
Citation: Melesse, T.Y.; Franciosi, C.;

Di Pasquale, V.; Riemma, S.

Analyzing the Implementation of

Digital Twins in the Agri-Food

Supply Chain. Logistics 2023, 7, 33.

https://doi.org/10.3390/

logistics7020033

Academic Editors: Benjamin Nitsche

and Frank Straube

Received: 6 April 2023

Revised: 26 May 2023

Accepted: 31 May 2023

Published: 12 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

logistics

Review

Analyzing the Implementation of Digital Twins in the
Agri-Food Supply Chain
Tsega Y. Melesse 1 , Chiara Franciosi 2, Valentina Di Pasquale 1,* and Stefano Riemma 1

1 Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; tmelesse@unisa.it (T.Y.M.);
riemma@unisa.it (S.R.)

2 Université de Lorraine, CNRS, CRAN UMR 7039, Campus Sciences, BP 70239,
54506 Vandeuvre-les-Nancy, France; chiara.franciosi@univ-lorraine.fr

* Correspondence: vdipasquale@unisa.it

Abstract: Background: Digital twins have the potential to significantly improve the efficiency and
sustainability of the agri-food supply chain by providing visibility, reducing bottlenecks, planning for
contingencies, and improving existing processes and resources. Additionally, they can add value to
businesses by lowering costs and boosting customer satisfaction. This study is aimed at responding to
common scientific questions on the application of digital twins in the agri-food supply chain, focusing
on the benefits, types, integration levels, key elements, implementation steps, and challenges. Methods:
This article conducts a systematic literature review of recent works on agri-food supply chain digital
twins, using a list of peer-reviewed studies to analyze concepts using precise and well-defined criteria.
Thus, 50 papers were selected based on inclusion and exclusion criteria, and descriptive and content-
wise analysis was conducted to answer the research questions. Conclusions: The implementation of
digital twins has shown promising advancements in addressing global challenges in the agri-food
supply chain. Despite encouraging signs of progress in the sector, the real-world application of this
solution is still in its early stages. This article intends to provide firms, experts, and researchers with
insights into future research directions, implications, and challenges on the topic.

Keywords: digital twin; agri-food supply chain; contributions; integration level; challenges

1. Introduction

In recent decades, various technologies have been implemented to improve the effi-
ciency of the agri-food supply chain. New challenges are arising that require the use of
innovative solutions due to evolving market demands, regulations, and cost-effectiveness.
As a result, increasing efficiency through effective, integrated smart technologies and ap-
proaches like digital twins (DTs) has been actively addressed in recent years. A DT is
a new notion that has emerged alongside the advancement of Industry 4.0. It provides
virtual representations of physical systems during their lifecycle using real-time data from
sensors, thereby enhancing decision-making processes. The DT can represent both living
and non-living objects, as well as processes that can be analyzed and simulated to interfere
with the course of evolution [1]. The use of reliable DTs could be one of the most crucial
techniques for monitoring supply chain processes in a real-time. As a result, the ability
to simulate multiple operations and predict critical situations in advance enables rapid
response and process modification, as well as enhancing resilience.

A DT is a virtual copy of a physical system, including its environment and processes,
that is kept up to date by sharing information between the physical and virtual systems.
It is a tool that has a continuous link between its physical and virtual counterparts (the
twin) [1,2]. It consists of three components: a digital definition of its counterpart derived
from CAD, Product Lifecycle Management (PLM), etc.; operational and experiential data
of its counterpart gathered primarily using Internet of Things (IoT) data and real-time
telemetry; and information model (dashboards, HMIs, etc.) that corresponds to and
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displays the information to facilitate decision-making. A DT is continuously learning and
updating itself by using sensor data or external entities. All aspects of human activity,
including the livestock sector, logistics, the petrochemical industry, and manufacturing, can
profit greatly from DT systems [3]. The design, management, maintenance, development,
and all industrial aspects related to goods, services, equipment, operations, and activities,
as well as human resource management, can all be optimized with the use of these tools.
Moreover, it enables users to remotely manage and control components and systems,
as well as assess and predict resource- and process-related changes through “what if”
analysis. Thus, firms would be able to assess information regarding service quality, new
product development [4], and timely delivery. Furthermore, the DT is used to aid in the
identification of control parameters to meet target KPIs and enhance the existing operation
in terms of increasing energy efficiency and savings, reducing the number of off-target end
products, improving process consistency, and reducing downtimes during maintenance [5].

In the context of the supply chain, the DT is a simulation model of an actual supply
chain that forecasts supply chain dynamics using real-time data and snapshots [6] and
that can send and receive data in both directions in real-time [7]. Supply chain DTs differ
from conventional simulation models in terms of update frequency, powerful analytics
capability, and simulation capability, allowing for deep synchronization and dynamic
interaction between the physical and virtual worlds [8]. Supply chain analysts can use its
output to assess supply chain activity, predict unforeseen events, and implement corrective
measures. It is also used to monitor and forecast real-time changes in orders, supply,
demand, approvals, and so on. As a result, firms can effectively evaluate their supply chain
and adapt to changes more swiftly.

Despite the importance of DTs in improving agri-food supply chain activities, from
the literature review conducted, it has emerged that the scientific community does not have
a common understanding of the concept. As a result, DTs have been presented in a variety
of ways in the articles. In certain cases, distinguishing DTs from digital models and digital
shadows has become more challenging [9–14].

The adoption of DTs in agri-food supply chains is crucial because it enables the early
detection of risks and the quality monitoring of food items using statistical, data-driven, or
physics-based models [15]. Given the rising concerns about monitoring real-time activities,
the agri-food supply chain continues to struggle with assuring traceability.

Despite promising advances in the field, DTs are still in their early stages of use in
agri-food supply chains [16–18]. This is due to issues such as education (which causes
management change and knowledge transfer), accurate representation, data quality, costs,
intellectual property protection (data ownership concerns, identity assurance methods, and
user access control), digital security, and interoperability [19], as well as ethical concerns
and potential societal and safety consequences [1].

Currently, DT applications are more focused on sectors such as the manufacturing,
construction, automotive, and aerospace industries [3]. Only a few studies have focused
on DT applications in food and agriculture. In this case, there is an initial trend toward
the implementation of DTs, and more clarity and insights are needed for the scientific
community and industries interested in the implementation of this technology. To the
best of our knowledge, despite being a hot topic that has caught the interest of many
businesses and academics, DT implementation in the agri-food supply chain is still not well
investigated, and no detailed study analyzing the current state of the art has been found. In
particular, the benefits, types, levels of integration, key aspects, implementation processes,
and challenges related to the adoption of DTs in the agri-food supply chain remain unclear.
Therefore, this study aims to provide a first contribution to the topic by responding to the
following research questions (RQs): how does the use of DT applications contribute to the
agri-food supply chain? (RQ1); what are the key elements of implementing a DT? (RQ2);
what types and levels of integration exist within the DT in the agri-food supply chain?
(RQ3); what are the steps for implementation? (RQ4); and how challenging is it to adopt
DTs in the agri-food supply chain? (RQ5).
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The remaining sections are arranged as follows: the background is described in
Section 2, and the method used in the study is described in Section 3. The fourth section
of the paper goes into detail about the descriptive analysis and discussion of research
questions. Finally, the summary, implications, and limitations of the study are stated
in Section 5.

2. Theoretical Background
2.1. Challenges in the Agri-Food Supply Chain

The agri-food supply chain is a complex network of stakeholders who share common
goals such as ensuring food quality, food security, food safety, and sustainability. It is subject
to greater uncertainty and risk than other supply chains, raising serious issues concerning
its impact on the environment, society, and the economy [20]. Additionally, unprecedented
occurrences such as the COVID-19 pandemic and Ukraine’s prolonged war, as well as
economic sanctions, have highlighted the vulnerabilities of global supply networks [21,22].
These factors can result in problems related to unexpected delays, cost management,
collaboration, data synchronization, rising freight charges, demand forecasting, digital
transformation, port congestion, and the perishable nature of products [23].

The agri-food supply chain is one of the sectors that use advanced tools to evolve into a
data-driven, intelligent, agile, and autonomously connected system [4]. Recent technology
breakthroughs in cloud computing, IoT, big data, blockchain, robotics, and AI provide
smart connected systems [20], allowing for the automation of this industry. Automation
approaches are essential for developing supply chain DTs, which can lead to scalable and
sustainable growth in the industry.

2.2. Supply Chain DTs

A DT is a dynamic, real-time depiction of the different agents in the supply chain net-
work that forecasts supply chain dynamics using real-time data and snapshots. In logistics,
the supply chain DT maps the data, state, relationships, and behavior of the system, mimick-
ing its behavior using dynamic simulation capabilities [21,24]. Four areas of DT application
have been identified in the supply chain, including network level (network management
and transportation), site, manufacturing, warehousing, and cargo handling [24]. Network
management is concerned with managing and monitoring valuable networks, while the
transportation domain includes use cases involving the network-level transportation of
products and commodities. Manufacturing is the most common application area on the site
level, involving tasks related to the production of goods. Warehousing covers applications
related to facilities that store, ship, and return goods and materials.

Supply chain optimization through DTs adds value to businesses by lowering costs
and boosting customer satisfaction [25]. To do this, all aspects of the supply chain must be
upgraded, including material flows, financial flows, and information flows. By simulating
alternative scenarios and identifying risks and opportunities, DTs enable businesses to
optimize levels of inventory, reduce costs, enhance collaborations, and improve supply
chain efficiency [26,27]. Additionally, supply chain management based on DTs does not
require physical proximity, meaning that actual product movement from source to the
consumer is no longer dependent on the location of the parties performing control and
collaboration [28].

DTs are becoming increasingly popular in the agri-food supply chain due to their
benefits, such as improved product quality, resource utilization, maintenance, produc-
tion planning, reduced losses, improved logistics, energy savings, and increased visi-
bility [18,19,22,29–31]. They enable supply chain actors to control demand, understand
demand patterns, monitor food quality and marketability, track goods during transporta-
tion, ensure traceability, and monitor environmental conditions [26,32,33]. In agriculture,
the use of such tools can provide information on fertilizers, chemicals, seeds, irrigation
management techniques, environmental protection, pests, climate, crop monitoring man-
agement solutions, market demands, and business changes [34]. In general, DTs in the
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agri-food supply chain provide simulation and optimization, livestock tracking and health
management [2,35–37], collaborative planning and collaboration [8], crop monitoring and
management [38,39], supply chain visibility and traceability [40,41], and predictive analyt-
ics and decision support [42] to help farmers and supply chain managers identify patterns
and generate actionable insights.

3. Methodology

This study used a systematic literature review (SLR), which uses a list of peer-reviewed
research to identify, evaluate, and synthesize ideas using strict and well-defined criteria.
SLR seeks to address RQs, test hypotheses, and theories, or produce new arguments [43].
SLR was chosen for this study because of its ability to reduce bias and improve the accuracy
of exploring and analyzing related studies. Thus, the methodology ensures a detailed
analysis of relevant works, thereby offering a key foundation for the evolution of traceable
information.

3.1. Data Sources and Keywords Definition

In this review, the Scopus and Web of Science databases have been used as a data
source with the keywords (“digital twin” OR “digital model” OR “digital shadow” OR
“simulation model”) AND (“post-harvest” OR “agri food” OR “agrifood” OR “agri-food”).
Because many publications on this topic have been published without consistent use of
terms, the search was carried out with considerable care, using a wide range of keyword
combinations. When choosing keywords, several elements related to digitization in the
agriculture and food supply chain were considered.

Since this review aims to investigate how DTs have been used in recent years in the
agri-food supply chain, the search includes published papers from 1 January 2019 to 20
August 2022. After eliminating duplicates, the authors evaluated each article to determine
whether it met the inclusion criteria.

3.2. Screening and Eligibility Check

Only works that have been peer-reviewed and published in journals, conferences, and
book chapters were considered during the preliminary screening stage. All the articles
collected from the two databases (Scopus and Web of Science) were checked for duplication
using the reference management tool (Mendeley), followed by reading the abstracts and
full texts of the selected articles.

The final screening and eligibility assessment were done based on the following
criteria.

Screening Exclusion Criteria (SEC):

• SEC1—Is it a peer-reviewed journal article, a book chapter, a review, or a conference
paper?

• SEC2—Does the document illustrate the use of DTs in the agri-food supply chain?

Eligibility Exclusion Criteria (EEC):

• EEC1—Is the full document available for reading?
• EEC2—Does the paper discuss digital models, digital shadows, or DTs in the agri-food

supply chain?
• EEC3—Does the paper answer at least one of the research questions that have already

been set?

4. Analysis and Discussion
4.1. Descriptive Analysis of Selected Studies

Following the initial screening and checks to ensure eligibility, 50 papers were selected
for further analysis (Figure 1). This descriptive analysis began by examining the current
trend of research development in the agri-food supply chain.
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In total, 66% of all contributions are in the form of articles published in peer-reviewed
journals. The remaining documents are review articles (6%), conference papers (26%), and
book chapters (2%), as shown in Figure 3.
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The search conducted on Scopus and Web of Science revealed that the publications
drew their data from a total of 36 different journals. The International Journal of Production
Research got the most citations (229), followed by the IEEE Transactions on Industrial
Informatics with 103 citations, Animal Production Science with 51 citations, and the Journal
of Resources, Conservation, and Recycling with 51 citations each (Figure 4).
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The United States contributed 16.7% of the studies that were conducted on the ap-
plication of DTs in the agri-food supply chain. This was followed by Switzerland, which
contributed 15.6% of the studies, and China, which contributed 6.1% of the publications
(Figure 5).
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This analysis demonstrates the increasing interest among researchers from all over the
world. In the coming years, there may be an increase in the number of publications that
explore the contexts in which DTs might be leveraged in the agri-food supply chain due to
the increasing need to digitalize the sector.

4.2. Discussion of Results with Respect to the Research Questions

Based on the framework shown in Figure 6, this section highlights recent scientific
studies on DT applications in the agri-food supply chain, with an emphasis on the benefits
(RQ1), key aspects of implementation processes (RQ2), types, integration levels (RQ3),
implementation steps (RQ4), and challenges (RQ5).

4.2.1. Contributions of DTs to the Agri-Food Supply Chain (RQ1)

Several researchers contend that the adoption of digital technology had a significant
impact on the supply chain’s visibility, and the monitoring of processes [19,22,29–31]. Visi-
bility is transparency in real-time over the entire transport network, including information
on available capacity, interruptions, and operational status [7].

Due to the short shelf life of many agri-food products in the supply chain, excellent
forecasting and monitoring tools are needed to eliminate the mismatch between short-
ages and surpluses [26]. A DT continuously controls demand, can better comprehend
demand patterns, and allows for the connection of sensor data in a real-time to monitor
the quality of food and marketability [44]. Furthermore, it has significant potential for use
in determining food quality and the design of personalized foods [16,30]. Retailers might
use this tool to assess how the temperature difference between the packhouse and their
store impacts the overall quality of their products [45,46]. Similarly, the use of DTs for
tracking goods, traceability, and monitoring the environmental conditions, weight loss, and
overall quality loss in the postharvest supply chain has also attracted the interest of the
food industry [32,33,47]. This would enhance system integration and product or system
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visibility and knowledge, as well as help predictive capabilities, perform scenario analysis,
and continuous improvement. Table 1 summarizes case studies of agri-food DTs.
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Table 1. Identified use cases of agri-food supply chain DTs.

Application Area Implementation Purpose of DT References

Transportation and storage of fruit To provide insights regarding the thermophysical
behavior of fruit [48]

Food retail supply chains To enhance end-to-end visibility and resilient management of
demand, inventory, and capacity [22]

Postharvest supply chains To provide insight with actionable data and aid in detecting and
predicting supply chain issues [15]

Refrigerated transport and cold storage To optimize the cooling process for a variety of fruits and
vegetables with complex shapes and compositions [46]

Cold chain For cold chain optimizations in the design process [45]

Food industry To enhance food quality and traceability, and design
personalized foods [16]

Refrigerated supply chain For monitoring food quality and marketability [44]
Fruit retail For monitoring the quality of fruit during storage [31]
Food supply chain To replicate the dynamic evolution of a system over time [49]
Agriculture To collect and analyze fruiting body growth in farming [50]
Meat and livestock To replicate the value chain [51]
Smart farm To enhance farm management [52]

Food processing plant To enhance pasteurization and predict processing conditions in
beverage processing [53,54]

Recently, agricultural sectors such as controlled environment agriculture, open-field
agriculture, and animal farming have started using DTs [48,55,56]. As the next phase of
the digitization paradigm, DT technologies can help farmers by enabling continuous and



Logistics 2023, 7, 33 9 of 17

real-time monitoring of the physical world (the farm) and updating the status of the virtual
environment [57]. Digital farming methods can supply information regarding the use of
fertilizers, chemicals, seeds, irrigation management techniques, environmental protection,
pests, climate, crop monitoring management solutions, market demands, and business
changes [34]. In addition, it can be used to monitor greenhouse activity and predict crop
growth [1]. Besides this, these systems allow growers to monitor the health of their crops
and receive real-time notifications regarding pests, diseases, and climate change. This
helps farms decide what to do with the actual crop and how to use fertilizers, as well as
determine the effects of these activities.

4.2.2. Key Elements in DT Implementation (RQ2)

More broadly, the top five essential components of DTs have been identified in physical
entities, virtual entities, service platforms, data models, and information links [16,58]. The
identification of physical entities is the first essential component of DT implementation.
The physical entity is a relative term that refers to the actual product or system that a
virtual DT mimics in the real world. This may include “vehicle”, “component”, “product”,
“system”, “artifact”, etc. For instance, in the agri-food supply chain, it is common to find
the DTs of fruits, farms, and supply chain networks. To build a virtual entity, one must
create a digital model with the same appearance, properties, behaviors, and rules as the
real entity. In addition, service platforms are essential components for the execution of
models. Additionally, the virtual entity needs to have access to cloud applications, data,
and knowledge for it to work properly. In the supply chain DT development, experts are
increasingly seeking real-time data such as demographic data collected from various supply
chain participants or stakeholders that can be used to get information regarding the location
of truck routes, fulfillment centers, retail outlets, consumers, etc., to better understand
logistics. These data can be directly entered into databases like the Enterprise Resource
Planning (ERP) database and the production system to build a DT with a simulation
tool [59]. Furthermore, DTs can utilize data from transportation management systems
(TMS) and customer relationship management systems (CMS) [7]. It is also possible to
combine internal data from the systems of the actors with external data sources (e.g.,
weather, traffic, competitors’ prices). These lay the groundwork for the DTs of the supply
chain to construct a model that is as realistic and accurate as possible to conduct analysis
and simulations based on high data quality. Smart analysis and the quality, quantity,
and integration of data are fundamental requirements for the optimal usage of supply
chain DTs. In addition, basic requirements for supply chain DT adoption include visibility
and transparency, update frequency, data collection, data analysis, simulation capabilities,
decision support capabilities for planning, and the ability to handle disruptions.

4.2.3. Types and Levels of DT Integration (RQ3)

In the agri-food supply chain, DT models can be statistical, data-driven, or physics-
based (mechanistic) [15,44,45,47,55]. Multiphysics modeling and simulation are used in
physics-based approaches to model and simulate the relevant physical, biochemical, micro-
biological, and physiological processes, including the CAD geometry of the fruit, material
property data, and the physical model’s beginning and boundary conditions [45,46,48].
This is accomplished by employing a mathematical definition of the relevant biological
processes, such as biochemical processes, that affect fruit quality parameters [48]. In the
case of a data-driven model, AI techniques, including machine learning, are utilized for
model building, calibration, verification, and validation. Machine learning models can be
trained in a variety of ways, including through supervised and unsupervised learning. The
model training data could include horticultural-product storage conditions as well as the
measured biological response of fresh horticulture products over time.

Recent applications of DTs in the agri-food supply chain, mostly in the fruit supply
chain, have emphasized physics-based DTs [15,16,29,30,44,45,47,48,55,60,61]. Because of
advancements in prediction accuracy and computational performance, the adoption of a
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physics-based DT is growing rapidly [5]. Using mechanistic models (e.g., heat and mass
transfer) and kinetic models (quality deterioration), a DT can forecast when food will
change its quality over time, including during storage and shipment. With such models,
more emphasis has been placed on monitoring fresh fruits and vegetables, contributing to
product loss, particularly during transcontinental shipments.

In comparison to statistical and data-driven DTs, which determine how fresh horticul-
tural products end up losing their quality by looking for patterns in the data, physics-based
twins provide a better description of the physiological, biochemical, microbiological, and
physiological processes that are taking place, which explains why this quality loss oc-
curs [15]. In response to specific temperatures and other environmental conditions, they
can assist horticulture items in communicating their history as they move from the field to
the consumer. By connecting real-world products to sensors, DTs help determine how the
quality of products changes over time. Similarly, machine learning-based techniques are
used to build biophysical DTs comprising process and raw material data to replicate a food
product and process [16].

The scientific community has described DTs in a variety of ways in the literature. In
some circumstances, it has become more difficult to distinguish DTs from digital models
and digital shadows [9–14]. To precisely define a digital model, there must be no automated
data exchange between the physical and virtual twins. These kinds of models are used by
the industry to determine how a change to a digital entity’s counterpart might be affected
if implemented. A digital shadow is a unidirectional exchange between a physical and a
digital object—not vice versa, whereby a change in a physical object creates a change in its
digital counterpart. In this instance, data flow is automatic from the physical asset to its
digital replica, but manual from the digital asset to its physical counterpart. It is typically
employed for data collection and subsequent analysis [29]. The model is referred to as a
“DT” if data flow between a physical object and a digital entity is entirely integrated in
both directions. In other words, any modifications made to the digital item are mirrored
instantaneously in its physical counterpart, and vice versa. The autonomy of the model
is the primary distinction between digital shadows and DTs [62]. In the DT, interventions
could be automatic, whereas, in the digital shadow, they must be deliberate (human-
supported) decisions. A digital model (simulation) depicts what could happen to an item
or supply chain system, but a DT depicts what is already happening. Table 2 presents the
category of selected papers based on the level of integration.

Table 2. Category of selected papers based on the level of integration.

Level of Integration References

Digital model (simulation) [46–57]
Digital shadow [56,63–67]

DT [15,16,22,30,31,44–46,48–55,68,69]

4.2.4. Implementation Steps (RQ4)

The implementation of a DT entails several steps, including process mapping, deter-
mination of data sources, selection of technology, modeling, synchronizing into real-time,
simulation, optimization, and analysis, as well as scaling and enhancing options [26]
(Figure 7).

Compared to implementation in manufacturing or a piece of machinery, a supply chain
DT requires the modeling of the entire supply chain supported by real-time or near-real-time
operational parameters [70]. Various modeling methods can be used to manage the growing
complexity and unpredictability of the agri-food supply chain. In the selected papers,
modeling techniques such as agent-based modeling [71,72], system [63,73–75] discrete
event simulation [30,56,66,76–80], and hybrid simulation [30,81,82] are commonly used.
The application of these methods will provide answers to planning-related questions, such
as the amount to be purchased, delivered, or produced. During the modeling process, the
DT should be constructed with long-term plans in mind. Moreover, the framework should
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enable the modeling and analysis of alternative processes, asset performance optimization,
and event forecasting.
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Connecting to real-time data is yet another vital step for the agri-food supply chain’s
DT deployment. Although the time scale is goal-oriented, real-time data are essential for
the use of DTs [26]. For instance, distributed control systems, predictive control models,
online optimization, and process scheduling use seconds, minutes, hours, days, or weeks as
time scales. Sensors are frequently linked to the IoT, which is unquestionably a requirement
for DTs since real-time data collection is made possible by wireless connectivity between
many objects located in the same or distinct physical areas. Sensor technology is available to
monitor the agri-food supply chain; however, it is still challenging to apply in commercial
supply chains [45]. Various types of sensors have been installed in the agri-food supply
chain to date to execute DT scenarios. In the case of post-harvest activities, for instance,
temperature and gas sensors are reported to be used to monitor the status of a fresh
product during the logistics and storage phases [15,45,46,48,55,56,83], as well as to depict
inventory and grain quality as it flows across a plant [30]. Citrus shipments also employ
sensors for temperature measurements [44]. Infrared thermal cameras are also proven to
be an effective tool for detecting physiological changes in fruits [31,84–88]. In the case of
DT-based smart farms, several sensors can be utilized to monitor the plant’s nutrients,
growth, and environmental conditions [52]. Among the sensors are environmental sensors
that measure temperature, chemicals, light humidity, air velocity, lighting, ventilation,
and movement, which allows for reporting their behavior, health, and condition [89].
Temperature and pressure sensors have been indicated for use in the proposed DT models
in food processing [53,54]. Sensors and indicators time-temperature indicators, freshness
indicators, gas indicators, and integrity indicators) are used in smart packaging to detect
biological, chemical, or gaseous changes in packaged fresh produce [90]. Sensor-based
RFID tags can detect corresponding attributes and chemical changes in fresh fruits and
vegetables throughout the post-harvest supply chain [32].

Another key stage in developing a DT for the supply chain is the capacity to simulate,
optimize, and analyze. Possibilities for applying prescriptive, predictive, and advanced an-
alytics to influence decision-making through digital supply chain twins vary from strategic
to operational [89]. Once integrated with models, operations, and assets can be simulated
or optimized to obtain insights, test possible scenarios, or adapt to disturbances. The
outcomes should be communicated throughout the enterprise to inform plans of action at
all levels. The simulation module offered by cloud computing can predict future conditions
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of the real-world supply chain by applying different parameters to its DT. The DT’s outputs
could help optimize, monitor, or forecast supply chain behavior [30,45,48,52,55].

Ultimately, DTs should be scalable across enterprises to enhance end-to-end visibility
across supply chains. They can even connect with suppliers and consumers outside of the
enterprise. More real-time data points from internal sources, third parties, and industry
groups can enhance the DT’s performance.

4.2.5. Challenges for the DT Implementation (RQ5)

The adoption of DTs in the agri-food industry remains difficult [91]. For instance, de-
ploying IoT-based agricultural systems still faces significant challenges due to the demand
for continuous power supplies to operate. Although alternative energy sources such as
solar and wind can be used to meet the energy demand, this will greatly increase the cost.
In the countryside and village areas, the lack of a reliable internet connection is another
challenge. The connection needs to have enough broadband to deliver data as needed by
the service. In addition, farmers need instruction in using basic computers and tablets, as
well as knowledge of how the IoT works.

In practice, mapping and obtaining a detailed real-time snapshot of the supply chain is
challenging. The simultaneous validation of all model-output parameters is an additional
barrier to the use of DTs in supply chain applications [44]. Moreover, the stakeholders in the
cold chain, such as retailers, require specific evidence to demonstrate the benefits in shelf life
that may be obtained with certain digital solutions. Unfortunately, pilot studies to derive
such validations are sometimes costly and time-consuming. Further implementation issues
include a lack of detailed methodology and standards, a lack of clear data governance,
and difficulties gathering and storing massive datasets [20,92–94]. For instance, the lack of
modeling standards for DT can lead to compatibility issues during the integration of models
created separately [95]. Developing a data acquisition system, synchronization problems,
the modeling of a complex system, lack of awareness, companies’ resistance to adopting
the technology [96], as well as difficulties in developing, understanding, controlling, and
simulating real-time changes in the system, all pose challenges.

Combining multidisciplinary knowledge and providing enough data are the two most
difficult aspects of implementing DTs [16]. Similarly, education (which causes management
changes and knowledge transfers), accurate representation, data quality, costs, IP protection
(data ownership concerns, identity assurance procedures, and user access control), digital
security, and interoperability [19,97] can be considered obstacles to the implementation.
Moreover, in agriculture, the implementation of the DT is hindered due to ethical concerns,
as well as potential societal and safety consequences [1]. Due to product complexity and
operational challenges, the deployment of DTs at the industry level remains difficult [5,47].
However, some recent studies show promising signs of progress [17,18,29].

5. Conclusions

This study explored the state of the art in the implementation of DTs in the agri-food
supply chain and provides insight into the roles of the DT in improving supply chain
performance, optimizing resources, facilitating collaboration, and sharing information. The
benefits, types, integration levels, key elements, and implementation steps of a DT in the
reviewed area, as well as the challenges to its implementation, were discussed. In this
regard, DTs can improve efficiency and sustainability in the agri-food supply chain by
providing visibility, minimizing bottlenecks, planning for contingencies, and improving
existing processes and resources. However, the scientific community lacks a common
comprehension of the DT concept, making it impossible to distinguish between a DT,
a digital model, and a digital shadow. Furthermore, research advances and real-world
implementations of DTs in agri-food are still in the early stages of development.

The findings of this study are intended to help researchers, policymakers, and the
agri-food sector understand the potential and future possibilities of using DTs, including
meeting sustainability goals. As a result, the current study could give researchers a clear
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understanding of the benefits of DTs in supporting the agri-food industry, as well as details
on the current pattern of DT utilization. This research will further assist academics in
identifying the capabilities of the solution along with the requirements during the DT
development and implementation phases. Researchers and supply chain actors would
benefit the most from an in-depth analysis of DTs to gain a common awareness of this
emerging tool.

The literature search was conducted using the Web of Science and Scopus databases,
which are commonly used data sources for literature analysis. Despite their large citations,
these databases have limitations in terms of document availability and coverage. Many
reports regarding the progress of DT implementation by the companies are documented
in white papers and other publications that are not included in both databases. Despite
our best efforts to assure inclusiveness, our study is limited to publications that have
undergone peer review. So, additional related work that has been published in other
databases or languages other than English might be missed during our analysis. As a
result, scholars interested in DT applications in the supply chain could consult additional
sources. Researchers might also focus on evaluating the solution’s effectiveness in terms of
sustainability and feasibility, which will boost confidence in industries within the agri-food
supply chain to incorporate this technology into their business processes. Furthermore,
studies might be directed toward the development of tools and standards for the use of DTs
to ease implementation efforts. Future research should focus on practical applications and
proving the technical and economic benefits of DTs, as well as exploring their deployment
and operation from a technical and economic standpoint.
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