors. Their statistical significance depended on terpenoid concentration;
for the lowest concentration (1 µM) tested, the most significant was an electronic descriptor (maximum
partial charge for a C atom (Zefirov’s PC)), whereas for the remaining tested concentrations, the most
significant was a geometric (asphericity) descriptor. Both the descriptors showed a positive correlation
with toxicity, suggesting that molecule branching, the presence of heteroatoms, and electronegativity
play a dominant role in terpenoid toxicity, and the most potentially toxic terpenoids were β-citronellol,
(E,E)-farnesol, (S)-citronellal, geranic acid, (Z)-nerolidol, (-)-β-bisabolol, geraniol, nerol, linalool,
geranyl acetone, β-ionone, citral, geranic acid, and (±)-α-terpinyl acetate. The developed QSAR models
provided suitable and rapid tools to predict terpenoid toxicity present in a diversity of food products,
in terms of antimicrobial activity.
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