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Abstract: Particulate matter, including airborne pathogens, is of particular concern because it can
cause the spread of diseases through aerosol transmission. In this study, a new concept is proposed:
on-demand antiviral electrostatic precipitators (ESPs) with electrothermal-based antiviral surfaces.
We applied electrothermal-based antiviral surfaces to air-purifying applications and demonstrated
that the proposed method is effective with regard to collecting airborne virus particles on collection
plates in a two-stage ESP. With alternating current power, MS2 bacteriophage and H1N1 viruses were
completely deactivated after exposure to 50 ◦C for 30 min. This remarkable antiviral performance
via electrothermal effects indicates that on-demand platforms for self-antiviral surfaces can perform
sterilization immediately without generating secondary pollutants, thus effectively preventing the
spread of infectious microorganisms in public places. We believe that the results of this study can
provide useful guidelines for the design and realization of practical and wearable devices for antiviral
air-purifying applications.

Keywords: electrostatic precipitator; electrothermal effect; on-demand process; antiviral;
airborne virus

1. Introduction

Global concerns over air contamination have continuously risen over the past decades.
Air pollutants can be risky for many individuals who live in confined places and do not have
sufficient ventilation, especially for people with weak immune systems such as children,
seniors, and hospital patients [1–4]. The components of air contaminants vary and can
contain toxic chemicals and particulate matter (PM), such as airborne pathogens. Especially
very recently, airborne viruses are of particular concern because they can cause the spread
of diseases through aerosol transmission. The COVID-19 pandemic, a worldwide outbreak
of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a representative
example. According to the U.S. Centers for Disease Control and Prevention (CDC), SARS-
CoV-2 is transmitted through exposure to infectious respiratory fluids caused by infected
individuals through talking, coughing, or sneezing, thus spreading virions in airborne
droplets and aerosol forms [5–7]. Thus, tremendous research efforts have focused on the
development of efficient strategies for the removal of airborne viral pathogens [8–11].

To mitigate the exposure of airborne viral particles in indoor air conditions, air filters
or electrostatic precipitators (ESPs) are usually used to capture viral aerosols on the surfaces
of filter fibers or collection plates in air-purifying systems. However, previous studies
have reported that viral particles can remain active on various surfaces, such as plastic,
paper, and stainless steel, for significantly longer time periods than generally expected
(over a few days) [12–14], which prompted considerable efforts on sterilizing all surfaces
so as to suppress the potential risks of fomite-mediated infections [15]. Many types of

Toxics 2022, 10, 601. https://doi.org/10.3390/toxics10100601 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics10100601
https://doi.org/10.3390/toxics10100601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0001-8234-4779
https://doi.org/10.3390/toxics10100601
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics10100601?type=check_update&version=2


Toxics 2022, 10, 601 2 of 11

antiviral technologies, which were fabricated by coating the surfaces where viral particles
are captured with functional materials, have been suggested in recent reports [16–20].
However, a challenge for these coating-based antiviral strategies is the renewal of antiviral
activities for long-term care because of the performance deterioration of coating materials
and the accumulation of dust particles over the coating surfaces [18,19].

Consequently, developing an on-demand platform for self-sterilizing surfaces may
be an important advancement. An on-demand antiviral method with heat treatment for
inactivating captured viruses on surfaces has recently been introduced as a promising and
alternative antiviral technology [14,21] that can immediately perform sterilization with-
out generating secondary pollutants, thus effectively preventing the spread of infectious
microorganisms in public places.

In our previous study, we presented an antimicrobial carbon surface with an elec-
trothermal effect, and it showed outstanding antimicrobial performance against gram-
positive and gram-negative bacteria. Moreover, we demonstrated the electrothermal-based
antimicrobial mechanism and its optimal conditions for achieving maximum efficiency [14].
In this study, we applied these hybrid electrothermal-based surfaces on a two-stage ESP
for an on-demand antiviral system (not on filter). Moreover, the electrothermal-based
antiviral performance against airborne pathogens, including infectious viruses (not only
bacteria), was tested. Therefore, we herein newly introduce an on-demand antiviral ESP
with electrothermal-based antiviral surfaces.

The newly presented strategy for the rapid inactivation of airborne virus particles
with functional ESPs would be attractive for lightweight, cost-effective, harmless, and
energy-efficient air-purifying applications that can be used to prevent the transmission of
infectious viruses. Overall, we believe that this study can potentially be used for the design
and realization of practical and wearable antiviral and air-purifying devices.

2. Materials and Methods
2.1. Electrothermal Surface Preparation

In our previous study, we applied alternating current (AC) power to carbon surfaces
with microorganisms, which were completely deactivated after exposure to 50 ◦C for
10 min [21]. In this study, we selected one of the commercially available carbon surfaces,
the performance of which was demonstrated in a previous study [21]. The selected carbon
surface had low electric resistance (~5.84 × 10−2 Ω·m) to achieve high surface temperature
with low energy consumption and was coated with a polyethylene terephthalate (PET) layer
to realize lightweight and flexible properties [22], thus ensuring an energy-efficient antiviral
ESP. Figure 1a shows a digital photo of the carbon surface, which had a width, height, and
thickness of 102.1, 21.8, and 0.3 mm, respectively. Figure 1b shows the experimental setup
of the electrical resistance test for the characterization of electrothermal properties with
AC power using SLIDE-AC. The generated current–voltage, which was measured by a
multimeter, was applied to the carbon surface to generate heat, and the surface temperature
was measured using a thermocouple.

2.2. Preparation of Test Virus Solutions

In this study, MS2 bacteriophage (ATCC 15597-B1) and H1N1 (influenza A/california/
07/2009) were used as test virus species. MS2 bacteriophage was purchased from American
Type Culture Collection (ATCC), VA, USA. For the preparation of the MS2 bacteriophage
virus solution, a frozen virus stock (0.1 mL) was defrosted at room temperature and
inoculated into 50 mL of deionized pure water. To measure the bacteriophage concentration
of the stock, a plaque assay was performed (initial concentration: 108 PFU mL−1). H1N1
was provided by the BioNano Health Guard Research Center, Daejeon, Korea (initial
concentration: 2.8 × 107 PFU mL−1).
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Figure 1. (a) Digital photo of the used carbon surface. (b) Experimental setup of the electrical
resistance test for the characterization of electrothermal properties.

2.3. Characterization of the Functional ESP Performance

In this study, a two-stage ESP, which consisted of a charging part and a collection part,
was developed for the PM removal test with electrothermal carbon surfaces. A detailed
view of the two-stage ESP is shown in Figure 2. The charging part (40 × 40 × 30 mm3)
consisted of a carbon brush-type ionizer located at the center of the duct (Figure 2, left),
and the collection part (40 × 40 × 100 mm3) consisted of collection plates and the ground
plates with a 2-mm gap distance (Figure 2, right). In the charging part, a commercial carbon
brush-type ionizer was selected with an average fiber diameter of ~7 µm, which is optimal
for discharge electrodes to minimize ozone generation [22–25] with negative high voltage.
Moreover, a plastic (polypropylene; PP) coating was applied to the metal ground electrode
of the discharging stage to effectively suppress the generation of ozone [22] in the charging
part of the two-stage ESP. In the collection part, PET-coated carbon surfaces were used
for both the collection plate and ground electrodes. With the flexibility of the PET coating
surfaces, the gap distance between the electrodes could be maintained with a high specific
surface area and a light weight [22].
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An experimental schematic of the single-pass PM removal efficiency test of the two-
stage ESP is shown in Figure 3. Atmospheric dust was selected as the test PM for the
performance evaluation of the two-stage ESP. The test duct had an area of 0.04 × 0.04 m,
and the flow velocity of the test duct was adjusted to ~2 m/s by controlling the commercial
fan speed. The applied voltage to the fiber brush in the ionization stage was controlled from
0 to −6 kV using a negative high-voltage power supply. Due to the relatively sufficient
oxygen, the negative ions were more likely to exist in atmospheric conditions (compared
with indoor conditions) [26,27]. To obtain high collection efficiency with high charge density
from the abundant negative ions, negative high voltage was applied to generate corona
discharge. A voltage of −2 kV was also applied to the collection plate. The applied voltages
and corona currents were measured using digital multimeters (Model 286; Fluke Corp.,
Tokyo, Japan), and the voltage was varied from 0 to −6 kV to the ionizer to investigate the
corona discharge properties. The PM concentration was measured using an optical particle
counter (OPC, Model 1.109; Grimm, Germany) located at the rear end of the collection
stage to measure the PM collection efficiency, which was calculated by (1):

ηPM(%) =

(
1 −

Co f f

Con

)
× 100, (1)

where ηPM denotes the PM collection efficiency, and Co f f , Con indicate the downstream
particle number concentrations from the two-stage ESP when it is OFF and ON, respectively.
To evaluate the PM removal performance, a concentration of 0.3 µm particles was applied
to Equation (1), as it is difficult to collect 0.3 µm particles due to their low particle charging
rate, which is derived from the combined charging mechanism between diffusion and field
charging [28].
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The ozone concentrations were measured using an ozone monitor (model 400E, Tele-
dyne Technologies Inc., San Diego, CA, USA) (Figure 3). The net ozone concentration
generated from the ESP can be calculated by (2):

O3,net = O3,on − O3,o f f , (2)

where O3,net indicates the volume concentrations of the net ozone, and O3,on and O3,o f f
denote the downstream ozone concentrations from the two-stage ESP when it is OFF and
ON, respectively.

2.4. On-Demand Antiviral Performance Evaluation of the Functional ESP against Airborne Viruses

MS2 bacteriophage and H1N1 viruses were selected as target airborne viruses. The virus
solution was aerosolized by an atomizer in 2 L/min of compressed clean air. Aerosolized
virus particles entered the test duct through a diffusion dryer in order to remove any moisture,
and 3 L/min of clean air was used as sheath air. The flow velocity of the acrylic duct was
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adjusted to 0.56 m/s, and the applied voltage of −5 kV to the charging part was controlled.
A voltage of −2 kV was applied to the collection part using a high-voltage power supply.
The concentration of the airborne virus particles was measured using a scanning mobility
particle sizer (SMPS) located upstream and downstream of the ESP (Figure 4a). Then, the
collection efficiency of the ESP was calculated as follows:

ηvirus(%) =

(
1 − Cdown

Cup

)
× 100, (3)

where ηvirus denotes the virus collection efficiency, and Cdown, Cup indicate the particle num-
ber concentrations in the downstream and upstream parts of the two-stage ESP, respectively,
via SMPS measurement data.
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To evaluate the electrothermal antiviral efficacy, after virus collection for 30 min, the
collection surface was electrothermally heated to 50 ◦C for 30 min. Figure 4b shows the
concept of the on-demand electrothermal antiviral process in an ESP, showing that the first
step is the collection of airborne viruses on the collection plate via the ESP with direct-
current (DC) power and that the second step involves electrothermal treatment against
collected viruses with AC power via a simple switching circuit (whenever a user wants to
sterilize the surfaces).

Finally, after the electrothermal treatment, the collection surfaces were placed in 5 mL
of a phosphate-buffered saline (PBS) solution, and vortexed for 15 min to detach viruses
from the collection surface into the PBS solution. After a serial dilution, the viable con-
centrations of the MS2 bacteriophage and H1N1 viruses were evaluated using plaque
assays [29] (Figure 4c) and a reverse transcription–polymerase chain reaction (RT-PCR)
system (12675885, Thermo Scientific™ PikoReal™, Vantaa, Finland; Figure 4d), respec-
tively [30].

For the MS2 bacteriophages, the antiviral efficiency of the sample was calculated using
the following equation:

ηantiviral,MS2(%) =

(
1 − PFUtreated

PFUuntreated

)
× 100, (4)

where PFU indicates the concentration of the MS2 bacteriophage particles, and the subscripts
treated and untreated indicate with and without electrothermal treatment, respectively.
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For the H1N1 viruses, the antiviral efficiency of the sample was determined based on
the cycle number obtained from the PCR analysis as follows:

ηantiviral, H1N1(%) =

(
1 − 1

2Ctreated−Cuntreated

)
× 100, (5)

where Ctreated and Cuntreated represent the cycle numbers for the samples with and without
electrothermal treatment, respectively.

3. Results and Discussion
3.1. Electrothermal Surface Preparation

Figure 5 shows the change in surface temperature and current according to the applied
voltage under AC power conditions. With an AC current of 15.1 A, the surface temperature
of the plate increased to 50 ◦C in <1 min, and this temperature was maintained for a long
time (over 30 min), indicating that the carbon-based surface can easily sustain temperatures
up to 100 ◦C [31]. In accordance with our previous study, a clear tendency observed was
that the temperature was linearly related to the AC current. Thus, the selected carbon
surface can be suitable for electrothermal antiviral surfaces, as it was reported that the
deactivation of microorganisms was completed after exposure to 50 ◦C for 10 min and not
only with low resistance but also with efficient heat production [21].
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Figure 5. Surface temperature of the commercial carbon surface according to the applied current
under AC conditions.

3.2. Characterization of the Functional ESP Performance

The inset of Figure 6 shows the corona discharge currents of the charging part with
the increase in applied voltage. The corona onset voltage was approximately −2.1 kV, and
the maximum current magnitude was −0.031 mA at an applied voltage of −6 kV to the
charging part. Figure 6 also shows the PM collection efficiencies and ozone concentrations
when varying the applied voltage of the charging part against atmospheric dust. The
PM collection efficiencies of the ESP increased with the increase in the voltage of the
charging part, and the maximum efficiency was ~80% with an applied voltage of −6kV
to the charging part. The ozone concentration was only 14.6 ppb when the collection
efficiency was ~75%. In comparison with various regulations of ozone concentrations,
such as the World Health Organization (WHO) guidelines (<50 ppb for 8 h) [32], National
Ambient Air Quality Standards (NAAQS) guidelines (average 70 ppb for 8 h) [33], and
Korea Air Cleaning Association (KACA) regulation (average of 30 ppb for 24 h) [34],
the obtained concentration is significantly low. Thus, the proposed functional ESP has
significant potential for indoor air-management applications.



Toxics 2022, 10, 601 7 of 11

Toxics 2022, 10, x FOR PEER REVIEW 7 of 12 
 

 

Figure 5. Surface temperature of the commercial carbon surface according to the applied current 

under AC conditions. 

3.2. Characterization of the Functional ESP Performance 

The inset of Figure 6 shows the corona discharge currents of the charging part with 

the increase in applied voltage. The corona onset voltage was approximately −2.1 kV, and 

the maximum current magnitude was −0.031 mA at an applied voltage of −6 kV to the 

charging part. Figure 6 also shows the PM collection efficiencies and ozone concentrations 

when varying the applied voltage of the charging part against atmospheric dust. The PM 

collection efficiencies of the ESP increased with the increase in the voltage of the charging 

part, and the maximum efficiency was ~80% with an applied voltage of −6kV to the charg-

ing part. The ozone concentration was only 14.6 ppb when the collection efficiency was 

~75%. In comparison with various regulations of ozone concentrations, such as the World 

Health Organization (WHO) guidelines (<50 ppb for 8 h) [32], National Ambient Air Qual-

ity Standards (NAAQS) guidelines (average 70 ppb for 8 h) [33], and Korea Air Cleaning 

Association (KACA) regulation (average of 30 ppb for 24 h) [34], the obtained concentra-

tion is significantly low. Thus, the proposed functional ESP has significant potential for 

indoor air-management applications. 

 

Figure 6. Corona discharge currents (inset), PM collection efficiencies, and ozone concentrations 

with the increase in the applied voltage to the charging part. 

3.3. On-Demand Aniviral Performance Evaluation of the Functional ESP against Airborne 

Viruses 

Figure 7 shows the results of the airborne virus removal efficiency test of the ESP 

with voltages of −5 kV and −2 kV applied to the charging part and collection part, respec-

tively. In the cases of all flow velocities, the collection efficiencies against both virus spe-

cies (MS2 and H1N1) were higher than 90% because the size distributions of the airborne 

viruses—the mode diameters of which were 60 nm and 80 nm with the MS2 and H1N1 

virus particles upstream of the ESP, respectively (Figure 7; right)—have higher electrical 

mobility than the 0.3 μm of atmospheric dust. The particles with sizes between 0.1 and 0.5 

µm had the minimum electrical mobility, and their range corresponded to the most pen-

etrating particle size (MPPS), indicating that this range of particles has less ability to move 
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3.3. On-Demand Aniviral Performance Evaluation of the Functional ESP against Airborne Viruses

Figure 7 shows the results of the airborne virus removal efficiency test of the ESP with
voltages of −5 kV and −2 kV applied to the charging part and collection part, respectively.
In the cases of all flow velocities, the collection efficiencies against both virus species (MS2
and H1N1) were higher than 90% because the size distributions of the airborne viruses—the
mode diameters of which were 60 nm and 80 nm with the MS2 and H1N1 virus particles
upstream of the ESP, respectively (Figure 7; right)—have higher electrical mobility than
the 0.3 µm of atmospheric dust. The particles with sizes between 0.1 and 0.5 µm had the
minimum electrical mobility, and their range corresponded to the most penetrating particle
size (MPPS), indicating that this range of particles has less ability to move in an electric field,
resulting in a lower collection efficiency in the collection part. However, higher electrical
mobility for the particles in the range of 60–100 nm in diameter, whose main charging
mechanism is diffusion, resulted in higher collection efficiency in the collection part [35,36].
Moreover, the migration velocities, which are proportional to the Cunningham coefficient,
of the 60 nm and 80 nm particles were higher than those of the 0.3 um particles due to the
decrease in the fluid drag force [37].
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To investigate the electrothermal antiviral efficacy after virus collection for 30 min, the
collection surface was electrothermally heated to 50 ◦C for 30 min. Figure 8 shows the elec-
trothermal antiviral activity of the carbon surface against the MS2 bacteriophage. The results
show that the electrothermally heated carbon surface has a tremendous antiviral effect in a
short time, as the thermal energy was sufficient for destroying the proteins in the viruses,
thus deactivating them [14,29]. After just 30 min, the electrothermal-based antiviral efficiency
against the captured MS2 bacteriophage on the carbon surface was over 99.99% (the number
of virus concentrations was under the detection of limit (<10 PFU/mL)), indicating that the
viruses were completely deactivated.
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Figure 8. Electrothermal antiviral activity of the carbon surface against the MS2 bacteriophage via a
plaque assay (inset photos: plaque assay results).

Figure 9 shows the electrothermal antiviral activity of the carbon surface against H1N1
viruses. These results show a similar tendency against MS2 bacteriophage. However, H1N1
viruses are likely more susceptible to electrothermal antiviral activity.
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We demonstrated that the concept of the on-demand electrothermal antiviral process
in an ESP is feasible with remarkable antiviral performance via the electrothermal effect on
airborne viruses.

4. Conclusions

In summary, we newly presented the concept of on-demand antiviral ESP with
electrothermal-based antiviral surfaces. We applied electrothermal-based antiviral surfaces
to air-purifying applications and demonstrated that they are effective with regard to col-
lecting airborne virus particles on collection plates in a two-stage ESP. With AC power, the
MS2 bacteriophage and H1N1 viruses were completely deactivated after exposure to 50 ◦C
for 30 min. This remarkable antiviral performance via the electrothermal effect indicates
that using on-demand platforms for self-antiviral surfaces leads to immediate steriliza-
tion without generating secondary pollutants, thus effectively preventing the spread of
infectious microorganisms in public places. Additionally, concerning energy consumption,
the proposed system only required 5.16 W for disinfection, which is much lower than
the energy required for other applications [38]. Moreover, the length of the proposed
system was about 0.14 m, meaning that it occupies less space than other applications [38].
Furthermore, the ozone concentration, which is one of the main concerns of the proposed
system, was significantly low (only about 10 ppb). Consequently, the proposed functional
ESP has sufficient potential to be applied to indoor air-management applications. It can
also be considered among other promising engineering applications due to its several ad-
vantages, such as high filtration and disinfection ability, low energy consumption, compact
installation space, and minimum risk level to users. We believe that the results of this study
provide a useful guideline for the design and realization of portable and wearable devices
for antiviral air-purifying applications.
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