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Abstract: Background: The classical mathematical formulation of the vendor-managed inventory
(VMI) model assumes an infinite planning horizon, and consequently, the solution derived ignored
the impact of the first cycle. The classical formulation is associated with another implicit assumption
that input parameters remain static indefinitely. Methods: This paper develops two mathematical
models for VMI for a joint economic lot-sizing (JELS) policy. Each model considers investment in
green production, energy used for keeping items in storage, and carbon emissions from production,
storage, and transportation activities under the carbon cap-and-trade policy. The first model underlies
the first cycle, while the second underlies subsequent cycles. Results: The re-start-up production time
for subsequent cycles commences only at the time required to produce and replenish the first lot,
which implies further cost reduction. Mathematical formulations are perceived as important both
for academics and practitioners. For example, the base model of the first cycle (subsequent cycles)
generates an optimal produced quantity with 18.42% (4.35%) less total system cost when compared
with the pest scenario in favor of the existing literature. Moreover, such a percentage of total system
cost reduction increases as the production rate increases. Further, the proposed models not only
produce better results but also offer the opportunity to adjust the input parameters for subsequent
cycles, where each cycle is independent from the previous one. Conclusions: The emissions generated
by the system are very much related to the demand rate and the amount of investment in green
production. Illustrative examples, special cases, model overview, and managerial insights are given.
The discussion related to the contribution of the proposed model, the concluding remarks, and further
research are also provided. The proposed model rectifies the base model adopted by the existing
literature, which can be further extended to be implemented in several interesting further inquiries
related to JELS inventory mathematical modeling.

Keywords: vendor-buyer model; first-time interval; greenhouse gas emissions; cap-and-trade;
mixed-transportation policy; displaced re-start-up production time

1. Introduction
1.1. Research Motivation

In this section, some issues related to the classical mathematical formulation of the
vendor-managed inventory (VMI) model for a joint economic lot-sizing (JELS) policy are
addressed with appropriate justifications. Such issues establish the necessary background
and motivation to position this study in the existing literature.

Although the concept of the VMI model for a JELS policy is quite mature, the mathe-
matical modeling of such a policy may still have room for further contributions. In more
detail, the classical formulation of the joint VMI model assumes an infinite planning hori-
zon, and consequently, the solution derived ignored the impact of the first cycle. This can
be justified by the fact that the initial inventory level at the beginning of the first cycle at
the buyer’s site is zero. Figures 1 and 2 represent, respectively, the inventory status of the
classical joint model for the vendor and the buyer for any given cycle. As can be seen from
Figure 2, the initial on-hand inventory in the buyer’s warehouse in the first-time interval
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(shaded in red) constitutes the same level as that of the lot size that should be delivered
to the buyer by the end of the production process. However, the fact remains that the
production process has not yet started at the vendor’s site, and consequently, this quantity
has not yet been produced rather than delivered.

Figure 1. Inventory status of the classical joint model for the vendor in any given cycle.

Figure 2. Inventory status of the classical joint model for the buyer in any given cycle.

The result of such a mathematical formulation that assumes an infinite planning
horizon implies that the vendor starts the production process while the initial on-hand
inventory of the buyer is equal to that of subsequent cycles. That said, for any given cycle,
including the first cycle, the initial on-hand inventory of the buyer at the beginning of the
production process equals that of the last lot size that should be delivered by the end of that
same cycle. This implies that the purpose of the first lot in the first cycle, which has not yet
been produced rather than delivered, is to provide a complement lot size to guarantee that
the solution derived for subsequent cycles holds, i.e., to accumulate the desired inventory.

Such a formulation also offers a production policy that generates an equal quantity that
is associated with a fixed multiplier in all cycles, and consequently, the production process
is static in all cycles, including the first-time interval. That is, the classical formulation of the
joint vendor-buyer inventory model is associated with another implicit assumption: that
input parameters remain static indefinitely. This can be justified by the fact that the optimal
produced quantity and its associated multiplier assume that the system re-starts-up the
production process while the initial on-hand inventory at the buyer’s site represents the
quantity of the last lot produced in the previous cycle. In practice, however, there exist a
plethora of endogenous and/or exogenous factors that may force the decision-maker to
adjust input parameters. Such adjustment may be desirable due to the adaptation of a new
policy due to newly acquired knowledge, or resulting from price fluctuations, or because
of the dynamic nature of demand and production rates. Moreover, machine maintenance
scheduling activities or periodic review applications may raise such an adjustment as
well. Therefore, if the decision-maker would like to change the current policy, then the
suggested solution obtained by the classical approach cannot be used as the right policy
for subsequent cycles. This is so because the initial on-hand inventory at the buyer’s site
(the quantity of the last lot produced in the previous cycle) may not be equal to that, as the
classical approach would then suggest for subsequent lots. The abovementioned issues
have been discussed in detail in Alamri [1,2].
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In this paper, a vendor-buyer inventory model for a JELS policy is presented, consid-
ering the abovementioned issues. Accordingly, two mathematical models are developed
for VMI. The first model underlies the first cycle, while the second underlies subsequent
cycles. Unlike the classical formulation, the proposed models guarantee that the optimal
produced quantity together with its associated multiplier are independent for each cycle,
i.e., each cycle is independent from the previous one.

1.2. Research Background

The impact of global warming and environmental change resulting from the dramatic
increase in carbon emissions have forced governments to establish regulations concerning
carbon emission reduction. Such regulations may include carbon cap-and-trade, carbon
tax, carbon caps, or carbon offset strategies [3]. These regulations were established and are
continuously being modified to achieve the goals and targets emphasized by the United
Nations (UN) 2030 Agenda for Sustainable Development Goals (SDGs). In response to the
regulations designed by the UN and the European Union (EU), all contributing countries
committed to reducing GHG emissions. For example, Mexico has a goal to decrease GHG
emissions by 50% by 2050 compared to the plan that was established in 2000. Saudi Arabia,
in its 2030 Vision, plans to dramatically reduce its current carbon emissions, aiming to
reach zero carbon dioxide (CO2) emissions by 2050. Meanwhile, the rate of increase in
GHG emissions over the last decade is almost twice that of the three previous decades [4].
In this regard, transportation activities in the U.S. account for roughly 29% of total GHG
emissions, which makes it the largest sector that contributes to GHG emissions [5].

One of the main objectives of supply chain management (SCM) is to improve coordina-
tion between supply chain entities to achieve higher performance levels, economic balance,
and effective use of resources. In the traditional two-echelon supply chain that involves
a buyer (retailer) and a vendor (manufacturer), the optimal lot size policy is managed
independently. Therefore, the optimal inventory policy in favor of the vendor may not
be optimal for the buyer, and vice versa. The VMI system emerges as a collaborative rela-
tionship between the vendor and the buyer, where the buyer shares its actual demand and
stock-level information with the vendor. In the VMI system, the vendor makes decisions
to replenish multiple equal or unequal lot sizes to the buyer per time interval. There are
two types of coordination decision-making in SCM: centralized or decentralized [6,7]. In a
centralized coordination scenario, there is a single decision-maker who aims to minimize
or (maximize) the entire chain’s cost or (profit) [8]. The objective is to find a more profitable
joint production and inventory strategy as compared to the one resulting from independent
decision-making. In a decentralized, coordinated scenario, the buyer and the vendor coop-
erate to render the total cost (profit) closer to that achieved by the centralized scenario [8].
In this case, the buyer orders according to its economic order quantity (EOQ) formula, and
the vendor must adjust its production-inventory policy using multiple replenishments of
equal or unequal sizes of this quantity [9]. In a decentralized, uncoordinated scenario, the
buyer and the vendor each optimizes his/her own function.

The classical formulation of VMI models is often based on the Less than Truck Load
(LTL) transportation service. In an LTL service setting, the system incurs a charge payable
per unit of item that is transported, i.e., it does not affect the mathematical formulation.
However, in today’s competitive market, logistics companies offer a variety of options
for more flexible transportation services in terms of quantity and frequency. For example,
in Truck Load (TL) service setting, the system incurs a charge payable per vehicle, i.e.,
the whole vehicle is designated to the system for transportation service [10–12]. From
an economical point of view, it is perhaps more cost-effective if the system is given the
opportunity to combine these two transportation strategies. The integration of a mixed
transportation strategy of TL and LTL service settings into the joint vendor-buyer lot-sizing
model increases the problem’s magnitude and complexity. That said, the decisions are
associated with a positive integer multiplier that represents the number of shipments to
the buyer for each cycle, where each shipment must be transported in a positive integer
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multiplier of TL service and/or a mixed transportation strategy that adopts a positive
integer multiplier of TL service and the remaining quantity of the shipment is transported
via LTL service.

Nowadays, organizations focus on the sustainable development of logistics systems
that emphasize global awareness of climate change. This is conducted by implanting
green technology towards green production, aiming to reduce CO2 emissions in their
supply chain [13,14]. Although green production comprises environmentally friendly
inventions and generates lower emissions, it is more costly when compared with regular
production. The concept of “joint economic lot sizing” (JELS) refers to research related to
joint inventory problems involving vendor and buyer coordination strategies. It has been
introduced by many researchers to refine traditional methods for independent inventory
control [15]. JELS leads to a more profitable joint policy between vendor and buyer by
simultaneously determining optimal delivery lot size, number of deliveries, and batch
production lot [16–18]. Sustainable supply chain cooperation in VMI systems leads to
cost-sharing efficiency due to better planning. This partnership also reduces inventory
costs, increases demand and delivery flexibility, and reduces emissions through information
sharing [19,20].

1.3. Literature Review

The earliest approach to addressing a joint total cost inventory system for vendor and
buyer was introduced by Goyal [21]. This author assumed that the vendor production-
inventory policy is based on a lot-for-lot (LFL) replenishment policy under the assumption
of an instantaneous production rate. Banerjee [15] extended the work of Goyal [21] for a
finite production rate. In a follow-up, Goyal [22] extended the earlier work of Goyal [21] for
the case of (no LFL), i.e., the vendor’s inventory is accumulated, and the buyer obtains the
EOQ in shipments of equal lot sizes. Following the works of Goyal [21] and Banerjee [15],
this line of research is referred to as the “JELS problem”. In VMI systems, the environmental
aspects of carbon emissions are nested inside the economic and social aspects, i.e., the
system of supply chain cooperation becomes more sustainable [23–25]. Wahab et al. [26]
formulated vendor and buyer inventory models assuming emission costs from transporta-
tion activities. Jaber et al. [9] investigated VMI models for a carbon tax and penalties where
the amount of GHG emissions is a function of the production rate. Hua et al. [27] accounted
for carbon footprints when considering carbon emission trading mechanisms. Wangsa [28]
investigated the model under the penalties and incentives mechanism for carbon emis-
sions reduction. Gautam et al. [29] investigated the model, assuming defective items from
production along with waste disposal and investment in inspection, where the carbon
emission is related to transportation. Bazan et al. [30] presented two models that accounted
for energy used for production and GHG emissions from transportation and production
activities. The first model focuses on a classical coordination policy, and the second is
a VMI model with a consignment stock agreement policy. Halat and Hafezalkotob [31]
compared the performance of four different types of carbon regulation for coordinated and
non-coordinated inventory models. Ghosh et al. [32] presented a multi-echelon supply
chain inventory model accounting for emission reduction. The authors evaluated the model
under carbon caps, carbon taxes, and carbon cap-and-trade.

Hariga et al. [33] assessed the impact of carbon emissions from cold items during
transportation and storage activities. Kumar and Uthayakumar [34] investigated the VMI
model for unequal shipments to the buyer by implementing taxes and penalties to reduce
emissions from production. Chen et al. [35] formulated the vendor-buyer model considering
various emissions policies. Saga et al. [36] extended the model of Wangsa [28] for the case
when emissions are associated with supply chain activities. Zanoni et al. [37] considered
the model when the demand rate is a linear function of the selling price subjected to
environmental measures. Huang et al. [38] examined the effect of green technology, carbon
taxes, cap-and-trade, and limited carbon emissions on inventory decisions. Malik and
Kim [39] studied the model accounting for defective items, with the emissions being a
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function of the production rate. Astanti et al. [40] proposed a model that considered defect
and deterioration rates and carbon emissions in terms of CO2 emitted from transportation
and production operations. Turken et al. [41] proposed a multiple buyers-single vendor
inventory model, considering various environmental regulations. The basic joint vendor-
buyer inventory model has been extended in several ways, including but not limited to
equal and unequal shipment policies, imperfect production processes, and inspection
errors [42–55]. For more related research, interested readers are referred to [14,18].

At this point, it is important to note that the above-cited contributions as well as the
other studies in the literature are alike. That is, the classical formulation assumed an infinite
planning horizon in the mathematical modeling of the joint VMI system and ignored the
effect of the first cycle as no items had been produced yet. Therefore, the issues mentioned
in Section 1.1 need to be considered in such mathematical modeling. This may lead to
a more realistic tractability of the impact of the first cycle and ensure that each cycle is
independent of the previous one, which allows for the adjustment of input parameters as a
response to real-life settings. Table 1 below compares this study with some selected articles
that contributed to the joint VMI system.

Table 1. A comparison between this study and some selected previously published articles.

No Authors First
Cycle

Independent
Cycles

Adjustable
Parameters Emissions Carbon Regulations

1 Wahab et al. [26] × × × Transportation Carbon tax

2 Gautam et al. [29] × × × Transportation Carbon tax

3 Hariga et al. [33] × × × Storage, Transportation Carbon tax

4 Bazan et al. [30] × × × Production, Transportation Carbon tax, Penalty

5 Ghosh et al. [32] × × × Production Carbon tax, Carbon cap

6 Zanoni et al. [37] × × × Production Carbon tax, Penalty

7 Konur [11] × × × Transportation Carbon cap

8 Wangsa [28] × × × Production Carbon tax, Penalty

9 Astanti et al. [40] × × × Production, Transportation Carbon tax

10 Saga et al. [36] × × × Production Carbon tax, Penalty

11 Jaber et al. [9] × × × Production Carbon tax, Penalty

12 Bouchery [56] × × × Transportation Carbon tax

13 Malik and Kim. [39] × × × Production Carbon tax

14 Kumar and
Uthayakumar [34] × × × Production Carbon tax, Penalty

15 The proposed model √ √ √ Production,
Transportation, Storage Carbon tax, Carbon cap

2. Research Contribution

In this paper, a vendor-buyer inventory model for a JELS policy is presented. Unlike
the classical formulation of the joint vendor-buyer model, the proposed model consid-
ers the mathematical issues introduced in Section 1.1. Accordingly, two mathematical
models are developed for VMI. The first model underlies the first cycle, while the second
underlies subsequent cycles. Each model accounts for investment in green production,
energy used for keeping items in storage, and carbon emissions from production, storage,
and transportation activities under the carbon cap-and-trade policy. Unlike the classical
formulation, the proposed model guarantees that the optimal produced quantity together
with its associated multiplier are independent for each cycle, i.e., each cycle is independent
from the previous one. The re-start-up production time for subsequent cycles commences
only at the time required to produce and replenish the first lot, which implies further
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cost reduction. That is, it prevents keeping inventory at the vendor’s warehouse for the
unnecessary time associated with the time elapsing for the depletion of the last lot that has
been shipped to the buyer.

A mixed transportation policy of LT and LTL services is considered in the mathe-
matical formulation. In this regard, a solution technique for a mixed-integer nonlinear
programming (MINLP) problem is proposed. The solution technique involves a heuristic
method that reduces the computational effort dramatically by obtaining a global optimal
solution for a joint supply chain network design and inventory management model for
a given product. In particular, the model offers the condition that renders the cost of
transportation by either service is identical, from which the relation of the mixed strat-
egy is derived. Next, another method is proposed to show and prove that ignorance of
the physical transportation cost does not affect the optimal production quantity. Then,
two closed-form formulas that generate the optimal solution for the first and subsequent
cycles are given. Therefore, the proposed model represents the base model, which rectifies
the base model adopted by the existing literature (e.g., Jaber et al. [9]). That is, the proposed
mathematical formulation can be further extended to be implemented in several interesting
further inquiries related to JELS inventory mathematical modeling. This is so because the
base proposed model generates an optimal produced quantity with 18.42% (4.35%) less
total system cost when compared with the pest scenario in favor of the existing literature,
i.e., at a production rate slightly greater than the demand rate. That is, such a percentage of
total system cost reduction increases as the production rate increases. Further, the proposed
model not only produces better results but also offers the opportunity to adjust the input
parameters for subsequent cycles, where each cycle is independent from the previous one.
The remainder of the paper is organized as follows:

The mathematical formulations of the joint model for the first and subsequent cycles
are provided in Section 3. In Section 4, illustrative examples and special cases are given. A
model overview and managerial insights are given in Section 5. The discussion related to
the contribution of the proposed model, the concluding remarks, and further research are
presented in Sections 6 and 7, respectively. The paper closes with Appendices A–C, where
Appendix A provides the holding cost functions for the proposed model and Appendices B
and C provide the solution procedure to obtain the unique and global optimal solution for
the first and subsequent cycles of the joint model, respectively.

3. Formulation of the Joint Model

This section first introduces the notations and assumptions used in this study. In
Section 3.3, the necessary discussion that distinguishes the proposed model from the
existing literature is provided, followed by the CO2 emissions classification associated with
the activities related to the vendor and the buyer. The mathematical formulation of the total cost
functions of both the first and subsequent cycles is given in Sections 3.3.1 and 3.3.2, respectively.

3.1. Notations

Table 2 below, depicts notations that have been used to develop the joint model:

Table 2. List of notations used to develop the joint model.

q1(qs) Order quantity for the first cycle (subsequent cycles)
t1(ts) The time to produce q1(qs) units in the first cycle (subsequent cycles)

tl1 The time elapsed to deliver the first shipment of size q1 in the first cycle
tl The time elapsed to deliver the shipment of size qs, where tl = tl1

T1(Ts) The time to consume q1(qs) units
Ts−1 The time to consume qs−1 units (the last lot that was delivered from the previous cycle)

Ts1(Tss) The time for the first cycle (subsequent cycles)
td The idle time before production re-start-up time for subsequent cycles
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Table 2. Cont.

d Buyer’s demand rate (units/unit time)
Ewb Energy consumed while storing the items in buyer’s warehouse (kWh/unit/unit time)
Ewv Energy consumed while storing the items in vendor’s warehouse (kWh/unit/unit time)
Ee CO2 emissions from electricity (ton CO2/kWh)
p Vendor’s production rate (units/unit time)

Ep CO2 emissions from production (ton CO2/unit)
vt Fixed transportation cost ($/truck)
vc Maximum capacity for the truck (units/truck)
n Number of trucks required to deliver the lot size q1(qs)
ct Fixed transportation cost per unit, where vt

vc
< ct;

Tw Product’s weight (ton/unit)
Tv Distance between the vendor and the buyer (km)
Tf Distance between the freight and the vendor (km)
f Fuel consumption for truckload (liters/km/ton)
fe Fuel consumption for an empty truck (liters/km)

ET CO2 emissions from truck fuel (ton CO2/liter)
vv Variable transportation cost related to fuel consumption ($/liter)
Es The total amount of CO2 emissions generated by the system (ton CO2/unit)
Ec CO2 emissions cap (ton CO2)
Eb Buyer’s CO2 emissions tax ($/ton CO2)
Ev Vendor’s CO2 emissions tax ($/ton CO2)

EvT Vendor’s CO2 emissions tax for transportation ($/ton CO2)
cv Unit production cost
Sv Vendor’s set-up cost
Sb Buyer’s ordering cost
hv Vendor’s holding cost
hb Buyer’s holding cost
Ig Vendor’s investment cost that renders an item green

Epg CO2 emissions from production subject to investment (ton CO2/unit), where Epg = Epe
−Ig

d

λ Vendor’s coordination multiplier

3.2. Assumptions

The following assumptions have been used to develop the joint model:

1. A single item is manufactured at a rate p (units/unit time).
2. The demand is consumed at rate d (units/unit time).
3. No capacity restrictions are assumed, i.e., both the vendor and buyer have unlimited

storage capacity.
4. Any replenishment, q1(qs) ordered at the reorder point, tl reaches the buyer’s ware-

house just prior to the end of that period. However, in the first period of the first
cycle, where no items have been manufactured yet, i.e., the buyer’s inventory is zero,
the first replenishment, q1 ordered at the beginning of the first period delivers once
it has been produced, from which it will arrive to the buyer’s warehouse after a
transportation time, tl1. In this case, shortages are allowed and fully backordered by
time t1 + tl1.

5. In the first cycle, p(T1 − tl1) ≥ 2dT1, which guarantees that the second lot will reach
the buyer’s warehouse no later than time T1.

3.3. The Mathematical Model

Figures 3–6 compare this work with the existing literature presented in Figures 1 and 2,
Section 1.1. Figures 3 and 4 represent, respectively, the inventory status of the proposed joint
model for the vendor and the buyer for the first cycle, whereas Figures 5 and 6 represent,
respectively, the inventory status of the proposed joint model for the vendor and the buyer
for subsequent cycles. In the proposed joint model, production commences at the beginning
of the first cycle at a rate p until time t1, where q1 units have been produced (Figure 3). At
this time, i.e., t1, this amount is delivered to the buyer to fully satisfy backordered demand
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that has been accumulated during production period t1 and transportation period tl1, i.e.,
demand that covers the time t1 + tl1 and to satisfy demand until time T1 (Figure 4).

Figure 3. Inventory status of the joint model for the vendor in the first cycle.

Figure 4. Inventory status of the joint model for the buyer in the first cycle Ts1.

Figure 5. Inventory status of the joint model for the vendor in subsequent cycles.

Figure 6. Inventory status of the joint model for the buyer in subsequent cycles Tss.

Note that during the first cycle Ts1, Figures 3 and 4 indicate that the vendor and
the buyer incur a holding cost that applies for λ lots, since by time T1, the vendor must
then have delivered two lots. That said, the first lot is delivered at time t1, which arrives
at the buyer at time t1 + tl1, whereas the second lot arrives just before the first lot is
consumed, i.e., at time T1. It is worth noting here that such modeling tractability would
clear any discrepancy resulting from Figures 1 and 2. More specifically, in Figure 4, the
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initial inventory level at the beginning of the first cycle is zero, whereas in Figure 6, the
inventory level at the beginning of a cycle represents the quantity of the last lot produced
in the previous cycle. Similarly, in Figure 3, the vendor delivers the first lot at time t1. In
Figures 3 and 5, the last lot produced in the first (subsequent) cycle satisfies the demand for
the last period (time T1 (Ts) in Figures 4 and 6). However, and for illustrative purposes only,
it constitutes the first lot (for time Ts−1 in Figure 6) in the buyer warehouse in the subsequent
cycles, though its associated costs are included in the previous cycle. For holding cost
reduction, the re-start-up production time is displaced until time td = Ts−1 − ts − tl to
allow consuming the last lot that has been replenished to the buyer in the previous cycle.
In this case, ts = qs/p, which satisfies the demand for the buyer during the period Ts.

From a mathematical point of view, the last lot produced in the previous cycle consti-
tutes the last lot replenished to the buyer in that same previous cycle. This implies that the
costs associated with such a lot should be included in the total cost function of the previous
cycle. Moreover, the fact that the inventory fluctuation in the first cycle differs from that
in the second cycle would suggest a distinct optimal lot size for the second cycle. From a
mathematical and practical point of view, it is often the case that the decision-maker may
face a situation that requires input parameters to be adjusted to be compatible with a new
policy. Unlike previous works, the lot size produced in a cycle may differ from previous
lots. This entails a production policy that generates equal or unequal quantities that are
associated with a fixed multiplier for each distinct cycle, and consequently, the production
process is dynamic in all cycles, including the first-time interval. As can be seen, Figures 3–6
guarantee that the quantity produced for each lot together with its associated multiplier
are independent for each cycle, i.e., they are independent from previous cycles. Moreover,
Figures 3–6 indicate that both the vendor and the buyer incur a holding cost that applies to
λ lots. Note that in Figure 6, the production, holding, and transportation costs of the first
lot (the last lot that has been produced in the previous cycle) are considered for that same
previous cycle but have been ignored in cycle Tss. Similarly, in Figure 6, the ordering and
holding costs of the first lot that has been produced in the previous cycle have been ignored
in cycle Tss; however, are considered for that same previous cycle. Figure 7 depicts the CO2
emissions associated with the activities in the vendor and buyer warehouses. The direct
emission level related to the buyer occurs due to keeping items in storage, whereas the
direct emission level related to the vendor is influenced by producing the required quantity
as well as keeping such quantity in storage. The direct emission level related to the vendor
also includes the weight of the items delivered to the buyer. The indirect emission level
related to the vendor comprises the number of shipments, fuel consumption, the distance
between the vendor and the freight, and the distance between the vendor and the buyer.

Figure 7. Classification of CO2 emissions of the joint model for the vendor and the buyer.
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3.3.1. Total Cost Function for the First Cycle under a Centralized Scenario

The inventory level of the first lot depicted in Figure 3 for the vendor is at its maximum,
i.e., q1 at time t1 = q1/p, which satisfies demand and shortages.

At time t1, a lot of size q1 units should be replenished to the buyer in a duration of
transportation time tl1, to satisfy demand and shortages.

This quantity is given by:
q1 = dT1,

At time t1 + tl1, d(t1 + tl1) units have been backordered and consequently, the max-
imum inventory level is (T1 − t1 − tl1)d units (Figure 4). Therefore, the time required to
consume the first lot is given by:

(T1 − t1 − tl1) =
q1

d
− q1

p
− tl1 (1)

As can be seen, Figure 4 reflects the fact that the buyer’s initial inventory level at
the beginning of the first cycle is zero, whereas Figure 3 reflects the fact that the last lot
produced in the first cycle constitutes the last lot replenished to the buyer in the first cycle
as well. Therefore, we have

Ts1 = λT1 =
λq1

d
. (2)

Remark 1. The vendor may use a combination of LTL and TL services to arrange the shipment of
the order quantity.

Let ∆ = vt
ct

< vc denotes a quantity for which the cost of transportation by either

service is identical and δ =
(

q1
vc
− n

)
refers to the proportion of vehicle capacity that needs

to be assigned for vehicle n + 1 if TL service is considered. Therefore, we distinguish
two cases:

In case one, the system uses a combination of LTL and TL services to arrange the
shipment of the order quantity, i.e., n vehicles of TL service, and transport the rest of the
items using LTL service. In this case, δvc ≤ ∆ =⇒ vtn +

(
q1
vc
− n

)
vcct .

In case two, the system uses n + 1 vehicles of the TL service to arrange the shipment
of the order quantity. In this case, δvc ≥ ∆ =⇒ vt(n + 1) .

Let ∅ = 1 denote a pure transportation policy of implementing the TL service, and
∅ = 0 refers to a mixed policy for which a combination of LTL and TL services is utilized.

From Figures 3 and 4, and Equations (1) and (2), the holding costs per unit time (see
Appendix A) for the buyer and the vendor are, respectively, given by:

hbd2tl
2

2λq1
+

hbq1d
2λ

[
d
p2 −

2
p
+

λ

d

]
+

hb
2λ

[
2d2tl

p
− 2dtl

]
(3)

hvq1

2λ

[
2d
p

+ λ2
(

1− d
p

)
− λ

]
− (λ− 1)hvdtl

λ
(4)

Remark 2. In addition to the holding cost, both the buyer and the vendor experience the cost
associated with emissions being released while keeping items in storage, which depends on both
inventory levels, i.e., Equations (3) and (4) [31,40,56,57].

By Remark 1, the fixed transportation costs per unit time for the vendor is given by:

∅vt(n + 1)d
q1

+
(1−∅)((vt − vcct)n + ctq1)d

q1
. (5)
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The vendor incurs costs associated with emissions from production due to producing
λq1 units and delivering this quantity to the buyer. Therefore, the variable transportation
and emissions costs per unit of time for the vendor are as follows:

(vv + EvTET)d

(
Tf f e

q1
+ TvTw f

)
+ dEvEpe

−Ig
d . (6)

The total amount of emissions generated by the system is given by:

Es =
EeEwbd2tl

2

2λq1
+ EeEwbq1d

2λ

[
d
p2 − 2

p + λ
d

]
+ EeEwb

2λ

[
2d2tl

p − 2dtl

]
+ EeEwvq1

2λ

[
2d
p + λ2

(
1− d

p

)
− λ

]
− (λ−1)EeEwvdtl

λ

+ETd
( Tf f e

q1
+ TvTw f

)
+ dEpe

−Ig
d .

(7)

From which, the cap-and-trade regulations are given by:

ER = Ev(Es − Ec)
−. (8)

Equation (8) implies that the system earns revenue from selling excess quota if and
only if Es < Ec.

Considering the above along with set-up, ordering, and investment cost components,
the total cost functions per unit time for the buyer and the vendor are, respectively, given by:

Ws1, b =
Sbd
q1

+
(hb + EbEeEwb)d2tl

2

2λq1
+

(hb + EbEeEwb)q1d
2λ

[
d
p2 −

2
p
+

λ

d

]
+

(hb + EbEeEwb)

2λ

[
2d2tl

p
− 2dtl

]
. (9)

Ws1, v =
(Sv+Ig)d

λq1
+ (hv+EvEeEwv)q1

2λ

[
2d
p + λ2

(
1− d

p

)
− λ

]
− (λ−1)(hv+EvEeEwv)dtl

λ + (1−∅)((vt−vcct)n+ctq1)d
q1

+

∅vt(n+1)d
q1

+ (vv + EvTET)d
( Tf f e

q1
+ TvTw f

)
+ dEvEpe

−Ig
d + Ev(Es − Ec)

− + cvd.
(10)

The term EvEpe
−Ig

d implies that the higher the investment cost offered by the vendor,
the closer the items become greener, and, consequently, the system reaps the benefit of such
investment by reducing the cost incurred for emissions generated from production.

Now for simplicity, let hb + EbEeEwb = c1, hv + EvEeEwv = c2, and vv + EvTET = c3.
Therefore, the total joint cost function per unit time for the buyer and the vendor is

given by:

Ws1 = Ws1,b + Ws1,v = Sbd
q1

+
(Sv+Ig)d

λq1
+ c1d2tl

2

2λq1
+ c1q1d

2λ

[
d
p2 − 2

p + λ
d

]
+ c1

2λ

[
2d2tl

p − 2dtl

]
+ c2q1

2λ

[
2d
p + λ2

(
1− d

p

)
−

λ]− c2(λ−1)dtl
λ + (1−∅)((vt−vcct)n+ctq1)d

q1
+ ∅vt(n+1)d

q1
+ c3d

( Tf f e
q1

+ TvTw f
)
+ dEvEpe

−Ig
d + Ev(Es − Ec)

− + cvd
(11)

The objective is to find integer values of λ and n that minimize Ws1, where Ws1 is
given by Equation (11).

Hence, the objective is to solve the following optimization problem:

WS1 =



minimize Ws1 given by Equation (11)
subject to ∆ < vc,

(
q1
vc
− n

)
≥ 0, n ≥ 0, λ ≥ 1

∅ =

{
1 i f

(
q1
vc
− n

)
vc ≥ ∆

0 else

n and λ intiger values


(12)

Thus, from Theorem 1 (see Appendix B), a two-step solution approach is provided below:
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Step 1:
Find λmin ≤ λ ≤ λmax with an integer value that minimizes either Ws1, max or Ws1, min

given by Equation (A12) or Equation (A13). Alternatively, start with λ = 1 and compute
the first three terms of Equation (A12) or Equation (A13) and continue the search by adding
1 each time until Equation (A12) or Equation (A13) attains its minimum.

Step 2:
Using Equation (A11), find q1

vc
, if δvc ≥ ∆, then set ∅ = 1 in Equation (11). Else, i.e.,

δvc < ∆, then set ∅ = 0 in Equation (11) and compute Es from Equation (7). Note that q1
vc

constitutes two numbers, i.e., the integer value of n plus the value of the fraction δ.
In a decentralized, uncoordinated scenario, the buyer orders according to the EOQ

formula, and the vendor optimizes the production-inventory policy such that a LFL is
replenished for the buyer. In a decentralized, coordinated scenario, the buyer orders
according to the EOQ formula, and the vendor in turn must adjust, using λ, the production-
inventory policy, to replenish a multiple of this quantity. In this case, q1 resulted from the
EOQ formula of the buyer is used to find q1

vc
, if δvc ≥ ∆, then set ∅ = 1 in Equation (11).

Else, i.e., δvc < ∆, then set ∅ = 0 in Equation (11).

3.3.2. Total Cost Function for Subsequent Cycles under a Centralized Scenario

The inventory level of the first lot depicted in Figure 5 for the vendor is at its maximum,
i.e., qs at time ts. Note that the re-start-up production time is displaced until time td to
allow consuming the last lot that has been replenished to the buyer in the previous cycle.
In this case, ts = qs/p, which satisfies demand for the buyer during the period Ts.

At time ts, a lot of size qs units should be replenished to the buyer to satisfy demand.
This quantity is given by:

qs = dTs,

where
Tss = λTs =

λqs

d
.

Considering the above, the total cost functions per unit time (see Appendix A) for the
buyer and the vendor are, respectively, given by:

Wss, b =
Sbd
qs

+
c1qs

2
= EOQ (13)

Wss, v =
(Sv+Ig)d

λqs
+ c2qs

2

[
d
p + (λ− 1)

(
1− d

p

)]
+ ∅vt(n+1)d

qs
+ (1−∅)((vt−vcct)n+ctqs)d

qs
+ c3d

( Tf f e
qs

+ TvTw f
)
+

dEvEpe
−Ig

d + Ev(Es − Ec)
− + cvd.

(14)

Therefore, the total joint cost function per unit time for the buyer and the vendor is
given by:

Wss =
Sbd
qs

+
(Sv+Ig)d

λqs
+ c1qs

2 + c2qs
2

[
d
p + (λ− 1)

(
1− d

p

)]
+ ∅vt(n+1)d

qs
+ (1−∅)((vt−vcct)n+ctqs)d

qs
+

c3d
( Tf f e

qs
+ TvTw f

)
+ dEvEpe

−Ig
d + Ev(Es − Ec)

− + cvd,
(15)

where

Es =
EeEwbqs

2
+

EeEwvqs

2

[
d
p
+ (λ− 1)

(
1− d

p

)]
+ ETd

(
Tf f e

qs
+ TvTw f

)
+ dEpe

−Ig
d . (16)

The objective is to find integer values of λ and n that minimize Wss, where Wss is given
by Equation (15).
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Hence, the objective is to solve the following optimization problem:

WSS =



minimise Wss given by Equation (15)
subject to ∆ < vc,

(
qs
vc
− n

)
≥ 0, n ≥ 0, λ ≥ 1

∅ =

{
1 i f

(
qs
vc
− n

)
vc ≥ ∆

0 else

n and λ intiger values


(17)

Thus, from Theorem 2 (see Appendix C), a two-step solution approach is provided below:
Step 1:
Find λ ≥ 1 with an integer value that minimizes either Wss, max or Wss, min given by

Equation (A19) or Equation (A20). Alternatively, start with λ = 1 and compute the first
term of Equation (A19) or Equation (A20) and continue the search by adding 1 each time
until Equation (A19) or Equation (A20) attains its minimum.

Step 2:
Using Equation (A17), find qs

vc
, if δvc ≥ ∆, then set ∅ = 1 in Equation (15). Else, i.e.,

δvc < ∆, then set ∅ = 0 in Equation (15). Note that q
vc

constitutes two numbers, i.e., the
integer value of n plus the value of the fraction δ.

4. Numerical Examples

In this section, illustrative examples and special cases that reflect the application of
the proposed model are provided.

4.1. Example 1

In this example, we observe the behavior of the system for the set of values listed in
Table 3 below.

Table 3. Input parameters for Example 1.

Ewb Ewv Ee p Ep vt
1.44 1.44 0.0005 8000 1.4 600

kWh/unit/month kWh/unit/month ton CO2/kWh units/month ton CO2/unit USD/truck

vc ct Tw Tf Tv vv
500 1.5 0.01 80 300 0.75

units/truck USD/unit ton/unit km km USD/liter

f fe ET Ec hv hb
0.064 0.32 0.0026 5000 5 3

liters/km/ton liters/km ton CO2/liter tonCO2/month USD/unit/month USD/unit/month

Ig Eb Ev EvT d tl
800 2.5 2.5 2.5 3000 0.08

USD/setup USD/ton CO2 USD/ton CO2 USD/ton CO2 units/month month

cv Sv Sb
50 1200 400

USD/unit USD/setup USD/order

The optimal values of q∗1 , q∗s , λ∗1 , λ∗s , n∗1 , n∗s , E∗s1, E∗ss, W∗s1and W∗ss are obtained for the
first and subsequent cycles and the results are shown in Table 4.
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Table 4. Optimal results for the first and subsequent cycles for example 1.

First Cycle q*
1 λ*

1 n*
1 E*

s1 W*
s1 Mixed Policy % Saving

With investment 1285 2 2 3219 163,696 √ 2.26%
Without investment 1091 2 2 4202 167,477 √

Subsequent Cycles q∗s λ∗s n∗s E∗ss W∗ss

With investment 1032 2 2 3219 165,910 √ 2.94%
Without investment 1411 1 3 4202 170,927 ×

In the first cycle, if the vendor suggests investing in green technology associated with
production, then the optimal quantity is q*

1 = 1285 units to satisfy both demand and short-
ages that occurred in the first period, with λ*

1 = 2. Note that from Step 2, we have
q*

1
vc

= 1285
500 = 2.57, and ∆ = vt

ct
= 600

1.5 = 400 units < vc = 500 units. Therefore,

δ =

(
q*

1
vc
− n

)
= 0.57, which refers to the proportion of vehicle capacity that needs to be as-

signed for either policy, i.e., LTL or TL services. Note that

δvc = 0.57× 500 = 285 < ∆ = 400 =⇒ vtn +

(
q*

1
vc
− n

)
vcct . That is, the vendor should

use a combination of LTL and TL services to arrange the shipment of the order quan-
tity. In this case, we set ∅ = 0 and n = 2 in Equation (11). The monthly cost is
W*

s1 = USD 163, 696, with emissions being generated equals to E*
s1 = 3219 ton CO2. The

latter implies that the system earns revenue from the cap-and-trade regulations by selling
excess quota, which is given by Ev(Ec − Es) = 2.5(5000− 3219) = 2.5(1781) = USD 4453.
Alternatively, if the vendor suggests not investing in green technology associated with
production, then the optimal quantity is q*

1 = 1091 units to satisfy both demand and
shortages that occurred in the first period, with λ*

1 = 2. Therefore, from Step 2, we

have q*
1

vc
= 1091

500 = 2.182, and ∆ = vt
ct

= 600
1.5 = 400 units < vc = 500 units. Thus,

δ =

(
q*

1
vc
− n

)
= 0.182 =⇒ δvc = 0.182× 500 = 91 < ∆ = 400 =⇒ vtn +

(
q*

1
vc
− n

)
vcct .

That is, the vendor should use a combination of LTL and TL services to arrange the shipment
of the order quantity. In this case, we set ∅ = 0 and n = 2 in Equation (11). The monthly
cost is W*

s1 = USD 167, 477, with emissions being generated equals to E*
s1 = 4202 ton CO2.

In this case, the system earns revenue from the cap-and-trade regulations by selling ex-
cess quota, which is given by Ev(Ec − Es) = 2.5(5000− 4202) = 2.5(798) = USD 1995.
Note that this revenue is less than that related to investment. By choosing not to in-
vest, the system also loses the benefit gained by reducing emissions generated from pro-

duction. This additional revenue is equal to λ*
1q*

1Ev

(
Ep − Epe

−Ig
d

)
= 2× 1285× 2.5×

1.4
(

1− e
−800
3000

)
= USD 2106. Therefore, the total saving achieved due to investment is

set equal to 2.26%
(

167,477−163,696
167,477

)
× 100 = 2.26. Note that p(T1 − tl1) ≥ 2dT1. That is,

p(T1 − tl1) = 8000×
(

1285
3000 − 0.08

)
= 2786.7 > 2q*

1 = 1285× 2 = 2570 with investment and

p(T1 − tl1) = 8000×
(

1091
3000 − 0.08

)
= 2269.3 > 2q*

1 = 1091× 2 = 2182 without investment.
In subsequent cycles, if the vendor suggests investing in green technology associated with

production, then the optimal quantity is q∗s = 1032 units to satisfy demand with λ∗s = 2. Note
that from Step 2, we have q∗s

vc
= 1032

500 = 2.064, and ∆ = vt
ct
= 600

1.5 = 400 units < vc = 500 units.

Thus, δ =
(

q∗s
vc
− n
)
= 0.064 =⇒ δvc = 0.064× 500 = 32 < ∆ = 400 =⇒ vtn +

(
q∗1
vc
− n
)

vcct .
That is, the vendor should use a combination of LTL and TL services to arrange the
shipment of the order quantity. In this case, we set ∅ = 0 and n = 2 in Equation
(15). The monthly cost is W∗s1 = USD 165, 910, with emission being generated equals
to E∗s1 = 3219 ton CO2. Note that this amount equals that of the first cycle though the
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produced quantity is different. The system earns revenue from the cap-and-trade reg-
ulations by selling excess quota, which is given by Ev(Ec − Es) = 2.5(5000− 3219) =
2.5(1781) = USD 4453. If the vendor tends not to invest in green technology associated
with production, then the optimal quantity is q∗s = 1411 units to satisfy demand with
λ∗s = 1. Note that from Step 2, we have q∗s

vc
= 1411

500 = 2.822, and ∆ = vt
ct
= 600

1.5 = 400 units <

vc = 500 units. Therefore, δ =
(

q∗1
vc
− n

)
= 0.822, which refers to the proportion of ve-

hicle capacity that needs to be assigned for either policy, i.e., LTL or TL services. Note
that δvc = 0.822× 500 = 411 > ∆ = 400 =⇒ vt(n + 1) . That is, the vendor should use a
pure transportation policy of implementing the TL service to arrange the shipment of
the order quantity. In this case, we set ∅ = 1 and n = 3 in Equation (15). The monthly
cost for no investing is W∗s1 = USD 170, 927, with emission being generated equals to
E∗s1 = 4202 ton CO2. Again, the amount of emission is the same as that of the first cycle
with a revenue of selling excess quota equals to USD 1995, which is less than that related
to the case of investment. As that off the first cycle, choosing not to invest, the system
also loses the benefit associated with reducing emission generated from production equals

to λ∗s q∗s Ev

(
Ep − Epe

−Ig
d

)
= 2× 1302× 2.5× 1.4

(
1− e

−800
3000

)
= USD 2133. Therefore, the

total saving achieved due to investment is set equal to 2.94%
(

170,927−165,910
170,927

)
× 100 = 2.94.

Finally, the displaced re-start-up production time is set equal to td = Ts−1 − ts − tl =
1285
3000 −

1032
8000 − 0.08 = 0.219 month ≈ 7 days when investment is considered. Similarly,

td = Ts−1 − ts − tl = 1091
3000 −

1411
8000 − 0.08 = 0.107 month ≈ 3 days when investment is

not considered.
It is clear that Ts−1 = T1 6= Ts, from which we are sure that the second cycle is

independent from the first one. In general, the mathematical formulation guarantees that
T1 and Ts may or may not be equal. Therefore, the case that Ts−1 6= Ts holds for subsequent
cycles, which allows the adjustment of the input parameters in any cycle. It is worth noting
here that the restriction p(T1 − tl1) ≥ 2dT1 does not apply for subsequent cycles, i.e., it is
sufficient to have p ≥ (1 + tl)d. In this case, the vendor may adjust the production rate,
which will not affect the optimal policy because the subsequent cycles are independent of
the first cycle and of each other. To see this, suppose that the decision-maker would like
to adjust the production rate from 8000 to 4000 to evaluate the consequences of such an
adjustment. Table 5 depicts the behavior of the model subject to this adjustment.

Table 5. Optimal results for subsequent cycles for example 1 when d = 4000 units.

Subsequent Cycles q*
s λ*

s n*
s E*

ss W*
ss Mixed Policy % Saving

With investment 647 5 1 3219 165,432 √ 0.29%
Without investment 641 4 1 4202 169,473 √ 0.85%

Table 5 reveals that decreasing the production rate from 8000 to 4000 is beneficial since
it saves up to 0.29%

(
165,910−165,432

165,910

)
× 100 = 0.29 with investment and 0.85% without

investment when compared with the previous policy. This constitutes evidence that the
mathematical formulation generates an optimal solution, that is viable if the values of the
input parameters are adjusted for subsequent cycles. Note that the displaced production
time is set equal to td = Ts−1 − ts − tl =

1285
3000 −

647
4000 − 0.08 = 0.187 month ≈ 6 days when

investment is considered. Similarly, when investment is not considered, td = Ts−1 − ts −
tl =

1091
3000 −

641
4000 − 0.08 = 0.123 month ≈ 4 days.
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4.2. Example 2

In this example, we replicate example 1 (the base model) to investigate the sensitivity
analysis of the model for the set of parameters listed in Table 3. The most important
direct parameters that affect the optimal produced quantity are holding costs, ordering and
set-up costs, investment costs, production rates, and demand rates, which are illustrated in
Table 6 below.

Table 6. Optimal results for sensitivity analysis for the set of values as listed in Table 3.

Parameter First Cycle q*
1 λ*

1 n*
1 E*

s1 W*
s1 Mixed Policy % Saving

hv = hb = 3 With investment 1473 2 3 3219 164,166 √ 1.63%
Without investment 2074 1 4 4202 166,890 √

Subsequent Cycles q∗s λ∗s n∗s E∗ss W∗ss

hv = hb = 3 With investment 1191 2 2 3219 164,921 √ 2.19%
Without investment 1009 2 2 4202 168,610 √

First Cycle q∗1 λ∗1 n∗1 E∗s1 W∗s1

Sv = Sb = 400 With investment 1091 2 2 3219 162,561 √ 2.21%
Without investment 1292 1 2 4202 166,232 √

Subsequent Cycles q∗s λ∗s n∗s E∗ss W∗ss

Sv = Sb = 400 With investment 1411 1 3 3219 166,011 × 0.85%
Without investment 1004 1 2 4202 167,422 √

First Cycle q∗1 λ∗1 n∗1 E∗s1 W∗s1

d = 2000
With investment 1822 1 3 1878 104,679 √ 4.00%

Without investment 1493 1 3 2801 109,037 ×
Subsequent Cycles q∗s λ∗s n∗s E∗ss W∗ss

d = 2000
With investment 1508 1 3 1879 105,998 √ 3.25%

Without investment 1234 1 2 2802 109,557 √

First Cycle q∗1 λ∗1 n∗1 E∗s1 W∗s1

Ig = 1200 With investment 1371 2 2 2818 162,185 √ 3.12%
Without investment 1091 2 2 4202 167,477 √

Subsequent Cycles q∗s λ∗s n∗s E∗ss W∗ss

Ig = 1200 With investment 1102 2 2 2818 164,520 √ 3.75%
Without investment 1411 1 3 4202 170,927 ×

First Cycle q∗1 λ∗1 n∗1 E∗s1 W∗s1

p = 10, 000 With investment 2223 1 4 3219 163,818 √ 2.27%
Without investment 1824 1 3 4202 167,617 √

Subsequent Cycles q∗s λ∗s n∗s E∗ss W∗ss

p = 10, 000 With investment 1796 1 3 3219 165,859 √ 2.70%
Without investment 1469 1 3 4202 170,457 ×

For equal holding costs, i.e., hv = hb = 3, the optimal produced quantity in the
first cycle is higher than that of example 1, though the total minimum cost per unit time
is lower because the vendor reduces the holding cost. This also holds for subsequent
cycles when the system invests in green production. In the case of no investment, both the
optimal produced quantity and the total minimum cost per unit time are lower than those
in example 1. We note that the emissions generated are equal in both examples. When
Sv = Sb = 400, both the optimal produced quantity and the total minimum cost per unit
time are lower (higher) than those of example 1 in the first cycle (subsequent cycles) for
the investment scenario. For the case of no investment, the optimal produced quantity
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in the first cycle is almost equal to that of example 1, though the total minimum cost per
unit time is lower because the vendor reduces the set-up cost. In subsequent cycles, both
the optimal produced quantity and the total minimum cost per unit time are lower than
those in example 1. We also note that the emissions generated are equal in both examples.
When the demand rate decreases from 3000 to 2000, the optimal produced quantity in the
first cycle is higher than that of example 1; however, the total minimum cost per unit time
and the emissions generated are lower. This also holds in subsequent cycles when the
system invests in green production. For the no investment case in subsequent cycles, all
optimal values are lower than those of example 1. If the investment cost increases from 800
to 1200, the optimal produced quantity in all cycles is higher than that of example 1 when
investment is considered. On the other hand, the total minimum cost per unit time and the
emissions generated in all cycles are lower because the vendor increases the investment in
green production, where all optimal values in all cycles are identical with those of example
1 when no investment is considered. Finally, if the production rate increases from 8000
to 10,000, the optimal produced quantity and the total minimum cost in the first cycle
are higher than those of example 1 when investment is considered. If no investment is
considered, the optimal produced quantity is higher than that of example 1; however, the
total minimum cost is slightly lower. In subsequent cycles, the optimally produced quantity
is higher than that of example 1; however, the total minimum cost is slightly lower.

A comparison between the results obtained in Tables 4–6 indicates that the emissions
generated by the system are very much related to the demand rate and the investment
offered by the vendor. Figures 8–10 depict and compare the behavior of the model on the
optimal produced quantity, the amount of CO2 emissions released by the system, and the
per-unit-time total cost for the joint system in different settings.

4.3. Example 3

In this example, a comparison of the proposed model is conducted with the existing
literature (e.g., Jaber et al. [9] and Bazan et al. [30]).

Figure 8. The effect of input parameters on the optimal production quantity for the first and subse-
quent cycles.
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Figure 9. The effect of input parameters on the amount of CO2 emissions for the first and subse-
quent cycles.

Figure 10. The effect of input parameters on the total system cost for the first and subsequent cycles.

For comparison purposes, all additional input parameters that do not affect the optimal
quantity and that were not considered by [9,30] have been omitted from the proposed model.
Let Sb = 400, Sv = 1200, p = 2000, d = 1000, hv = 60 and hb = 30. The cost functions that
are compared are, respectively, given by:

WEs1, max = WEs1, min = W∗s1 =

√
2d(λSb + Sv)

(
hb

[
d2

p2 − 2d
p + λ

]
+ hv

[
2d
p + λ2

(
1− d

p

)
− λ

])
λ

. (18)

Wss, max = Wss, min = W∗ss =

√√√√2d(λSb + Sv)
[

hb + hv

[
d
p + (λ− 1)

(
1− d

p

)]]
λ

. (19)

W J∗ = WB∗ =

√
2d(λSb + Sv)

[
hv

(
1− d

p
+

1
λ

)
+

hb
λ

]
. (20)



Logistics 2023, 7, 67 19 of 29

Equation (18) is a modified version of Equations (A12) and (A13) without emissions
and transportation costs, which represents the first cycle of the proposed model. Note that
the lead time is ignored, i.e., tl = 0 because Jaber et al. [9] and Bazan et al. [30] neglected
this lead time. Likewise, Equation (19) is a modified version of Equations (A19) and (A20),
which represent the subsequent cycles of the proposed model, where Equation (20) is
identical with that of Jaber et al. [9] and Bazan et al. [30].

By substituting the values determined above in Equations (18)–(20) the following
results are obtained:

Equation (20) attains its minimum, i.e., W J∗ = WB∗ = USD 16, 970.56 with an optimal
produced quantity equal to q∗J = q∗B = 94.28 when λ∗ = 3. Equation (18) attains its mini-
mum, i.e., W∗s1 = USD 9874.2 with an optimal produced quantity equal to q∗1 = 202.54 when
λ∗1 = 2. Note that p(T1 − (tl1 = 0)) ≥ 2dT1 =⇒ p(T1 − 0) = 2000× (202.54 /1000) = 2q∗1 .
Equation (19) attains its minimum, i.e., W∗ss = USD 13, 416.41 with an optimal produced
quantity equal to q∗s = 149.07 when λ∗s = 2. Therefore, the proposed model produces better
results with a dramatic cost reduction. In particular, the cost obtained by Equation (18) is
less than that obtained by Equation (20) by 41.82%

(
16,970.56−9874.2

16,970.56

)
× 100 = 41.82. Sim-

ilarly, the cost obtained by Equation (19) is less than that obtained by Equation (20) by
20.94%

(
16,970.56−13,416.41

16,970.56

)
× 100 = 20.94. This, indeed, constitutes a key finding for both

practitioners and researchers. Moreover, Equation (20) and the other studies in the literature
are alike. They implicitly assume that the quantity (e.g., q∗J = q∗B = 94.28), which constitutes
the initial inventory for the buyer in the first cycle, exists even though the vendor has not
yet commenced production. This can be attributed to the fact that the mathematical mod-
eling has been formulated based on a finite planning horizon. However, the fact remains
that the initial inventory at the buyer’s site is zero. Another issue associated with such
mathematical modeling is that the values of the input parameters remain static indefinitely.
This implies a production policy that generates an equal quantity that is associated with a
fixed multiplier in all cycles, and consequently, the production process is static in all cycles,
including the first-time interval (e.g., q∗J = q∗B = 94.28) remains static indefinitely. On the
other hand, it is often the case that the input parameters are subject to adjustment due to a
plethora of endogenous and/or exogenous factors that may force the system to adjust the
input parameters. Therefore, the proposed model not only considers the abovementioned
issues but also generates better results with a dramatic cost reduction (see also Example 1).
Further, the re-start-up production time is displaced for more holding cost reduction.

It is worth noting here that Equation (20) could produce lower cost if for example
p is set equal to p = 1100 ≥ d = 1000. In this case, Equation (20) attains its mini-
mum, i.e., W J∗ = WB∗ = USD 12, 103.45 with an optimal produced quantity equals
to q∗J = q∗B = 94.42 when λ∗ = 7. Equation (18) attains its previous minimum cost,
i.e., W∗s1 = USD 9874.2 with an optimal produced quantity equals to q∗1 = 202.54 when
λ∗1 = 2 and p = 2000. This is so, to ensure shortages do not occur for period 2 where
p(T1 − (tl1 = 0)) ≥ 2dT1 =⇒ p(T1 − 0) = 2000× (202.54 /1000) = 2dT1 = 2q∗1 . However,
this does not apply for subsequent cycles. Therefore, Equation (19) attains its minimum,
i.e., W∗ss = USD 11, 576.96 with an optimal produced quantity equals to q∗s = 98.71 when
λ∗s = 7 and p = 1100. In this case, the cost obtained by Equation (18) is less than that of
Equation (20) by 18.42%

(
12,103.45−9874.2

12,103.45

)
× 100 = 18.42. Similarly, the cost obtained by

Equation (19) is less than that of Equation (20) by 4.35%
(

12,103.45−11,576.96
12,103.45

)
× 100 = 4.35.

5. Model Overview and Managerial Insights

Unlike the classical formulation of the joint vendor-buyer model, which assumes
a finite planning horizon and ignores the impact of the first cycle, the proposed model
considers the first-time interval in the mathematical formulation. Moreover, the proposed
model guarantees that the optimal produced quantity together with its associated multiplier
are independent for each cycle, i.e., each cycle is independent from the previous one. The
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re-start-up production time for subsequent cycles commences only at the time required to
produce and replenish the first lot, which implies further cost reduction. That is, it prevents
keeping inventory related to the vendor for the unnecessary time associated with the time
elapsing for the consumption of the last lot that has been shipped to the buyer. A rigorous
heuristic method is utilized to reduce the computational effort dramatically. This method
is cobbled together with a mixed transportation policy of LT and LTL services, where a
solution technique for a MINLP problem is proposed to obtain a global optimal solution
for the joint model. Accordingly, the condition that renders the cost of transportation by
either service identical is derived to establish the relation of the mixed strategy required
to be implemented in the mathematical formulation. This paper showed and proved
that ignorance of the physical transportation cost does not affect the optimal quantity
produced. The (term of the proposed model that has been addressed for compassion
purposes (Example 3)), represents the base model, which rectifies the base model adopted
by the existing literature. Therefore, it can be further adopted to rectify several existing
models disseminated from the rectified model, which may interest researchers. This can
be justified by the fact that the base proposed model generates an optimal quantity with
a considerable total cost reduction when compared with the best scenario in favor of the
existing literature.

The results indicate that the first cycle significantly impacts the optimal production
policy. The proposed model generates an optimal produced quantity for the first cycle
(subsequent cycles), with more than 18.42% (4.35%) less total system cost when compared
with the pest scenario in favor of the existing literature, i.e., at a production rate slightly
greater than the demand rate. Moreover, such a percentage of total system cost reduction
increases as the production rate increases. The proposed model not only produces better
results but also offers the opportunity to adjust the input parameters for subsequent cycles.
The viability and validity of the model are ascertained, and consequently, it generates
optimal results, whether the input parameters change their values for each cycle or remain
static. The results obtained indicate that the emissions generated by the system are very
much related to the demand rate and the amount of investment in green production. The
total savings that can be achieved through investment is beneficial for the system. That is,
the higher the investment in green production, the higher the revenue gained by reducing
emission costs as well as earning further revenue from the cap-and-trade regulations by
selling excess quota. The proposed model enables the system to reflect economic, social,
and environmental interests, and consequently, the system emphasizes sustainability. The
higher the investment cost offered by the system, the closer the items become greener and,
consequently, the system becomes more sustainable. The results indicate that the increase
in the production rate increases the optimal produced quantity with a slight increase in the
total system cost per unit time and subsequently impacts economic opportunities with no
influence on the amount of emissions released into the environment. The proposed model
combines LTL and TL transportation strategies in the mathematical formulation for further
cost reduction.

6. Discussion

Sustainable supply chain management is challenging in terms of addressing economic,
social, and environmental interests. Although the concept of the VMI model for a JELS
policy is not new, the mathematical modeling of such a policy may still have a space
for further contributions. For instance, the classical formulation of the joint VMI model
assumes a production policy that generates an equal quantity that is associated with a
fixed multiplier in all cycles, and consequently, the production process is static in all cycles.
This can be justified by the fact that the mathematical formulation is based on an infinite
planning horizon and ignores the impact of the first cycle. The classical formulation of
the joint vendor-buyer inventory model is associated with another implicit assumption:
that input parameters remain static indefinitely. In practice, however, there exist a plethora
of factors that may force the decision-maker to adjust input parameters. For example,
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adaptation of a new policy due to acquired new knowledge, price fluctuations, the dynamic
nature of demand and production rates, machine maintenance scheduling activities, or
periodic review applications may raise such an adjustment. Therefore, if the decision-maker
would like to deviate from the current policy, then the suggested solution obtained by the
classical approach cannot be used as the right policy for subsequent cycles.

This paper is concerned with the mathematical formulation of a vendor-buyer inven-
tory model for a JELS policy, considering the abovementioned issues. Accordingly, two
mathematical models are developed for a VMI. The first model underlies the first cycle,
while the second underlies subsequent cycles. Each model considers investment in green
production, energy used for keeping items in storage, and carbon emissions from produc-
tion, storage, and transportation activities under the carbon cap-and-trade policy. LTL
and TL are two common cost structures for freight, and consequently, the proposed model
combines these two transportation strategies in the mathematical formulation. To reduce
the per-unit-time total cost function, the re-start-up production time for subsequent cycles is
displaced up to the time required to produce and deliver the first lot. Moreover, this paper
developed a rigorous heuristic method to dramatically reduce the computational effort by
obtaining a global optimal solution for a joint supply chain and inventory management
model for a given product.

Illustrative examples indicate that the first cycle significantly impacts the optimal
production policy. The proposed model generates distinct optimal results associated with
the first and subsequent cycles. The viability and validity of the model have been empha-
sized where the model generates optimal results, whether the input parameters change
their values for each cycle or remain static. The impact of adjusting the input parameters
for sensitivity analysis purposes and some important opportunities for decision-makers
are evaluated. For example, the results obtained indicate that the emissions generated
by the system are very much related to the demand rate and the amount of investment
in green production. The results also indicate that the higher the investment in green
production, the higher the revenue gained by reducing emission costs as well as earning
further revenue from the cap-and-trade regulations by selling excess quota. Therefore, the
proposed model enables the system to reflect economic, social, and environmental interests,
and consequently, the system emphasizes sustainability. The system reaps the benefit of
investing in green production, i.e., the higher the investment cost offered by the system, the
closer the items become greener and, consequently, the system becomes more sustainable.
One of the main findings is that the increase in the production rate increases the optimal
produced quantity with a slight increase in the total system cost per unit time. Therefore, it
impacts economic opportunities without having any influence on the amount of emissions
released into the environment.

A comparison with the best scenario in favor of the existing literature showed that the
proposed model generates an optimal produced quantity with 18.42% (4.35%) less total
system cost for the first cycle (subsequent cycles). Moreover, such a percentage increases as
the production rate increases. Further, the proposed model not only produces better results
but also offers the opportunity to adjust the input parameters for subsequent cycles. This,
indeed, will be perceived as an important finding for both academics and practitioners.

7. Conclusions and Further Research

In this paper, a vendor-buyer inventory model for a JELS policy is presented. The
proposed model considers the mathematical issues associated with the classical formulation
of the joint vendor-buyer model. Moreover, it is a viable solution and considers the dynamic
nature of demand and production rates or price fluctuations, which is often the case in
real-life settings. That is, if the decision-maker would like to deviate from the current
policy, then the proposed model guarantees that the optimal produced quantity together
with its associated multiplier are independent for each cycle, i.e., it generates distinct
optimal results for subsequent cycles. The re-start-up production time for subsequent
cycles implies further cost reduction by not keeping inventory related to the vendor for
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unnecessary time associated with the consumption time of the last lot that has been shipped
to the buyer. A mixed transportation policy of LT and LTL services is considered in the
mathematical formulation, where a solution technique for a MINLP problem is proposed
to obtain a global optimal solution for the joint model. In particular, the model offers
the condition that the cost of transportation by either service is identical, from which the
relation of the mixed strategy is derived. This paper showed and proved that ignorance of
the physical transportation cost does not affect the optimal quantity produced. The (term
of the proposed model that has been addressed for compassion purposes (Example 3)),
represents the base model, which rectifies the base model adopted by the existing literature.
Therefore, it can be further adopted to rectify several existing models that account for
extensions based on the rectified model and that may interest researchers. This can be
justified by the fact that the base proposed model generates an optimal quantity with a
considerable total cost reduction when compared with the best scenario in favor of the
existing literature. Further, the proposed model not only produces better results but also
offers the opportunity to adjust the input parameters for subsequent cycles, where each
cycle is independent from the previous one.

Based on the findings of this paper, it seems plausible to extend the model for a hybrid
production system that combines both green and regular production activities. In addition,
the formulation of an imperfect production facility where defective items are subject to re-
working is also possible. An interesting line of further research may include the formulation
of a reverse logistics inventory system considering manufacturing, remanufacturing, and
transportation, along with GHG emissions. The incorporation of learning and forgetting
curves into the production rate is another interesting line of inquiry. Another research
option is the formulation of a general inventory model, considering demand, production,
and deterioration rates as general functions of time. Further, extending the model while
accounting for different penalties for exceeding emissions limits is also possible. Finally,
the proposed idea of considering the first-time interval in the mathematical formulation
can be further extended to be implemented in several interesting further inquiries related
to JELS inventory mathematical modeling.
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Appendix A

The goal here is to formulate the average inventory for the buyer and the vendor.

Buyer average inventory function for the first cycle.

The inventory level of the first lot depicted in Figure 3 for the vendor is at its maximum,
i.e., q1 at time t1 = q1/p, which satisfies demand and shortages.

At time t1, a lot of size q1 units should be replenished to the buyer in a duration of
transportation time tl1, to satisfy demand and shortages.

This quantity is given by:
q1 = dT1,
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At time t1 + tl1, d(t1 + tl1) units have been backordered, and consequently, the max-
imum inventory level for the buyer in the first period is (T1 − t1 − tl1)d units (Figure 4).
Therefore, the time required to consume the first lot is given by:

(T1 − t1 − tl1) =
q1

d
− q1

p
− tl1. (A1)

As can be seen in Figure 4, this reflects the fact that the buyer’s initial inventory level
at the beginning of the first cycle is zero, whereas Figure 3 reflects the fact that the last lot
produced in the first cycle constitutes the last lot replenished to the buyer in the first cycle
as well. Thus, we have

Ts1 = λT1 =
λq1

d
. (A2)

Therefore, the buyer average inventory function for the first period is given by:

q1
2

2

[
1− d

p
− dtl1

q1

][
1
d
− 1

p
− tl1

q1

]
=

q1
2

2

[
1
d
− 2

p
− 2tl1

q1
+

d
p2 +

2dtl1
pq1

+
dtl1

2

q1
2

]
The average inventory for the rest of the lots is given by:

(λ− 1)q1
2

2d
.

Hence, the buyer average inventory function for the first cycle is given by:

q1
2

2

[
d
p2 −

2
p
+

λ

d

]
+

q1

2

[
2dtl1

p
− 2tb1

]
+

dtl1
2

2
. (A3)

Vendor average inventory function for the first cycle.

Recalling Figure 3, the vendor average holding function for the first cycle can be
formulated as follows:

λ = 1⇒ q1

2
q1

p
=

q1
2

2p
.

λ = 2⇒ q1

2
q1

p
+

q1

2
q1

p
+ q1

[
q1

d
− 2q1

p
− tl1

]
.

λ = 3⇒ q1

2
q1

p
+

q1

2
q1

p
+ q1

[
q1

d
− 2q1

p
− tl1

]
+

q1

2
q1

p
+ q1

[
2q1
d
− 3q1

p
− tl1

]
.

...

λ = λ⇒ q1
2

2

[
2
p
+ λ2

(
1
d
− 1

p

)
− λ

d

]
− q1(λ− 1)tl1 (A4)

Therefore, the sum of Equations (A3) and (A4) divided by the cycle length and mul-
tiplied by holding costs, gives the below per unit time holding cost function for the joint
system for the first cycle, where tl1 = tl .

Ws1 =
hbd2tl

2

2λq1
+

hbq1d
2λ

[
d
p2 −

2
p
+

λ

d

]
+

hb
2λ

[
2d2tl

p
− 2dtl

]
+

hvq1

2λ

[
2d
p

+ λ2
(

1− d
p

)
− λ

]
− hv(λ− 1)dtl

λ
. (A5)
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Buyer average inventory function for the subsequent cycles.

It is clear from Figure 6 that the buyer holding cost function per unit time for the
subsequent cycles is that of the EOQ.

hbqs

2
. (A6)

Vendor average inventory function for the subsequent cycles.

Recalling Figure 6, the vendor average holding function for the subsequent cycles can
be formulated as follows:

λ = 1⇒ qs

2
qs

p
=

qs
2

2p
.

λ = 2⇒ qs

2
qs

p
+

q1

2
qs

p
+ qs

[
qs

d
− qs

p

]
.

λ = 3⇒ qs

2
qs

p
+

qs

2
qs

p
+ qs

[
qs

d
− qs

p

]
+

qs

2
qs

p
+ qs

[
2qs
d
− 2qs

p

]
.

...

λ = λ⇒ λqs
2

2d

[
d
p
+ (λ− 1)

(
1− d

p

)]
. (A7)

Therefore, the sum of Equations (A6) and (A7) divided by the cycle length and mul-
tiplied by holding costs gives the below per-unit-time holding cost function for the joint
system for the subsequent cycles.

Wss =
hbqs

2
+

hvqs

2

[
d
p
+ (λ− 1)

(
1− d

p

)]
. (A8)

Appendix B

The goal here is to present the solution procedure to obtain the unique and global
optimal solution for the first cycle of the joint model.

Solution Procedure

Let Ws1,max denotes a pure transportation policy of implementing the LTL service.
Therefore, Equation (11) is rewritten as

Ws1, max = Sbd
q1

+
(Sv+Ig)d

λq1
+ c1d2tl

2

2λq1
+ c1q1d

2λ

[
d
p2 − 2

p + λ
d

]
+ c1

2λ

[
2d2tl

p − 2dtl

]
+ c2q1

2λ

[
2d
p + λ2

(
1− d

p

)
− λ

]
−

c2(λ−1)dtl
λ + c3d

( Tf f e
q1

+ TvTw f
)
+ dEvEpe

−Ig
d + Ev(Es − Ec)

− + (ct + cv)d.
(A9)

Similarly, let Ws1, min denotes a pure policy of implementing no transportation service,
i.e., ct = vt = 0.

Therefore, Equation (11) is rewritten as

Ws1, min = Sbd
q1

+
(Sv+Ig)d

λq1
+ c1d2tl

2

2λq1
+ c1q1d

2λ

[
d
p2 − 2

p + λ
d

]
+ c1

2λ

[
2d2tl

p − 2dtl

]
+ c2q1

2λ

[
2d
p + λ2

(
1− d

p

)
− λ

]
−

c2(λ−1)dtl
λ + c3d

( Tf f e
q1

+ TvTw f
)
+ dEvEpe

−Ig
d + Ev(Es − Ec)

− + cvd.
(A10)
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Theorem 1. Any existing solution of (Ws1, max) is a minimizing solution to (Ws1) if
(

W ′′s1, max

)
has a nonnegative value, that is W ′′

s1, max > 0, where W ′s1, max = 0 is an increasing function of q1.

Proof.

W ′s1, max = −Sbd
q1

2 −
(
Sv + Ig

)
d

λq1
2 − c1d2tl

2

2λq1
2 +

c1d
2λ

[
d
p2 −

2
p
+

λ

d

]
+

c2

2λ

[
2d
p

+ λ2
(

1− d
p

)
− λ

]
−

c3dTf fe

q1
2 .

Note that Equation (A10) implies that W ′s1, min = W ′s1, max. Now, the necessary condition
for having a minimum for (Ws1, max) is

W ′s1, max = W ′s1, min = 0⇒ q1 =

√√√√√ d
(

2λSb + 2
(
Sv + Ig

)
+ c1dtl

2 + 2λc3Tf fe

)
c1

[
d2

p2 − 2d
p + λ

]
+ c2

[
2d
p + λ2

(
1− d

p

)
− λ

] . (A11)

Thus, from Equation (A11), WEs1, max and WEs1, min are given, respectively, by Equations
(A12) and (A13) below:

WEs1, max =

√
d(2λSb+2(Sv+Ig)+c1dtl

2+2λc3Tf fe)
(

c1

[
d2
p2−

2d
p +λ

]
+c2

[
2d
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p
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−λ
])
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2λ
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2d2tl
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]
− c2(λ−1)dtl
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c3dTvTw f + dEvEpe
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d + Ev(Es − Ec)
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(A12)

WEs1, min =

√
d(2λSb+2(Sv+Ig)+c1dtl

2+2λc3Tf fe)
(

c1

[
d2
p2−

2d
p +λ
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(A13)

Noting that

W’’
s1,max = W’’

s1,min =
2Sbd
q1

3 +
2
(
Sv + Ig

)
d

λq1
3 +

c1d2tl
2

λq1
3 +

2c3dTf fe

q1
3 > 0, ∀q1 > 0 and λ ≥ 1. (A14)

This completes the proof of the Theorem, where W ′s1 (W ′′
s1) is the first (second) partial

derivative with respect to Ws1, max or Ws1, min. �

From Equation (A14) we conclude that the solution of (Ws1) resulting from Equa-
tion (A12) or Equation (A13) is the unique and global optimal solution to (Ws1).

Now, let δ(0 ≤ δ < 1), then by Theorem 1, q1
vc

> 0⇒ q1
vc

= n + δ . Note that
δvc ≥ ∆⇒ ∅ = 1 .

To accelerate the search for an optimal solution, the minimum and maximum values
for λ can be found by setting the first partial derivative of Equation (A12) or Equation (A13)
with respect to λ equals to zero, where infeasible values of λ are omitted to obtain:

λ = −b±
√

b2−4ac
2a , where a, b and c, are, respectively, given by:
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Appendix C

The goal here is to present the solution procedure to obtain the unique and global
optimal solution for subsequent cycles of the joint model.

Solution Procedure

Let Wmax denotes a pure transportation policy of implementing the LTL service. There-
fore, Equation (15) is rewritten as

Wss, max = Sbd
qs

+
(Sv+Ig)d

λqs
+ c1qs

2 + c2qs
2

[
d
p + (λ− 1)

(
1− d

p

)]
+ c3d

( Tf f e
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+ TvTw f
)
+ dEvEpe

−Ig
d +

Ev(Es − Ec)
− + (ct + cv)d.

(A15)

Similarly, let Wss, min denotes a pure policy of implementing no transportation service,
i.e., ct = vt = 0. Therefore, Equation (15) is rewritten as

Wss, min = Sbd
qs

+
(Sv+Ig)d

λqs
+ c1qs

2 + c2qs
2

[
d
p + (λ− 1)

(
1− d

p

)]
+ c3d

( Tf f e
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+ TvTw f
)
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d +
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− + cvd

(A16)

Theorem 2. Any existing solution of (Wss, max) is a minimizing solution to (Wss) if
(
W ′′ss, max

)
has a nonnegative value, that is W ′′

ss, max > 0, where W ′ss, max = 0 is an increasing function of qs.

Proof.

W ′ss, max = −Sbd
qs2 −
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)
d

λqs2 +
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2
+

c2

2

[
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p
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(
1− d

p

)]
−

c3dTf fe

qs2 .

Note that Equation (A16) implies that W ′ss, min = W ′ss, max. Now, the necessary condition for
having a minimum for (Wmax) is

W ′ss, max = W ′ss, min = 0⇒ qs =

√√√√√ 2d
(

λSb +
(
Sv + Ig

)
+ c3λTf fe

)
λ
[
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[
d
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)]] (A17)

Noting that

W ′′
ss, max = W ′′

ss, min =
2Sbd
qs3 +

2
(
Sv + Ig

)
d

λqs3 +
2c3dTf fe

q1
2 > 0, ∀ qs > 0 and λ ≥ 1intiger value. (A18)

This completes the proof of the Theorem, where W ′ss (W ′′
ss) is the first (second) partial

derivative with respect to Wss, max or Wss, min. �

Therefore, Equation (A18) indicates that the solution of (Wss) resulting from Equa-
tion (A15) or Equation (A16) is the unique and global optimal solution to (Wss).

Thus, from Equation (15), Wmax and Wmin are given, respectively, by Equations (A19)
and (A20) below:
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√
2d(λSb+(Sv+Ig)+c3λTf fe)

[
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[
d
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(
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)]]
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− + (ct + cv)d, (A19)

Wss, min =

√
2d(λSb+(Sv+Ig)+c3λTf fe)

[
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d
p +(λ−1)

(
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p

)]]
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−Ig
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As for the first cycle, let δ(0 ≤ δ < 1), then by Theorem 2, qs
vc

> 0⇒ qs
vc

= n + δ . Note
that δvc ≥ ∆⇒ ∅ = 1 .
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To accelerate the search for an optimal solution, the value for λ can be found by setting
the first partial derivative of Equation (A19) or Equation (A20) with respect to λ equals to
zero, where infeasible values of λ are omitted to obtain:

λ = ±

√(
−c2

(
Sb + c3Tf fe

)(
Sv + Ig

)
(d− p)(2dc2 + (c1 − c2)p)

)
c2

(
Sb + c3Tf fe

)
(d− p)

.
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