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Abstract: Indoor PM2.5 must be effectively controlled to minimize adverse impacts on public health.
Cooking is one of the main sources of PM2.5 in residential areas, and indoor air quality (IAQ)
management methods such as natural and mechanical ventilation, range hood, and air purifier are
typically used to reduce cooking-generated PM2.5 concentrations. However, studies on the combined
effects of various IAQ management methods on indoor PM2.5 reduction and energy consumption are
limited. In this study, a theoretical model was established to estimate the performance of various
IAQ management methods for controlling indoor PM2.5 concentrations and energy consumption.
The model was verified by comparative experiments in which, various IAQ management methods
were operated individually or combined. Seasonal energy consumption was calculated through
the verified model, and energy consumption saving scenarios were derived for maintaining indoor
PM2.5 concentrations less than 10 µg/m3, a World Health Organization annual guideline, under fair
and poor outdoor PM2.5 concentrations of 15 and 50 µg/m3, respectively. Based on our results, we
found that energy consumption could be reduced significantly by applying natural ventilation in
spring, autumn, and summer and mechanical ventilation in winter. Our study identified efficient
energy saving PM2.5 management scenarios using various IAQ management methods by predicting
indoor PM2.5 concentration and energy consumption according to the annual life patterns of typical
residents in South Korea.

Keywords: PM2.5; air purifier; energy consumption; ventilation; indoor air quality

1. Introduction

Most people spend 90% of their day indoors and thus can be easily exposed to
indoor air pollutants [1]. PM2.5 is an indoor air pollutant and Group 1 carcinogen [2,3],
and indoor PM2.5 has been found to exist at concentrations up to five times higher
than that under outdoor conditions [4]. The indoor environment contains various
harmful substances such as volatile organic compounds (VOCs), carbon dioxide (CO2),
cigarette smoke, and allergens and is therefore one of the primary vectors of human
respiratory disease [5–7]. Aerosols in indoor environments containing PM2.5 can promote
the transmission of viruses such as SARS-CoV-2 [8,9], thus making management of indoor
air quality (IAQ) crucial.

There are various indoor environments, including industrial, commercial, and
residential facilities. The current methods for managing IAQ include natural ventila-
tion, mechanical ventilation, air purifier use, and situation-specific ventilation, such as
range hood use. Mechanical ventilation systems manage IAQ by supplying relatively
clean outdoor air to the indoor environment and exhausting contaminated indoor air
to the outdoors. Compared to natural ventilation, mechanical ventilation systems have
the advantage of improving energy efficiency by utilizing an energy recovery heat
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exchanger. Therefore, mechanical ventilation has been actively studied to evaluate
its effectiveness in particle and harmful gas reduction [10] and in promoting efficient
energy consumption [11–13].

Many studies have assessed the influence of natural ventilation and range hoods on
IAQ improvement. The effect of outdoor PM2.5 on indoor PM2.5 under natural ventilation
conditions [4,14] and indoor particle deposition by natural ventilation [15] have also been
investigated. Range hoods reduce concentrations of harmful substances generated by
cooking, and related studies have assessed the efficacy of range hoods under different
cooking conditions. Specifically, previous studies have assessed the combined impacts of
natural ventilation and range hoods on indoor PM2.5 reduction [16] as well as the particle
reduction characteristics of range hoods under various cooking conditions [17].

Air purifiers manage IAQ by removing PM2.5 and harmful gases from enclosed spaces.
Previous studies have assessed the particle removal mechanisms of air purifiers using
electrostatic precipitators, mechanical filters, and photocatalysts [18–20]. Studies have
also investigated the performance of air purifiers under various indoor environmental
conditions, contamination from different indoor PM2.5 sources [21–23], and varying outdoor
PM2.5 concentrations [24].

Several studies have assessed the impacts of individual IAQ management methods;
however, few have evaluated the combined effects of different IAQ management methods
on indoor PM2.5 reduction and energy consumption. Moreover, many studies have assessed
and determined the most efficient energy systems for indoor industrial and commercial
facilities [25–27], but studies on the energy management for indoor air in residential houses
are limited.

In this study, we proposed seasonal efficient energy consumption reduction scenar-
ios for indoor PM2.5 management. A theoretical model for estimating indoor PM2.5 and
energy consumption in residences was established to derive effective energy consump-
tion scenarios. This theoretical model considered various IAQ management methods
(such as mechanical ventilation, natural ventilation, range hood, and air purifier) with
energy consumption considering the power consumption of each IAQ management
method and enthalpy loss between indoor and outdoor air. To validate our theoretical
model, the results were verified through comparison with experimental results for iden-
tical IAQ management conditions. Through our estimations, we derived seasonal energy
consumption scenarios considering various IAQ management methods for maintaining
average indoor PM2.5 concentrations less than 10 µg/m3, according to the World Health
Organization’s (WHO) recommendation [28,29].

2. Materials and Methods
2.1. Experimental Design

Figure 1 presents a schematic of the measuring equipment layout and IAQ man-
agement methods applied in the apartment used for this study. The apartment building
was built in 2018, and the private area is approximately 72.5 m2. The air change rate
(ACH50) of the apartment was approximately 2.3 h−1. The experiments only considered
the kitchen and living room, which had a combined area of approximately 36.7 m2 and
combined volume of approximately 84.6 m3. An air purifier was located in the living
room (A, AS247DWE, LG Electronics, Seoul, Korea). Two supply and exhaust ports (B,
C) for a mechanical ventilation system were installed on the ceiling (AP-0150CS, AP Co.,
Seoul, Korea). The range hood was located on the wall above the gas stove in the kitchen
(D, HDH-90S, Haatz, Seoul, Korea). Particle concentration was measured between the
kitchen and living room using a light scattering particle measuring device (E, Optical
particle counter [OPC], Model 1.109, GRIMM Aerosol Technik Co., Ainring, Germany).
Particle concentration were measured by OPC at 6 s intervals, and the average particle
concentration data during 1 min were used. The windows were located in the living room
and kitchen; the wind flowed through areas of 3.8 m2 (living room) and 0.23 m2 (kitchen).
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The wind speed through the window was measured by an anemometer (AMI310, KIMO
Inst., Montpon, France) placed at the kitchen window.
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Figure 1. Apartment setup for experiments. Red letters and lines: IAQ management methods to
exhaust indoor PM2.5. Blue letters and lines: IAQ management methods to supply outdoor PM2.5 or
clean indoor PM2.5.

During the experiments, we measured cooking-generated PM2.5 concentration in the
apartment. Approximately 100 g of food material (grilled roasted pork belly) was used
for each cooking experiment. The IAQ management methods were initiated at the start
of cooking, and indoor PM2.5 was reduced by their continuous operation until 20–30 min
after cooking was completed.

2.2. Theoretical Model of Indoor PM2.5 and Energy Consumption

Figure 2 is a schematic of the theoretical model parameters affecting indoor PM2.5
and indoor heat load in a residential environment. The theoretical model of indoor PM2.5
considers apartment specifications (e.g., infiltration, exfiltration, and deposition) as well
as various configurations of IAQ management use and timing. The theoretical model of
indoor PM2.5 is shown in Equation (1):

V dCin
dt = (1 − ηMV)CoutQMV − CinQMV + CoutQRH − CinQRH + CoutQNV

−CinQNV − ηAPCinQAPεAP − V
.
SCin + CoutQin f − CinQex f

(1)
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Figure 2. Schematic diagram of theoretical model for indoor PM2.5 and energy consumption. Red
arrows: IAQ management methods to exhaust indoor PM2.5. Blue arrows: IAQ management methods
to supply outdoor PM2.5 or clean indoor PM2.5.

The parameters of Equation (1) are detailed in Table 1. Equation (1) shows the
indoor PM2.5 according to time and is an expression of the relationship between outdoor
PM2.5 concentration, IAQ management methods, and apartment specifications (infiltra-
tion, exfiltration, and deposition). The flow rate of the mechanical ventilation system
(QMV ) was approximately 0.7 m3/min, and the ventilation rate through mechanical
ventilation was 0.5 h−1, which satisfy requirements of approximately one third of coun-
tries [30]. The flow rate of the air purifier (QAP) was approximately 2.0, 5.0, 7.5, and
11.0 m3/min according to operation modes 1–4. The flow rate of the range hood (QRH)
was approximately 3.1 m3/min. The natural ventilation flow rate (QNV ) was calculated
by the wind speed at the kitchen window, and the experiments and theoretical analysis
were conducted under the condition that the living room and kitchen windows facing
each other were both kept open for the set natural ventilation period. The mechanical
ventilation system PM2.5 removal efficiency (ηMV ) was approximately 70% (MERV13),
and the air purifier PM2.5 removal efficiency (ηAP) was approximately 99.9% (HEPA).
The short-circuiting factor (ε AP) of the air purifier, which indicates the mixing charac-
teristics of clean air with indoor air, was set to approximately 0.75 [24,31]. Infiltration
and exfiltration (Qin f and Qex f ) were calculated using the leakage rate (ACH50) for the
apartment under the condition that natural and mechanical ventilation methods and
the range hood were inoperative. The leakage rate was measured under depressurized
and pressurized conditions and was calculated using V × ACH50/20, similar to the
actual condition [32,33]. The deposition rate (

.
S) of PM2.5 in the apartment was set to

0.0008/min [24,34].
We calculated the energy consumption of each IAQ management method by consider-

ing indoor and outdoor temperatures and humidity conditions:

hin = CP,dry airTin(t) + xin(t)
(
CP,vaporTin + hvapor

)
, (2)

hout = CP,dry airTout(t) + xout(t)
(
CP,vaporTout + hvapor

)
, (3)

∆h = hout − hin, (4)

H = ρair∆h(εheat,MV QMV + QRH + QNV) (5)

ET = (H + EMV + ERH + EAP)× hour, (6)
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where hin is the indoor enthalpy, hout is the outdoor enthalpy, Tin is the indoor temperature,
Tout is the outdoor temperature, xin is the indoor absolute humidity, xout is the outdoor
absolute humidity, CP,dry air is the specific heat capacity at constant pressure for dry air,
CP,vapor is the specific heat capacity at constant pressure for water vapor, hvapor is water
vaporization enthalpy, t is time, H is the heat load, εheat,MV is the heat change efficiency
for mechanical ventilation, ρair is the air density, EMV is the power consumption of me-
chanical ventilation, ERH is the power consumption of the range hood, EAP is the power
consumption of the air purifier, and ET is the total energy consumption.

Table 1. Parameters of the theoretical model.

IAQ Management Method Mechanical
Ventilation Natural Ventilation Air Purifier Range Hood

Flow rate (m3/min)
0.7

(QMV)

Wind speed × Kitchen
window area

(QNV )

2.0 (mode 1)
5.0 (mode 2)
7.5 (mode 3)

11.0 (mode 4)
(QAP )

3.1
(QRH )

PM2.5 removal efficiency (%) 70
(ηMV ) - 99.9

(ηAP ) -

Short circuiting factor (-) - - 0.75
(εAP ) -

Volume of apartment (V, m3): 84.6
Deposition rate of apartment (

.
S, min−1): 0.0008

Infiltration and exfiltration of apartment
(

Qin f and Qex f , m3/min): 0.16

Outdoor PM2.5 : Cout (µg/m3)
Indoor PM2.5 : Cin (µg/m3)

Time : t (min)

We calculated indoor and outdoor enthalpy (hin and hout) using indoor and outdoor
temperature and humidity in Equations (2) and (3), which consider sensible and latent
heat. The difference between indoor and outdoor enthalpy values (∆h) was obtained
using Equation (4), and the heat energy loss (H) due to the supply of outdoor air via
the IAQ management methods was derived using Equation (5). Mechanical ventilation
generally applies an energy recovery system to account for heat exchange between
exhausted indoor air and supplied outdoor air, which reduces heat energy loss. The heat
change efficiency (εheat,MV ) was assumed 0.5 for both heating and cooling. Mechanical
ventilation systems, range hoods, and air purifiers consume electricity during operation.
The power consumption of the mechanical ventilation system (EMV ) and range hood
(ERH) were approximately 63.1 and 98.0 W, respectively, and that of the air purifier (EAP)
was approximately 8.9, 16.3, 27.9, and 62.4 W for operation modes 1–4. Total energy
consumption (ET) was obtained by considering the heat load, power consumption, and
device usage time, as shown in Equation (6), over 16 h (7:00 to 23:00). This period was
selected as it is representative of the time of day during which residents spend most of
their time in the living room and kitchen.

Table 2 presents the indoor and outdoor temperature and humidity every hour during
each season for the calculation of energy consumption. We used hourly data of outdoor
temperature and humidity in Seoul, Korea, in 2019 provided by the Korea Meteorological
Administration (KMA) [35]. We used the average temperature and humidity data in
March–May for spring, September–November for autumn, June–August for summer, and
December–February for winter. Indoor temperature and humidity were calculated in a
prior study, and the deviations for each season were ±1.8 ◦C and ±9.5% in spring/autumn,
±2 ◦C and ±9.7% in summer, and ±1.6 ◦C and ±9.5% in winter [36]. The set temperature
and humidity of typical living environments were assumed to be the indoor temperature
and humidity in each season. The indoor and outdoor enthalpy (to calculate the energy
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consumption) was calculated using the indoor and outdoor temperature and humidity
for each season, which was then used to calculate the energy consumption according to
the IAQ management methods. We assumed that the difference in enthalpy within the
deviation of the set temperature was outside the range of the residents’ perception and was
therefore ignored.

Table 2. Hourly indoor and outdoor temperature and humidity data by season.

Time
(hh:mm)

Spring/Autumn Summer Winter

Outdoor Indoor Outdoor Indoor Outdoor Indoor

Tout(◦C) RH
(%) Tin(◦C) RH

(%) Tout(◦C) RH
(%) Tin(◦C) RH

(%) Tout(◦C) RH
(%) Tin(◦C) RH

(%)

07:00 13.7 70.0 24.6 31.5 22.3 76.5 26.6 51.1 −2.5 60.0 23.9 25.0

08:00 14.9 64.7 24.7 31.3 23.3 72.0 26.7 50.9 −2.6 59.8 23.9 25.0

09:00 16.6 58.2 24.8 31.2 24.4 67.6 26.8 50.7 −1.9 55.0 23.9 24.9

10:00 18.4 52.9 24.8 31.0 25.6 62.6 26.8 50.5 −0.3 49.8 24.0 24.8

11:00 19.8 48.4 24.9 30.9 26.6 59.0 26.9 50.3 1.2 45.2 24.1 24.6

12:00 20.9 45.3 25.0 30.8 27.4 56.6 26.9 50.2 2.5 41.5 24.2 24.5

13:00 21.7 42.8 25.0 30.7 28.1 54.1 27.0 50.0 3.4 39.4 24.3 24.4

14:00 22.1 41.8 25.0 30.7 28.7 52.5 27.0 49.9 4.1 37.9 24.3 24.4

15:00 22.3 42.1 25.0 30.7 29.1 51.2 27.0 49.9 4.5 37.4 24.4 24.4

16:00 22.1 42.7 25.0 30.7 29.0 52.3 27.0 50.0 4.3 37.6 24.4 24.4

17:00 21.4 46.2 25.0 30.9 28.6 54.3 27.0 50.1 3.6 40.1 24.3 24.5

18:00 20.3 49.8 24.9 31.0 27.8 56.8 27.0 50.3 2.4 44.0 24.2 24.6

19:00 19.0 53.4 24.9 31.1 26.8 60.5 26.9 50.5 1.7 47.3 24.2 24.7

20:00 18.1 56.5 24.8 31.2 25.7 64.6 26.8 50.7 1.0 49.9 24.1 24.7

21:00 17.4 58.6 24.8 31.2 25.0 67.3 26.8 50.8 0.6 51.7 24.1 24.8

22:00 16.8 60.5 24.8 31.3 24.4 69.5 26.8 50.9 0.2 53.2 24.1 24.8

23:00 16.2 62.4 24.7 31.3 23.9 71.0 26.7 51.0 −0.2 54.2 24.0 24.9

Furthermore, we derived the most efficient scenario to reduce energy consumption
based on total energy consumption per season at which indoor PM2.5 concentration below
10 µg/m3 is maintained, according to the WHO recommendation.

3. Results and Discussion

We compared theoretical and experimental cooking-generated PM2.5 results for
each IAQ management method to validate the theoretical solution derived by Equation
(1); the results are shown in Figure 3. We obtained the following results for each IAQ
configuration: mechanical ventilation + range hood were applied for 20 min, and then
the air purifier was operated in mode 4 for 10 min; the wind speed at the kitchen window
was 0.2 m/s and outdoor PM2.5 was 21 µg/m3 (Figure 3a). Natural ventilation + range
hood use were applied for 20 min, and then the air purifier was operated in mode 4 for
10 min (Figure 3b,c). For natural ventilation + range hood use, the wind speed at the
kitchen window was evaluated at 0.4 m/s and 0.2 m/s and outdoor PM2.5 was 40 and
56 µg/m3 (Figure 3b and 3c, respectively). For the conditions described in Figure 3b,c,
the initial indoor PM2.5 was approximately 150 µg/m3. Figure 3b shows that although
outdoor PM2.5 was 40 µg/m3, which is twice as high as that in Figure 3a, indoor PM2.5
decreased to 57 µg/m3 lower than 77 µg/m3 in Figure 3a after 20 min due to high
flow rate of natural ventilation. The results of the theoretical model were significantly
consistent with the experimental results. The theoretical model results show similar
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reduction characteristics to the experimental results under the same IAQ management
conditions with different outdoor conditions. Therefore, our proposed theoretical model
was deemed suitable to estimate indoor PM2.5 concentrations by the operations of IAQ
management systems.
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Flow rate of mechanical ventilation : 0.7 m3/min

Flow rate of the range hood : 3.1 m3/min

Flow rate of the air purifier : 11.0 m3/min (mode 4)

Outdoor PM2.5 : 21 μg/m3

Turned off the range hood and the mechanical ventilation

Turned on the air purifier

Flow rate of natural ventilation : 5.4 m3/min

(Wind speed at the kitchen window : 0.4 m/s)

Flow rate of the range hood : 3.1 m3/min

Flow rate of the air purifier : 11.0 m3/min (mode 4)

Outdoor PM2.5 : 40 μg/m3

Turned off the range hood and closed the windows

Turned on the air purifier

Flow rate of natural ventilation : 2.7 m3/min

(Wind speed at the kitchen window : 0.2 m/s)

Flow rate of the range hood : 3.1 m3/min

Flow rate of the air purifier : 11.0 m3/min (mode 4)

Outdoor PM2.5 : 56 μg/m3

Turned off the range hood and closed the windows

Turned on the air purifier

(b)

(c)

Figure 3. Comparison of indoor PM2.5 concentrations in experiments and theoretical model.
(a) Mechanical ventilation + range hood + air purifier. (b) Natural ventilation (0.4 m/s) + range
hood + air purifier. (c) Natural ventilation (0.2 m/s) + range hood + air purifier.
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We simulated the indoor PM2.5 concentration and energy consumption for each season
based on twice-daily cooking, as cooking is the main cause of indoor PM2.5 in residential
environments. The general energy consumption scenario was defined based on the com-
bined use of the range hood, mechanical ventilation, and air purifier for IAQ management,
regardless of season. Figure 4 shows the general energy consumption scenario for each
season under the condition that the average indoor PM2.5 concentration was maintained
below 10 µg/m3 when the outdoor PM2.5 concentration was 15 and 50 µg/m3. For the
experiment, cooking occurred twice daily at 7:00 and 19:00. The initial indoor PM2.5 con-
centration at 7:00 (beginning of the scenario) was set to approximately 0.65 of the outdoor
PM2.5 concentration, according to the I/O ratio [37,38]. The cooking-generated PM2.5 was
assumed to increase linearly to 100 µg/m3 for 10 min in all situations. In addition, we
used the same ventilation conditions of 0.5 h−1 in the natural and mechanical ventilation
scenarios to accurately compare their energy consumption. Natural ventilation was set to
be performed for 30 min thrice a day per situation, with a flow rate set to approximately
7.5 m3/min. The range hood was set to be operated as soon as the cooking started and
continuously operated for 30 min (10 min during cooking and 20 min after cooking). After
20 min from the end of cooking, the air purifier was also set to operate in all conditions. The
operating conditions of the IAQ management methods are shown in Table 3. Table 4 shows
the timetable applied for each operating condition of the general energy consumption
scenario. Moreover, the section of the operating conditions is shown at the bottom of each
graph in Figure 4.

Table 3. Operating conditions of IAQ management methods (NV: natural ventilation, MV: mechanical
ventilation, RH: range hood, and AP: air purifier).

Operating condition 1 MV + RH

Operating condition 2 MV + AP mode 3

Operating condition 3 NV + RH

Operating condition 4 AP mode 1

Operating condition 5 AP mode 2

Operating condition 6 AP mode 4

Operating condition 7 NV

Operating condition 8 MV + AP mode 1

Operating condition 9 MV + AP mode 2

Table 4. Timetable of IAQ management operating conditions for the general energy
consumption scenario.

Time (hh:mm) Operating Condition for Spring/Autumn, Summer, and Winter Remark

07:00–07:30 1 Cooking (07:00–07:10)

07:30–19:00 2 -

19:00–19:30 1 Cooking (07:00–07:10)

19:30–23:00 2 -

For each season, the mechanical ventilation and the range hood (Operating condition
1) were set to be operated at 7:00–7:30 and 19:00–19:30, which corresponded to 10 min
during cooking and 20 min after cooking. The mechanical ventilation and air purifier
(Operating condition 2) were set to be operated at 07:30–19:00 and 19:30–23:00. The air
purifier was set to mode 3 (clean air delivery rate (CADR) = 7.0 m3/min), which is close
to the CADR (84.6 m3 × 4.8 h−1 / 60 min = 6.8 m3/min) suggested by the standard of
the Association of Home Appliance Manufacturers (AHAM) [39] and the United States
Environmental Protection Agency (EPA) [40,41].



Toxics 2022, 10, 609 9 of 19

Toxics 2022, 10, x FOR PEER REVIEW 8 of 18 
 

 

as the cooking started and continuously operated for 30 min (10 min during cooking and 
20 min after cooking). After 20 min from the end of cooking, the air purifier was also set 
to operate in all conditions. The operating conditions of the IAQ management methods 
are shown in Table 3. Table 4 shows the timetable applied for each operating condition of 
the general energy consumption scenario. Moreover, the section of the operating 
conditions is shown at the bottom of each graph in Figure 4. 

   
Figure 4. Changes in PM2.5 concentration and energy consumption with time to maintain average 
PM2.5 <10 μg/m3 under general energy consumption scenario. (a) Spring/autumn. (b) Summer. (c) 
Winter. 

Table 3. Operating conditions of IAQ management methods (NV: natural ventilation, MV: 
mechanical ventilation, RH: range hood, and AP: air purifier). 

Operating condition 1 MV + RH 
Operating condition 2 MV + AP mode 3 
Operating condition 3 NV + RH 
Operating condition 4 AP mode 1 

(a)

(b)

(c)

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

En
er

gy
 c

on
su

m
pt

io
n 

(k
W

)

In
do

or
 P

M
2.

5
(μ

g/
m

3 )

Only electric power of IAQ methods

No heat loss due to using IAQ methods

Average indoor PM2.5 (outdoor PM2.5 : 15 μg/m3) : 5.7 μg/m3

Average indoor PM2.5 (outdoor PM2.5 : 50 μg/m3) : 7.8 μg/m3

Total energy consumption : 2.04 kWh 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

20

40

60

80

100

120

En
er

gy
 co

ns
um

pt
io

n 
(k

W
)

In
do

or
 P

M
2.

5
(μ

g/
m

3 )

Only electric power of IAQ methods

No heat loss due to using IAQ methods

Average indoor PM2.5 (outdoor PM2.5 : 15 μg/m3) : 5.7 μg/m3

Average indoor PM2.5 (outdoor PM2.5 : 50 μg/m3) : 7.8 μg/m3

Total energy consumption : 2.01 kWh 

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

En
er

gy
 c

on
su

m
pt

io
n 

(k
W

)

In
do

or
 P

M
2.

5
(μ

g/
m

3 )

Time (hh:mm)

Average indoor PM2.5 (outdoor PM2.5 : 15 μg/m3) : 5.7 μg/m3

Average indoor PM2.5 (outdoor PM2.5 : 50 μg/m3) : 7.8 μg/m3

Total energy consumption : 6.83 kWh 

(1) (1)(2) (2)
Operating

condition

Outdoor PM2.5: 15 μg/m3

Outdoor PM2.5: 50 μg/m3

Energy consumption

Outdoor PM2.5: 15 μg/m3

Outdoor PM2.5: 50 μg/m3

Energy consumption

Outdoor PM2.5: 15 μg/m3

Outdoor PM2.5: 50 μg/m3

Energy consumption

Figure 4. Changes in PM2.5 concentration and energy consumption with time to maintain average
PM2.5 < 10 µg/m3 under general energy consumption scenario. (a) Spring/autumn. (b) Summer.
(c) Winter.

In the general energy consumption scenario for spring/autumn, we found that the
use of the range hood and mechanical ventilation caused significant heat loss at 7:00–10:00,
when the indoor and outdoor enthalpy difference was the largest. In contrast, we observed
less heat loss after 10:00 due to the increase in outdoor temperature, and the electric
power of each method was dominantly consumed among the total energy consumption.
We observed less heat loss during the application of each method in summer because
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of the relatively low outdoor temperature at 7:00–13:00; however, due to the increase in
outdoor temperature, we observed an increase in heat gain from 13:00 when applying the
mechanical ventilation, which reduced again after 20:00. Unlike the other seasons, heat
loss occurred throughout all hours in winter, as the outdoor temperature was significantly
lower than the indoor temperature throughout the day. This caused a large difference
between indoor and outdoor enthalpy. Significant heat loss still occurred even when using
the mechanical ventilation energy recovery system.

When the outdoor PM2.5 concentration was set at 15 µg/m3, the indoor average PM2.5
concentration in all seasons was 5.7 µg/m3, and the energy consumption by the IAQ
management methods was approximately 2.04, 2.01, and 6.83 kWh in spring/autumn,
summer, and winter, respectively. When the outdoor PM2.5 concentration was set at 50
µg/m3, the indoor average PM2.5 concentration was 7.8 µg/m3 in all seasons, and the
energy consumption by the IAQ management methods was equal to the consumption
under an outdoor PM2.5 concentration of 15 µg/m3.

Figures 5 and 6 shows the energy consumption (by IAQ management method) and
indoor PM2.5 concentration with time for the energy consumption reduction scenario in
spring/ autumn and summer, respectively. Results were obtained under the assumptions
that outdoor PM2.5 was 15 µg/m3 (Figures 5a and 6a) or 50 µg/m3 (Figures 5b and 6b).
Table 5 shows the timetable of operating conditions for IAQ management methods under
each energy consumption reduction scenario. In the general energy consumption scenario
for spring/autumn and summer, we found that electric power was dominantly consumed
by mechanical ventilation and the air purifier, as there was little difference between the
indoor and outdoor enthalpy during 8:00–20:00 in spring/autumn and 7:00–12:00 in sum-
mer. Thus, natural ventilation instead of mechanical ventilation can be effectively used to
reduce energy consumption in the spring, autumn, and summer. The operating conditions
of IAQ management methods with time considering an outdoor PM2.5 of 15 µg/m3 in
spring/autumn and summer were as follows: during 7:00–07:30 and 19:00–19:30 (cooking
time), the range hood and natural ventilation were set to be applied (Operating condition
3) and additional natural ventilation was set to be applied during 11:30–12:00 (Operating
condition 7) to satisfy the daily ventilation requirement (average ventilation rate 0.5 h−1).
During 07:00–11:30, 12:00–19:00, and 19:30–23:00, the air purifier was set to be operated in
mode 1 (Operating condition 4) instead of mode 3 to reduce its power consumption.

Considering outdoor PM2.5 concentrations of 50 µg/m3 in spring/autumn and
summer, the same operating conditions were set as those for an outdoor PM2.5 con-
centration of 15 µg/m3, except for the operation conditions of the air purifier. During
7:00–07:30 and 19:00–19:30 (cooking time), the indoor PM2.5 concentration converged
to approximately 50 µg/m3, which matched the outdoor PM2.5 concentration, despite
using the range hood and natural ventilation for 30 min. During 7:30–8:00, 12:00–12:30,
and 19:30–20:00 (after cooking and ventilation), the air purifier was set to be operated
in mode 4 (i.e., the maximum mode; Operating condition 6) to rapidly reduce indoor
PM2.5 concentrations. During 8:00–11:30 and 20:00–23:00, the air purifier mode was set to
mode 2 (Operating condition 5) to maintain a daily average indoor PM2.5 concentration
<10 µg/m3. Moreover, even after only natural ventilation was applied in the daytime (at
11:30–12:00), the air purifier operating mode was set to mode 4 (Operating condition 6)
at 12:00–12:30 to rapidly reduce indoor PM2.5, which had increased due to the supply of
outdoor air during ventilation. By applying natural ventilation instead of mechanical
ventilation, heat loss could be increased due to the supply of outdoor air without heat
exchange during 7:00–7:30 in spring/autumn and 19:00–19:30 in summer. However,
electric power was not consumed in natural ventilation, thus yielding reduced total
energy consumption.



Toxics 2022, 10, 609 11 of 19

Toxics 2022, 10, x FOR PEER REVIEW 10 of 18 
 

 

conditions of IAQ management methods with time considering an outdoor PM2.5 of 15 
μg/m3 in spring/autumn and summer were as follows: during 7:00–07:30 and 19:00–19:30 
(cooking time), the range hood and natural ventilation were set to be applied (Operating 
condition 3) and additional natural ventilation was set to be applied during 11:30–12:00 
(Operating condition 7) to satisfy the daily ventilation requirement (average ventilation 
rate 0.5 h−1). During 07:00–11:30, 12:00–19:00, and 19:30–23:00, the air purifier was set to be 
operated in mode 1 (Operating condition 4) instead of mode 3 to reduce its power 
consumption.  

  
Figure 5. Changes in PM2.5 concentration and energy consumption with time to maintain average 
PM2.5 <10 μg/m3 under the energy consumption reduction scenario in spring/autumn (GS: general 
scenario, RS: reduction scenario). (a) Outdoor PM2.5: 15 μg/m3. (b) Outdoor PM2.5: 50 μg/m3. 

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00
En

er
gy

 c
on

su
m

pt
io

n 
(k

W
)

In
do

or
 P

M
2.

5
(μ

g/
m

3 )

Time (hh:mm)

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

En
er

gy
 c

on
su

m
pt

io
n 

(k
W

)

In
do

or
 P

M
2.

5
(μ

g/
m

3 )

(a)

(b)

(3) (3)(4) (4)(4)(7)

Average indoor PM2.5 : 7.1 μg/m3

Total energy consumption (RS) : 1.20 kWh

Total energy consumption (GS) : 2.04 kWh

Operating

condition

(3) (3)(5) (5)(5)(7)(6) (6) (6)
Operating

condition

Average indoor PM2.5 : 8.4 μg/m3

Total energy consumption : 1.35 kWh

Total energy consumption (GS) : 2.04 kWh

Energy consumption (GS)

Energy consumption (RS)

Energy consumption (GS)

Energy consumption (RS)

Outdoor PM2.5: 15 μg/m3

Energy consumption (RS)
Energy consumption (GS)

Outdoor PM2.5: 50 μg/m3

Energy consumption (RS)
Energy consumption (GS)

Figure 5. Changes in PM2.5 concentration and energy consumption with time to maintain average
PM2.5 < 10 µg/m3 under the energy consumption reduction scenario in spring/autumn (GS: general
scenario, RS: reduction scenario). (a) Outdoor PM2.5: 15 µg/m3. (b) Outdoor PM2.5: 50 µg/m3.

The energy consumption reduction scenario in winter is shown in Figure 7. Results
were obtained assuming that the outdoor PM2.5 concentrations were 15 or 50 µg/m3

(Figure 7a and 7b, respectively). The timetable of the operating conditions for the energy
consumption reduction scenario in winter is shown in Table 6. In contrast to its utility
in other seasons, natural ventilation could not reduce energy consumption in winter
due to the continual loss of heat. However, energy consumption could be reduced while
satisfying the indoor PM2.5 concentration by applying mechanical ventilation (equipped
with an energy recovery system) as well as optimizing the operation mode of the air
purifier. During 07:00–07:30 in winter, mechanical ventilation and the range hood were
set to be applied (Operating condition 1), while the mechanical ventilation and the air
purifier (Operating conditions 8 and 9) were set to be applied at other times (07:30–19:00
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and 19:30–23:00). The operating condition of the air purifier was set to modes 1 and 2
when the outdoor PM2.5 concentrations were 15 and 50 µg/m3, respectively.
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Figure 6. Changes in PM2.5 concentration and energy consumption with time to maintain average
PM2.5 < 10 µg/m3 under the energy consumption reduction scenario in summer (GS: general scenario,
RS: reduction scenario). (a) Outdoor PM2.5: 15 µg/m3. (b) Outdoor PM2.5: 50 µg/m3.
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Table 5. Timetable of IAQ management operating conditions for the energy consumption reduction
scenario in spring/autumn and summer (NV: natural ventilation, MV: mechanical ventilation, RH:
range hood, and AP: air purifier).

Time (hh:mm)
Operating Conditions for Spring/Autumn, and Summer

Remark
Outdoor PM2.5: 15 µg/m3 Outdoor PM2.5: 50 µg/m3

07:00–07:30 3
(NV + RH)

3
(NV + RH)

Cooking
(07:00–07:10)

07:30–08:00 4
(AP mode 1)

6
(AP mode 4) -

08:00–11:30 4
(AP mode 1)

5
(AP mode 2) -

11:30–12:00 7
(NV)

7
(NV) -

12:00–12:30 4
(AP mode 1)

6
(AP mode 4) -

12:30–19:00 4
(AP mode 1)

5
(AP mode 2) -

19:00–19:30 3
(NV + RH)

3
(NV + RH)

Cooking
(07:00–07:10)

19:30–20:00 4
(AP mode 1)

6
(AP mode 4) -

20:00–23:00 4
(AP mode 1)

5
(AP mode 2) -

Table 6. Timetable of IAQ management operating conditions for the energy consumption reduction
scenario in winter (NV: natural ventilation, MV: mechanical ventilation, RH: range hood, and AP:
air purifier).

Time (hh:mm)
Operating Conditions for Winter

Remark
Outdoor PM2.5: 15 µg/m3 Outdoor PM2.5: 50 µg/m3

07:00–07:30 1
(MV + RH)

1
(MV + RH)

Cooking
(07:00–07:10)

07:30–19:00 8
(MV + AP mode 1)

9
(MV + AP mode 2) -

19:00–19:30 1
(MV + RH)

1
(MV + RH)

Cooking
(07:00–07:10)

19:30–23:00 8
(MV + AP mode 1)

9
(MV + AP mode 2) -

Figure 8 shows the average indoor PM2.5, energy consumption, and energy sav-
ings (reduction rate) for the energy consumption reduction scenario compared to the
general energy consumption scenario. In the energy consumption reduction scenario at
outdoor PM2.5 concentrations of 15 µg/m3, the average indoor PM2.5 concentrations
for spring/autumn, summer, and winter were approximately 7.1, 7.1, and 8.8 µg/m3,
respectively. The corresponding energy consumption from the use of the IAQ man-
agement methods was 1.20, 0.81, and 6.54 kWh, respectively. Compared to those in
the general scenario, the corresponding energy savings (reduction rate) through the
reduction scenario were approximately 0.85 (41.5%), 1.20 (59.7%), and 0.28 (4.2%) kWh,
respectively. When the outdoor PM2.5 concentration was 50 µg/m3, the indoor PM2.5
concentrations were 8.4, 8.4, and 9.1 µg/m3; the energy consumption levels were 1.35,
0.96, and 6.66 kWh; and the energy savings (reduction rates) were approximately 0.69
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(34.0%), 1.05 (52.1%), and 0.17 (2.5%) kWh, respectively, compared to those in the gen-
eral scenario. The relatively high outdoor PM2.5 concentration of 50 µg/m3 resulted in
a slight increase in energy consumption (0.12–0.15 kWh) to effectively manage indoor
PM2.5 concentrations compared to the required energy consumption at an outdoor PM2.5
concentration of 15 µg/m3.
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Figure 7. Changes in PM2.5 concentration and energy consumption with time to maintain average
PM2.5 < 10 µg/m3 under the energy consumption reduction scenario in winter (GS: general scenario,
RS: reduction scenario). (a) Outdoor PM2.5: 15 µg/m3. (b) Outdoor PM2.5: 50 µg/m3.
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Figure 8. Averaged indoor PM2.5 and energy consumption in general energy consumption and
energy consumption reduction scenarios (GS: general scenario, RS: reduction scenario). (a) Outdoor
PM2.5: 15 µg/m3. (b) Outdoor PM2.5: 50 µg/m3.

In order to further analyze our scenario model, we compared the energy consump-
tion when the outdoor temperature was changed in each season’s temperature and
humidity conditions (Table 4). Figure 9 shows the energy consumption of each scenario
with a difference of ±3 ◦C in the outdoor temperature (Tout

∗) under the existing tem-
perature and humidity conditions (Table 4) for each season. It shows that the reduction
scenario through our scenario model is effective in terms of energy consumption under
the outdoor temperature conditions of all seasons except for the Tout = Tout

∗ − 3 °C of
spring/autumn. In the case of the reduction scenario at the Tout = Tout

∗ − 3 °C with an
outdoor PM2.5 of 15 µg/m3 in spring/autumn, although heat loss by applying natural
ventilation increased than the Tout

∗, the total energy consumption decreased compared
to the general scenario because there was no power consumption for mechanical ventila-
tion. However, In the case of reduction scenario at the Tout = Tout

∗ − 3 °C temperature
difference with an outdoor PM2.5 of 50 µg/m3 in spring/autumn, although power con-
sumption of mechanical ventilation was not occurred, the total energy consumption
increased compared to the general scenario due to the relatively high flow rate of the air
purifier to maintain indoor PM2.5 below 10 µg/m3. In order to reduce the average energy
consumption in spring/autumn, it is efficient to apply natural ventilation instead of me-
chanical ventilation, but in the case of high outdoor PM2.5 in early spring or late autumn
when the outdoor temperature is low, heat loss due to natural ventilation and power
consumption of the air purifier increase, therefore, applying mechanical ventilation is
more effective for energy saving.
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4. Conclusions

In this study, we established a theoretical model for evaluating indoor PM2.5 man-
agement and energy consumption in residential apartments in Korea. Our theoretical
model of indoor PM2.5 considered various IAQ management methods, namely, natural
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ventilation, mechanical ventilation, range hood use, and air purifier use in relation
to outdoor PM2.5 concentrations within the constraints of apartment specifications
(i.e., infiltration, exfiltration, and deposition). The theoretical model for indoor PM2.5
estimation was verified by comparison with experimental results under the same con-
ditions. Through the validated model, we derived energy consumption reduction
scenarios using various IAQ management methods by season. Difference in enthalpy
due to indoor and outdoor temperature and humidity was a major role in effectively
achieving a target indoor PM2.5 concentration less than 10 µg/m3 while minimizing
energy consumption. During the daytime in spring/autumn and summer, the role of
the energy recovery system in the mechanical ventilation system was less effective
compared to natural ventilation. However, in winter, which showed the highest differ-
ence between indoor and outdoor temperature and humidity, mechanical ventilation
effectively reduced heat loss due to the difference in indoor and outdoor enthalpy.
Depending on the season and outdoor PM2.5, energy consumption was reduced by
2.7–59.7% by introducing the appropriate energy consumption reduction scenario
considering indoor and outdoor conditions.

This study proposes an efficient scenario-based IAQ management operation ap-
proach for each season that can effectively reduce energy consumption while maintaining
indoor PM2.5 concentrations under 10 µg/m3. The scenarios proposed in this study are
expected to provide useful guidelines for effective indoor PM2.5 management in residen-
tial facilities and homes. To further improve IAQ and minimize energy consumption
in residential environments, future studies should incorporate real-time indoor and
outdoor temperature and humidity data as well as PM2.5 concentrations under actual
residential conditions.
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