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Abstract: Improving the signal-to-noise ratio (SNR) by amplifying the outputting signal or reducing
nonspecific binding (NSB) are the key techniques in multiple immunoassay. Aiming at these issues,
this paper presents an improved multiple indirect competitive immune surface-enhanced Raman
scattering (ci-SERS) assay for the rapid screening of highly toxic rodenticides in food and biological
samples, which ensured remarkable accuracy, ultra-sensitivity and reproducibility. The non-fouling
polymer brush grafted magnetic beads (the MB@P-CyM) were prepared as multiple competitive
recognition substrates after conjugating triplex haptens (the MB@P-CyM-hap). It was demonstrated
that the particular 3D hair-like structures of P-CyM not only facilitate conjugate high-density hapten
but reduce the steric hindrance from SERS probes recognition, thus enhancing SNB. On the other hand,
Au nanoflowers (AuNFs) of high SERS activity were synthesized using a simple one-pot hydrazine
reduction. For simultaneously detecting three highly toxic rodenticides, i.e., diphacinone (DPN),
bromadiolone (BRD) and tetramine (TET), the obtained AuNFs were fabricated as a SERS-encoded
nanoprobe cocktail after successively labeling mono-antibodies/Raman probes. By integrating
the MB@P-CyM-hap with the SERS-encoded cocktail, a highly sensitive multiple SERS assay was
achieved in less than 2 h with a limit of detection of 0.62 ng mL−1 for BRD, 0.42 ng mL−1 for TET and
1.37 ng mL−1 for DPN, respectively. The recoveries of these rodenticides in spiked food and biological
samples were determined and ranged from 72 to 123%. Above all, the proposed modifications show
remarkable improvements for high efficient multiple chemical toxin immunoassay.

Keywords: multiple immunoassay; SERS assay; rodenticides; non-fouling interface

1. Introduction

The simple, accurate and rapid screening multiple analytes of interest plays a critical
role in early disease diagnosis, food safety supervision as well as environmental surveil-
lance [1–3]. Considering the complexity of the real food and biological samples, the key
issue for various immune-sensors is in improving the signal-to-noise ratio (SNR), either
by amplifying outputting signal or reducing nonspecific binding (NSB), causing false re-
sults [4]. Simultaneously, simplifying testing procedures and improving testing speeds
are also highly desired. Currently, various highly sensitive signal reporting modules are
putting forth new ideas [5,6]. However, strategies to reduce nonspecific binding in the
sensing processes are slightly insufficient, [7,8] due to lacking adequate and deep under-
standing on adsorption/desorption, energy exchange as well as electron transfer occurred
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on nano-interfaces. Surface-enhanced Raman spectroscopy (SERS) is considered as an
ideal tool for multiplex detection owing to its technical simplicity, excellent sensitivity
and superior encoding capability [9,10]. By synthesizing highly sensitive SERS encoders
with anisotropic plasmonic nanostructures, SERS-based multiplex competitive immunoas-
says have been proposed [11–14]. However, the immunoassays are proposed in the native
“noisy” environments of lower fouling, and improving reproducibility is still not completely
realized [7,15,16].

Chemical toxins-induced food poisoning accounted for more than 80% of the total
foodborne deaths in China [17]. Among all of the chemical toxins, rodenticides, represented
by diphacinone (DPN) [18], bromadiolone (BRD) [19] and tetramine (TET) [20], were the
most common toxics, which have caused thousands of accidental or intentional poisoning
events [21]. As beneficial complements for instrument assay [22], field screening these
rodenticides in one simple test could not only remarkably improve treating efficiency,
but it is also in line with future demands for rapid, cheap and high-throughput field
screening toxins.

Benefiting from their adjustable properties and flexible spatial structures, non-fouling
polymer brushes offer attractive alternatives to engineer sensing interfaces for enhancing
specific molecular recognition, rejecting nonspecific adsorption, amplifying the detect-
ing signal as well as maintaining signal stability in complex working matrices [23,24].
In this work, an improved multiple competitive immuno-SERS assay was proposed for
rapid screening DPN, BRD and TET (the chemical structures of these toxins are shown in
Scheme 1A) in a single no-wash test. A non-fouling polymer brush grafted with magnetic
beads (MBs) which were appended with triplex haptens for DPN, BRD, and TET (the
chemical structures of these haptens are shown in Scheme 1B) was constructed as a mul-
tiple competitive substrate (the MB@P-CyM-hap). It was demonstrated that the hair-like
P-CyM acted as the scaffold for conjugating haptens and could remarkably enhance its
specific capture capacity for SERS probes by relieving steric hindrance as well as reducing
nonspecific adsorption. For enhancing sensitivity, Au nanoflowers (AuNFs) were prepared
using a one-step hydrazine reduction in aqueous solutions. The obtained AuNFs were
recognized as an outstanding SERS substrate featuring high activity, easy preparation and
good reproducibility. After successively labeling with the mono-antibodies (mAb)/Raman
probe pairs, a specific SERS probe cocktail for sensing DPN, BRD and TET was constructed.
By combining the MB@P-CyM-hap with the SERS sensing cocktail, a rapid and accurate
rodenticide screening in a wide range of real samples was achieved. Under the optimized
condition, if there are no toxins in the system, all of the SERS probes would bind with the
hapten-modified MB and then remove them from the system. Thus, the supernatant shows
no SERS signal. On the contrary, when toxins are present in the system, they would bind
with the SERS probes preferentially, thus blocking the SERS probe from binding with the
hapten modified-MB, which makes the supernatant show a distinct SERS signal (as shown
in Scheme 1F,G).
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Scheme 1. Chemical structures of (A) three rodenticides and (B) their corresponding haptens;
(C) polymerization of the CyM on the MB based on the RAFT strategy; (D) synthesis of the AuNFs
and their following label processes for constructing the specific SERS-encoding cocktail; (E) the
preparation of the MB@P-CyM-hap; (F,G) the sensing principle was based on the multiple competitive
immunoassay format: simultaneously mixing the mAb-labeled SERS encoding cocktail and the MB@P-
CyM-hap with the rodenticide-spiked sample solutions. After reaching the recognition equilibrium,
a magnet field was used to remove the MB@P-CyM-hap/SERS probes from the solutions, and the
supernatant-containing SERS cocktails were collected for quantification.

2. Material and Methods
2.1. Chemical and Instruments

Hydrogen tetrachloroaurate trihydrate (HAuCl4), 2,6-dimethylphenyl isocyanide
(DMPI), 4-thiosalicylic acid (TSA), 5,5-dithiobis(2-nitrobenzoic acid) (DTNB), hydrazine
hydrate (N2H4), thioctic acid (TA), and carbonyl-PEG-thiol (1.0 kD) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). The standard substances including TET, BRD, DPN,
brodifacoum (BTF), difethialone (DFT), coumatetralyl (CMT), difenacoum (DFC), couma-
furyl (CMF), diphacinone (DPC), and chlorophacinone (CPC) were purchased from J&K
Chemical Technology (Beijing, China). Both the monoclonal antibodies 4G5 to DNP and
the monoclonal antibody to BRD 15C1 was previously prepared, and 1G6 to TET were
produced by our group and will be described elsewhere. Other chemical reagents were
purchased from Beijing Chemical Co. Ltd., Beijing, China. Ultrapure water (resistivity of
18.2 MΩ cm) was obtained by a Milli-Q water purification system.

The extinction spectrum was recorded on a Shimadzu UV 3600 UV-vis-NIR spec-
trophotometer. The morphologies of various nanostructures were observed on a JEM-2100F
transmission electron microscope (JEOL Ltd., Tokyo, Japan). A physical property measure-
ment device (Cryogenic, 12 T Magnet) was used to characterize the magnetic properties
of the MBs. Thermogravimetric analysis (TGA) was performed with a TGA Instruments
device (Model TGA Q500) from room temperature to 800 ◦C at a heating rate of 10 ◦C per
min under nitrogen gas (40 mL per min). An attenuated total reflection-Fourier transform
infrared spectroscopy (ATR-FTIR, INVENIO Bruker) was used to characterize the MBs.
The concentration of the AuNFs and the MBs was measured on an ICP-MS (Agilent 8800)
and an ICP-OES (IRIS Advantage, Thermo Scientific, St. Louis, MO, USA), respectively.
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2.2. Preparation of the MB@P-CyM-hap as Multiple Competitive Substrate

The synthesis of SiO2-capped Fe3O4 magnetic beads (MBs) was conducted referring to
the previously reported method [25]. The polymer monomer, named cysteine methacrylate
(CyM), was synthesized according to the reported methods [26]. The non-fouling polymer
brush-grafted MBs (the MB@P-CyM) were synthesized via a typical RAFT process [27].
For grafting the CyM polymer brushes from the MBs, CTA-MBs (0.1 g), AIBN (20 mg) and
the CysMA monomer (0.1 g) were dissolved in 10 mL of degassed water/methanol (1:1)
solution. After N2 bubbling for 30 min, the system was sealed and heated under 80 ◦C.
After reaction for 5 h, the MB@P-CyM were collected and then washed by DMF 3 times (as
shown in Scheme 1C).

2.3. Chemical Conjugation of Triple Haptens on the MB@P-CyM

The non-fouling MB@P-CyM was chemically conjugated with triple hapten (as shown
in Scheme 1E) via the EDC/NHS mediated amino-carboxyl coupling reaction. The triple
haptens were simultaneously linked on the MB@P-CyM with the feed molar ratio of 1:1:1.
The triple hapten mixture with a total amount of 1 mmol L−1 was firstly activated by NHS
(10 mg mL−1) and EDC (20 mg mL−1) in 1.0 mL methanol. After reacting for 60 min, the
MB@P-CyM (0.1 g in 5 mL methanol) were added in the solution for conjugation. The
reaction was processed for 10 h under room temperature, and then, the liquid supernatant
was removed. The obtained MB@P-CyM-hap was washed with acetone repeatedly and
finally dispersed in the PBS buffer for further use.

For achieving the competitive substrate with different hapten density, three groups
of the hapten mixtures (10, 5, 1 mmol L−1 in 1 mL methanol) with the mole ratio of 1:1:1
were linked on the MB@P-CyM to fabricate high (the MB@P-CyM-hap1), middle (the
MB@P-CyM-hap2), and low (the MB@P-CyM-hap3) densities, respectively, and then, we
tested their binding capacity with the specific SERS encoders.

Moreover, the amino-derived MBs was also prepared for modifying triple haptens (the
MB@hap), and we examined the specific binding capacity. Both the MB@P-CyM-hap and
the MB-hap were prepared to share the same Fe concentrations as determined by ICP-OES.

2.4. Constructing the mAb-Labeled SERS Probe Cocktail

The AuNFs were prepared using hydrazine reduction in aqueous phase at room
temperature for the first time, which was regarded as a seedless and surfactant-free method
(as shown in Scheme 1D). In detail, 2.0 mL of 50.0 mmoL−1 HAuCl4 was mixed with 0.5 mL
of 10.0 mmoL−1 TA ethanol solution in 100 mL of D.I. water. After stirring for 5 min,
0.5 mL of the freshly N2H4 aqueous solution was rapidly injected to the solution. The
color of the solution changed to blue immediately, indicating the formation of the AuNFs.
After standing for 2 h at room temperature, the AuNFs were purified by ultra-centrifuging
(8000 rpm for 5 min) and washed twice with water, finally dispersing in 10 mL D.I. water.

The achieved AuNFs were capped by the carbonyl-PEG-thiol and then successfully mod-
ified mAb and Raman probes, i.e., the AuNF@PEG/TSA-mAbBRD, the AuNF@PEG/DTNB-
mAbTET and the AuNF@PEG/DMPI-mAbDPN. In detail, the purified AuNFs were incubated
with the carbonyl-PEG-thiol (1.0 µmoL−1) for 30 min. After centrifugation, the carbonyl-PEG
capped AuNFs were reacted with the EDC/sulfo-NHS regents. After 30 min, 200 µL of
0.1 mg mL−1 mono-antibody solutions for DPN (mAbDPN), BRD (mAbBRD) and TET (mAbTET)
were added, respectively, and then maintained overnight under 4 °C for conjugation. Fi-
nally, the mAb-labeled AuNFs (the AuNF@PEG/mAbBRD, the AuNF@PEG/mAbTET and
the AuNF@PEG/ mAbDPN) were centrifuged at 8000 rpm for 5 min to remove unbound an-
tibodies and washed with the PBS buffer. Subsequently, 10 µL of TSA (1.0 mmoL−1), DTNB
(1.0 mmoL−1) and DMPI (1.0 mmoL−1) were added into 1.0 mL of the purified mAb-AuNF
solutions, respectively, thus obtaining SERS encoders, i.e., the AuNF@PEG/TSA-mAbBRD,
the AuNF@PEG/DTNB-mAbTET and the AuNF@PEG/DMPI-mAbDPN, which were finally
re-suspended into 300 µL of 0.1% BSA solutions and stored under 4 ◦C before use. The con-
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centrations of these SERS encoders were prepared to the same Au contents (0.5 mmoL−1) as
measured by ICP-MS after the aqua regia digestion.

2.5. Detection of DPN, BRD and TET in Buffer

For examining the sensing performances, 1.0–10.0 µL of the standard toxins was added
to the MB@P-CyM-hap or the MB-hap solutions (50 µL), and then, their corresponding SERS
probe cocktails were added. After 30 min, the free SERS probe solutions were collected
after magnetic separation for Raman interrogation. The results were analyzed by linear
regression and used to verify the accuracy of the immunoassay. The selectivity of the
assay was examined by using chemical analogue (0.5 µg mL−1), and the subsequent SERS
measurements were processed consistently with the above procedures. The detailed sample
preparation and measurements are given in the Supplementary Materials.

2.6. Screening DPN, BRD and TET in Spiked Biological and Food Matrices

The SERS-encoded cocktail (100 µL) was prepared by mixing the AuNF@PEG/TSA-
mAbBRD, the AuNF@PEG/DTNB-mAbTET and the AuNF@PEG/DMPI-mAbDPN with the
final molar ratio of 2:1:3, and then, the MB@P-CyM-hap solutions (50 µL) were added
in EP tubes separately. The negative human serum and urine samples were supplied
by the Beijing Center for Disease Prevention and Control (Beijing, China). The negative
food samples including milk and chicken were purchased locally. For method validation,
different concentrations of BRD, DPN and TET standards were spiked into the real samples
to the final concentrations of 5.0 ng mL−1 and 10 ng mL−1, respectively. Briefly, 1.0 mL or
1 g of samples was extracted with ethyl acetate (1.0 mL) on the vortex for 5 min, and the
mixture was centrifuged for 5 min at 3500× g. After being dried using nitrogen flow, the
dried residue was reconstituted with PBS for measurement.

2.7. SERS Measurement

A Raman spectrometer (inVia Renishaw, UK) was utilized for SERS measurements.
The mAb-labeled SERS probe cocktail was dispersed on quartz cells and then measured
under the laser excitation wavelength of 785 nm. The laser output was performed by a
50 L × 0.3 NA air objective lens. For each measurement, the laser power and exposure time
were set at 10 mW and 5 s exposure with 10 accumulation, respectively.

3. Results and Discussion
3.1. Characterizations of the Non-Fouling MB@P-CyM-hap

Surface geometries and chemical compositions of nanostructures have close relations
with affinity recognitions [5]. In-depth research on the properties of the sensing interface
are vital for constructing nanosensors [6,7]. Different from small molecule probes, SERS
nanoprobes often possess tens of nanometers, the effect of steric hindrances on recognition
and binding should be considered. The P-CyM is verified as an attractive non-fouling
interface which contains abundant active sites for conjugating hapten. In this work, the
P-CyM brushes were grafted from the MBs using a typical RAFT strategy. As shown in
Figure 1A–C, the MB@P-CyM shows good dispersion and uniform morphologies with the
inner core of ≈110 nm in diameter, the middle SiO2 protecting layer of ≈15 nm and the
outer P-CyM brushes of ≈20 nm. The hydrophilic P-CyM made the MB@P-CyM have good
stability in aqueous solution. Moreover, the saturation magnetization of the MB@P-CyM
is measured as 30.5 emu g−1. The magnetization curves exhibit symmetry and passed
through the origin, which ensures a facile separation and reusability of the MB@P-CyM
from sample matrices (Figure 1D). FT-IR spectra (Figure 1E) of the MB@P-CyM are collected
and compared with their precursors. The strong peaks around 1080 cm−1 assigned to Si-O
are observed both in the MBs and the MB@P-CyM. Specifically, the stretching vibration of
−CH2−, −COOH, −amino and the symmetric stretching vibration of C-O associated with
P-CyM ligand appear at 2950 cm−1, 1720 cm−1, 1340 cm−1 and 1625 cm−1, respectively
in the MB@P-CyM spectra. According to TGA analysis, a distinct mass loss of ≈14% is
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observed in the MB@P-CyM, which is higher than that of the NH2-MBs of ≈2% weight loss
(Figure 1F).
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Figure 1. TEM images of the MB (A), the MB@P-CyM (B) and the zoomed-in image of the MB@P-
CyM (C); (D) FT-IR spectra and (E) TGA curves as well as (F) the magnetization measurements of
different modified MBs; (G) Evaluation of the binding and the non-specific adsorption characters for
different hapten-modified MBs.

The MB@P-CyM comprise abundant primary amino groups which enable convenient
conjugation with triplex haptens with adjustable density. Different amounts of the hapten
mixtures of the mole ratio of 1:1:1 were covalently linked on the MB@P-CyM with low
(the MB@P-CyM-hap1), middle (the MB@P-CyM-hap2) and high (the MB@P-CyM-hap3)
densities. As a control, the amino-MBs without grafting P-CyM were also conjugated
with triple haptens (the MB@hap). For comparing the binding capacities of different
modified MB, their concentrations were set as the same levels (in terms of Fe ions). Their
specific bindings with the total mAb mixture as well as the nonspecific protein (HSA) were
examined. It is found that the adsorption capacities of hapten-modified MB@ P-CyM for the
triplet mAb mixture improved with the increase in the hapten density (Figure 1G). Under
physiological condition, the MB@P-CyM-hap2 and the MB@P-CyM-hap3 show comparable
binding contents for the total mAb, demonstrating the steric hindrance restrict saturating
absorption. For all of these, the MB@P-CyM-hap show a better adsorption capacity than the
MB@hap. The anti-fouling performance derived from the P-CyM shows degradation due to
the hapten conjugation-induced polarity changes, as it is reflected that both the MB@P-CyM-
hap1 and the MB@P-CyM-hap2 exhibit strong resistance to biofouling, with the nonspecific
protein absorption as low as 1.2 µg g−1, but the value increases to 5.4 µg g−1 for the
MB@P-CyM-hap3 (Figure 1G). The MB@hap without grafting the P-CyM exhibits a similar
unspecific fouling to that of the MB@P-CyM-hap3. It is found that the MB@P-CyM-hap2
reaches a saturated adsorption within 30 min, suggesting that the flexible hair-like interface
of the MB@P-CyM-hap2 facilitated the synergy affinity by reducing steric hindrance. As
shown in Figure 1G, the MB@P-CyM-hap2 shows weak interaction with the nonspecific
protein (HSA). Moreover, after storing under RT for 6 months under the freeze-dried
state, the MB@P-CyM-hap2 shows no obvious adsorption drop, indicating their long-term
chemical stability in aqueous solution. All of these results emphasize the vital role of the
P-CyM brushes as the recognition interface on the MB. Comprehensively considering these
results, the MB@P-CyM-hap2 is selected for further SERS sensing applications.

3.2. Fabricating the Specific SERS-Encoding Probes and Examining Their Sensing Capacities

Both experimental and theoretical research have indicated that shapes can determine
the properties of particular nanostructures such as sizes. In this paper, uniform AuNFs
were synthesized by one-step reduction in an aqueous phase under room temperature. The
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formation mechanism of the AuNFs is depicted in Scheme 1D. The oxidation product of
N2H4, i.e., N2, was generated in aqueous solution, interfering with the growth of Au seeds;
thus, the flower-like Au nanostructure is obtained. The AuNFs were completely formed
within 30 s and stayed the same afterwards. As shown in the TEM images (Figure 2A), the
Au NFs are monodispersed with size distribution between 40 and 70 nm (Figure 2E). EDS
results evidence the sole Au element component of these nanoparticles (Figure 2B,D). The
HR-TEM image of the AuNFs is also given in Figure 2B, where the two lattice fringes with
the d-spacing of 0.236 and 0.204 nm corresponding to the (111) and (200) planar distances
of Au are shown. As shown in Figure 2F, the extinction spectrum of the AuNFs exhibits
a distinctive surface plasma resonance (SPR) band at around 570 nm and showed blue
color. It indicated that the AuNFs can remarkably enhance the Raman signal of probes
(TSA in this research) by having a large surface-to-volume ratio, surface roughness as well
as a plethora of nanogaps, which is more sensitive than that of the spherical AuNP of
similar diameters. Statistically, the SERS enhancement of different batches of the AuNFs
shows a relative standard deviation of 6.7%, indicating that the achieved AuNFs have well
reproducible SERS performance.
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In the SERS barcoding system, the AuNF@PEG was functionalized with different pairs
of mAb and Raman reporters, i.e., the mAbBRD/TSA, the mAbTET/DTNB as well as the
mAbDPN/DMPI, respectively. Comparing the original AuNFs with the SPR peak at 572 nm,
it slightly shifts to 590 nm after successively labeling the Raman reporters and the mAb
(Figure 2F). This result suggests that both encoding and ligand grafting procedures did not
detriment the colloidal stability. For simultaneously screening multiple rodenticides, three
typical Raman probes (MBA, DTNB, and DMPI) that generated unique Raman signals upon
laser excitation were selected to encode SERS probes for BRD, TET and DPN, respectively.
The SERS signals of each AuNF encoder and their mixtures are demonstrated in Figure 2G.
It is found that three sensitive and non-interfering SERS peaks are clearly observed, which
demonstrate that the cocktail of these SERS nanoprobes could serve as an effective tool
for multiplex target screening. These specific SERS nanoprobes have similar negative
charges around −24.1 ± 0.3 mV due to the presence of TA ligands, and the PEG ligand
could effectively maintain the stability of them in the complex biological media, as it
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demonstrated that no obvious aggregation of the AuNFs is found in PBS or 10 times diluted
human serum for over 1 month.

3.3. Sensing Performance of This Assay

For further verifying the advantages of this modified SERS platform, we examined the
sensitivity and selectivity of the assay. As expected, by integrating the MB@P-CyM-hap2
with the SERS probes in this assay, gradually, SERS signal restorations as a function of the
increasing concentration of targets are observed, as shown in Figure 3A–C. Similarly, SERS
signal-enhancing trends are observed for TET, BRD and DPN, suggesting the potentials
of quantitative analysis. Multiple calibration curves are plotted between peak intensities
at 1034, 1332, and 2174 cm−1, i.e., the AuNF@PEG/TSA-mAbBRD at 1034 cm−1 for BRD
from 1.0 to 80 ng mL−1 (I1034 = 1896 × lgCBRD + 3407) with a squared correlation coefficient
(R2) of 0.962, and the AuNF@PEG/DTNB-mAbTET at 1332 cm−1 for TET from 0.5 to
50 ng mL−1 (I1332 = 2367 × lgCTET + 2573, R2 = 0.988) and the AuNF@PEG/DMPI-mAbDPN
at 2174 cm−1 for DPN from 2 to 120 ng mL−1 (I2174 = 2625 × lgCDPN + 1154, R2 = 0.95)
(Figure 3). In addition, limits of detection (LOD) were calculated as 0.62 ng mL−1 for
BRD, 0.42 ng mL−1 for TET and 1.37 ng mL−1 for DPN based on three times the standard
deviations of the control signals, which could meet the requirement of fast food poisoning
screening. Moreover, TEM images also provide the evidence of forming the nanoassemblies
(SERS nanoprobes binding on the surfaces of the MB@P-CyM-hap2) in the presence of
different targets, which illustrates their successful binding (Figure 3G). The inter- and intra-
day precisions are monitored as less than 16.24%. On the contrary, the sensing performance
using the MB@hap under the same detecting conditions is not good as the MB@P-CyM-
hap2 in the aspects of RSD, LOD and linear ranges, suggesting the outstanding advantages
of using the non-fouling competitive interfaces. This results reveal that attributing to the
particular 3D hair-like structures, the P-CyM interface not only facilitates conjugate high-
density hapten but reduces the steric hindrance between the SERS probes, thus enhancing
their recognitions and sensing capacity. Moreover, due to the specificity of the mAb and the
introduction of the non-fouling sensing interface, the selectivity of the assay is satisfactory
(Figure 3H).
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Figure 3. SERS spectra and the corresponding linear calibration curve for the detection of BRD (A,D),
TET (B,E) as well as for DPN (C,F) using the multiple competitive MB with or without grafting P-CyM
in PBS buffer. Each data point was the mean of triplicate analyses. (G) TEM images demonstrated the
specific binding among the MB@P-CyM-hap and SERS nanoprobes. (H) Selectivity of this method.
All of the interferences were at 1.0 µg mL−1.



Toxics 2022, 10, 605 9 of 11

3.4. Sample Analysis and Method Validation

Finally, SERS detection and quantification for BRD, TET and DPN in spiked biological
and food samples were achieved in less than 2 h. The recoveries of the assay, as shown in
Table 1, ranged from 72% to 123%, with CV values of 8.86 to 15.46%, indicating the good
accuracy and precision of this method.

Table 1. Determination of TET, BRD and DPN in different spiked matrices using the proposed
detecting strategy (data are mean value of 3 measurements).

Sample Toxin/Spiked
(ng mL−1)

This ci-SERS Assay

Detected
(ng mL−1)

Recovery
(%)

Human Serum

BRD/10.0 8.46 84.6

TET/10.0 11.4 114

DPN/10.0 7.32 73.2

Milk

BRD/10.0 7.78 77.8

TET/10.0 11.8 118

DPN/10.0 8.24 82.4

Chicken

BRD/10.0 7.21 72.1

TET/10.0 11.8 118

DPN/10.0 12.3 123

4. Conclusions

In this work, the improved multiple ci-SERS assay was proposed for the simultaneous
rapid screening of TET, BRD and DPN in biological and food samples. The chemical im-
provements are demonstrated for achieving better sensing results: firstly, the non-fouling
polymer brush was introduced on the magnetic colloid as the scaffold for conjugation triple
hapten, thus achieving enhanced signal-to-noise ratios. Secondly, the uniform AuNFs of
high SERS activity was prepared by a simple one-pot reduction, which ensures the well
reproducibility and ultra-sensitivity of this assay. These results suggested that the estab-
lished assay has advantages of sensitivity, rapid response, easy operation and reliability,
and thus, it provides an excellent sensing platform in wide fields. Above all, this assay was
anticipated as a user-friendly sensor for on-field toxins screening in wide environmental
and food matrices.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics10100605/s1, Figure S1: The synthesis route for
the CysMA monomer; Figure S2: The synthesis route for the CTA; Figure S3: The synthesis route for
the MB@P-CyM-hap; Figure S4: XRD results of different MBs; Figure S5: TEM images of the SERS
encoding cocktail.
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