Supplementary Materials

Anti-adipogenic effect of β-carboline Alkaloids from garlic (Allium sativum)

Su Cheol Baek ${ }^{\dagger}$, Ki Hong Nam †, Sang Ah Yi ${ }^{\dagger}$, Mun Seok Jo, Kwang Ho Lee, Yong Hoon Lee, Jaecheol Lee ${ }^{*}$, and Ki Hyun Kim *

School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea

* Correspondence: jaecheol@skku.edu (J.L.); khkim83@skku.edu (K.H.K.);Tel.: +82-31-290-7726 (J.L.); +82-31-290-7700 (K.H.K.)
${ }^{+}$These authors contributed equally to this work.

Figure S1. DP4+ analysis of compound 5 with isomers ($1 S, 3 S$)-5 (Isomer 1) and ($1 R, 3 S$)-5 (Isomer 2).

Functional		Solvent?		Basis Set		Type of Data	
B3LYP		PCM		6-31G(d)		Unscaled Shifts	
		DP4+	98.54\%	-1ll 1.46%	-	-	-
Nuclei	sp2?	Experimental	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
H	x	7.14	6.6	6.6			
H	x	7.05	6.6	6.6			
H	x	7.34	6.5	6.5			
H	x	7.48	6.9	6.9			
H		4.7	3.9	3.6			
H		3.95	3.2	3.3			
H		3.44	2.57	2.6			
H		3.02	1.89	1.8			
H		1.75	1.172685634	1.27			
H		1.75	0.568769511	1.33			
H		1.75	1.441724664	0.85			

$(1 S, 3 S)-5$

$(1 R, 3 S)-5$

Figure S2. DP4+ analysis of compound 6 with isomers ($1 S, 3 S$)-6 (Isomer 1) and ($1 R, 3 S$)-6 (Isomer 2).

Functional		Solvent?		Basis Set		Type of Data	
B3LYP		PCM		6-31G(d)		Unscaled Shifts	
		DP4+	(lll 0.54\%	- 99.46\%	-	-	-
Nuclei	sp2?	Experimental	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
h	x	7.12	6.6	6.6			
h	x	7.03	6.6	6.6			
h	x	7.31	6.5	6.5			
h	x	7.47	6.9	6.9			
h		4.09	3.2	3.3			
h		3.14	1.9	1.8			
h		1.7	1.2	1.3			
h		1.7	0.6	1.3			
h		1.7	1.4	0.9			

$(1 S, 3 S)-6$

$(1 R, 3 S)-6$

Table S1. The computed ${ }^{1} \mathrm{H}$ NMR data for $(1 S, 3 S)-5$ and $(1 R, 3 S)-5$.

No.	$\mathbf{5}$	$\delta_{\text {exp }}$	$(1 S, 3 S)-\mathbf{5}$		$(1 R, 3 S)-\mathbf{5}$	
			$\delta_{\text {cal }}(\mathrm{ppm})$	$\Delta \delta$	$\delta_{\text {cal }}(\mathrm{ppm})$	$\Delta \delta$
$\mathbf{1}$	6	7.14	6.61	0.53	6.61	0.53
$\mathbf{2}$	7	7.05	6.64	0.41	6.64	0.41
$\mathbf{3}$	8	7.34	6.48	0.86	6.46	0.88
$\mathbf{4}$	5	7.48	6.88	0.60	6.89	0.59
$\mathbf{5}$	1	4.7	3.91	0.79	3.55	1.15
$\mathbf{6}$	3	3.95	3.22	0.73	3.32	0.63
$\mathbf{7}$	4	3.44	2.57	0.87	2.59	0.85
$\mathbf{8}$	$4 "$	3.02	1.89	1.13	1.76	1.26
$\mathbf{9}$	10	1.75	1.17	0.58	1.27	0.48
$\mathbf{1 0}$	10	1.75	0.57	1.18	1.33	0.42
$\mathbf{1 1}$	10	1.75	1.44	0.31	0.85	0.90
$\mathbf{M A D}^{\mathbf{b}}$						
	$\mathbf{L A D}^{\mathbf{a}}$		0.22		0.25	

${ }^{a}$ LAD $=$ largest absolute deviation.
${ }^{b} \mathrm{MAD}=$ mean absolute deviation, computed as $(\mathbf{1} / n) \sum_{i}^{n}\left|\delta_{\text {calcd }}-\delta_{\text {exptl }}\right|$

Table S2. The computed ${ }^{1} \mathrm{H}$ NMR data for $(1 S, 3 S)-6$ and $(1 R, 3 S)-6$.

No.	$\mathbf{*}$	$(1 R, 3 S)-\mathbf{6}$		$(1 S, 3 S)-\mathbf{6}$		
			$\delta_{\text {exp }}$	$\delta_{\text {cal }}(\mathrm{ppm})$	$\Delta \delta$	$\delta_{\text {cal }}(\mathrm{ppm})$
$\mathbf{1}$	6	7.12	6.61	0.51	6.61	0.51
$\mathbf{2}$	7	7.03	6.64	0.39	6.64	0.39
$\mathbf{3}$	8	7.31	6.48	0.83	6.46	0.85
$\mathbf{4}$	5	7.47	6.88	0.59	6.89	0.58
$\mathbf{5}$	3	4.09	3.22	0.87	3.32	0.77
$\mathbf{6}$	$4 "$	3.14	1.89	1.25	1.76	1.38
$\mathbf{7}$	10	1.7	1.17	0.53	1.27	0.43
$\mathbf{8}$	10	1.7	0.57	1.13	1.33	0.37
$\mathbf{9}$	10	1.7	1.44	0.26	0.85	0.85
$\mathbf{M A D}^{\mathbf{b}}$						
	$\mathbf{L A D}^{\mathbf{a}}$		0.28		0.25	

${ }^{a}$ LAD $=$ largest absolute deviation.
${ }^{b}$ MAD $=$ mean absolute deviation, computed as (1/n) $\sum_{i}^{n}\left|\delta_{\text {calcd }}-\delta_{\text {exptl }}\right|$

General experimental procedures

Optical rotations were calculated using a Jasco P-1020 polarimeter (Jasco, Easton, MD, USA); ultraviolet (UV) spectra were acquired on an Agilent 8453 UV-visible (UV-Vis) spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). The NMR spectra were recorded on a Bruker AVANCE III 800 NMR spectrometer with a $5-\mathrm{mm}$ TCI CyroProbe operating at $800 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, with chemical shifts given in ppm (δ) (Bruker). Preparative high-performance liquid chromatography (HPLC) was performed using a Waters 1525 Binary HPLC pump with a Waters 996 photodiode array detector (Waters Corporation Milford, MA, USA) and an Agilent Eclipse C_{18} column ($250 \times 21.2 \mathrm{~mm}, 5 \mu \mathrm{~m}$; flow rate: $5 \mathrm{~mL} / \mathrm{min}$; Agilent Technologies). Semi-preparative HPLC was performed using a Shimadzu Prominence HPLC System with SPD-20A/20AV Series Prominence HPLC UV-Vis Detectors (Shimadzu, Tokyo, Japan). The LC/MS analysis was performed on an Agilent 1200 Series HPLC system equipped with a diode array detector and a 6130 Series electrospray ionization mass spectrometer using an analytical Kinetex ${ }^{\circledR} 5-\mu \mathrm{m} \mathrm{C}_{18} 100 \AA$ column (5 $\mu \mathrm{m}, 2.1 \times 100 \mathrm{~mm}$, Phenomenex, Torrance, CA, USA). Column chromatography was performed with Silica gel 60 (Merck, Darmstadt, Germany; 230-400 mesh) and reverse-phase (RP)-C18 silica gel (Merck, 230-400 mesh). The packing material for the molecular sieve column chromatography was Sephadex LH-20 (Pharmacia, Uppsala, Sweden). Precoated silica gel F_{254} plates and RP-18 $\mathrm{F}_{254 \mathrm{~s}}$ plates (Merck) were used for thin-layer chromatography (TLC). Spots were detected on TLC under UV light or by heating after spraying with anisaldehyde-sulfuric acid.

Plant material

Allium sativum L. was collected from Uiseong, Gyeongsangbuk-do, Korea, in March 2016. The material was identified by one of
the authors (K. H. Kim). A voucher specimen (MN-16-03) was deposited in the herbarium of the School of Pharmacy, Sungkyunkwan University

Extraction and isolation

Minced A. sativum (1 kg) was extracted with $100 \% \mathrm{MeOH}(18 \mathrm{~L} \times 1$ day \times three times) at room temperature and filtered. The resultant solution was evaporated under reduced pressure using a rotavapor to obtain the MeOH extract (101.7 g), which was suspended in distilled water (1.4 L) and successively solvent-partitioned with n-hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MC})$, ethyl acetate (EA), and n butanol (BuOH), yielding residues weighing $1.4 \mathrm{~g}, 0.287 \mathrm{~g}, 0.153 \mathrm{~g}$, and 4.5 g , respectively. The n - BuOH -soluble fraction (4.5 g) was subjected to silica gel open column chromatography using a gradient solvent system of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol (MeOH) (10:1), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (9:3:0.5), and $100 \% \mathrm{MeOH}$ to obtain seven fractions (B1-B7). Fraction B 5 (250.7 mg) was separated by preparative reversed-phase HPLC with a gradient solvent system of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($9: 1$ to 1:0) to obtain five subfractions (B5a-B5e). Subfraction B5e (60 mg) was purified using semi-preparative HPLC with a solvent system of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (41:59) to yield compounds 1 (2.1 mg), $2(1.6 \mathrm{mg})$, and $3(1.1 \mathrm{mg})$. Fraction B6 (665.9 mg) was separated using Sephadex LH-20 open column chromatography with a solvent system of $100 \% \mathrm{MeOH}$ to obtain five subfractions (B6a-B6e). Subfraction B6e (180.8 mg) was separated by preparative reversed-phase HPLC with a solvent system of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($3: 7$ to 1:0) to afford four subfractions (B6e-1-B6e-4). Subfraction B6e-2 (69.2 mg) was purified using semi-preparative HPLC with a solvent system of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (1:3) to yield compounds $\mathbf{4}(2.3 \mathrm{mg}), \mathbf{5}(2.3 \mathrm{mg})$, and $\mathbf{6}(1.2 \mathrm{mg})$.

Computational NMR chemical shift calculations for DP4+ analysis

Conformational searches were performed using Tmolex 4.3.1 with the DFT settings (B3-LYP functional/M3 grid size), geometry optimization settings (energy 10^{-6} hartree, gradient norm $|\mathrm{d} E / \mathrm{d} x y z|=10^{-3}$ hartree/bohr), and the basis set def-SV(P) for all atoms. The NMR shielding constants were calculated on optimized ground state geometries at the DFT B3LYP/def-SV(P) level of theory. The NMR chemical shifts of the isomers were obtained by Boltzmann averaging the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the stable conformers at 298.15 K . The chemical shift values were calculated using

$$
\delta_{\text {calc }}^{x}=\frac{\sigma^{o}-\sigma^{x}}{1-\sigma^{o} / 10^{6}}
$$

where, $\delta_{\text {calc }}^{x}$ is the calculated NMR chemical shift for nucleus x and σ° is the shielding tensor for the proton and carbon nuclei in tetramethylsilane calculated at the DFT B3LYP/def-SV(P) basis set [1].

The calculated NMR properties of the optimized structures were averaged based on their respective Boltzmann populations, and the DP4+ probability analysis was facilitated by the Excel sheet (DP4+) provided by Grimblat et al. [2].

Reference)

[1] Smith, S.G.; Goodman, J. M.; Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J. Am. Chem. Soc. 2010, 132, 12946-12959.
[2] Grimblat, N.; Zanardi, M. M.; Sarotti, A. M.; Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526-12534.

