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Abstract: Height for age is an important and widely used population-level indicator of children’s
health. Morbidity trends show that stunting in young children is a significant public health concern.
Recent studies point to environmental factors as an understudied area of child growth failure in Africa.
Data on child measurements of height-for-age and confounders were obtained from fifteen waves
of the Demographic and Health Surveys (DHS) for six countries in East Africa. Monthly ambient
PM2.5 concentration data was retrieved from the Atmospheric Composition Analysis Group (ACAG)
global surface PM2.5 estimates and spatially integrated with DHS data. Generalized additive models
with linear and logistic regression were used to estimate the exposure-response relationship between
prenatal PM2.5 and height-for-age and stunting among children under five in East Africa (EA). Fully
adjusted models showed that for each 10 µg/m3 increase in PM2.5 concentration there is a 0.069
(CI: 0.097, 0.041) standard deviation decrease in height-for-age and 9% higher odds of being stunted.
Our study identified ambient PM2.5 as an environmental risk factor for lower height-for-age among
young children in EA. This underscores the need to address emissions of harmful air pollutants in
EA as adverse health effects are attributable to ambient PM2.5 air pollution.
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1. Introduction

Ambient air pollution is higher in low- and middle-income countries (LMICs) com-
pared with higher-income countries. Consequently, childhood morbidity and mortality
related to prenatal ambient air pollution exposure are assumed to be disproportionately
higher in LMICs [1]. However, there is minimal epidemiological data to substantiate these
assumptions, particularly for the African continent.

The East African countries of Uganda, Rwanda, Ethiopia, Burundi, Kenya, and Tanza-
nia are low-income countries [2,3] with varying ambient air pollution levels. East Africa
shares a considerable burden of childhood mortality, accounting for more than half of all
under-five children mortality in Sub-Saharan Africa [4]. Air pollution has been considered
a major public health concern as a top risk factor for mortality in these countries and
accounts for almost 1 million deaths annually. Cooking with solid fuels in households is
also a significant and persistent source of air pollution in sub-Saharan Africa [5,6].

The ambient air pollutant of interest in this study is fine particulate matter with an
aerodynamic diameter of 2.5 micrometers or less (PM2.5). Ambient PM2.5 is ubiquitous
and can be found increasingly in all environments, especially in growing urban cities [7,8].
It is harmful to human health, with young children and elderly populations particularly
vulnerable to the effects of PM2.5 exposure [9–11]. PM2.5 is small enough to lodge in the
alveolar region of the lower respiratory system, enabling PM2.5 to evade the body’s innate
and adaptive immune defenses [12]. This characteristic of PM2.5 exposure affords some
particles access to the bloodstream, and recent evidence shows that it can reach the placenta
during gestation [13]. Once PM2.5 enters, it can lead to cardiovascular effects but may also
translocate to the placenta, which can affect the fetus’s health [14,15]. Several mechanisms
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are being explored that explain these findings, including oxidative stress, mitochondrial
dysfunction, reduced telomere length, and DNA methylation [16–18]. Indeed, prenatal
PM2.5 exposure has been causally linked with adverse birth outcomes such as low birth
weight and growth impairment [19].

An important and widely studied early-life population health indicator for growth
impairment is the height of young children. Height-for-age measurements are used to
diagnose stunting in children. Children who are two standard deviations below the average
height-for-age are considered stunted [20]. Height-for-age z-score charts, used to define
stunting, are recommended by the World Health Organization (WHO) to assess a child’s
growth and as an indicator of undernutrition [21]. Lower height-for-age related to poor
nutrition is prevalent in children under five and is linked to an increased risk of chronic
disease and long-term physical and cognitive defects [16,18]. Below-average height-for-age
has also been linked with adverse environmental conditions, such as climate, precipitation,
drought, air quality, and social vulnerability [22].

Morbidity and mortality data for East Africa show that wasting, undernutrition, and
stunting in children contribute to a significant burden of childhood diseases [23]. The
pooled prevalence among under-five children is estimated at 33.94% in East Africa, well
above the global stunting prevalence of 22% [23]. Although stunting has been associated
with malnutrition and poverty, stunting and the determinants of childhood growth are
complex and multifactorial. Recent studies conducted in LMICs consider a much broader
range of environmental factors that might affect stunting [16,22,24,25], highlighting the
idea of the exposome to understand the combined effects that chemical, biological, and
physical stressors have on human development [26,27].

For instance, data show that poor access to water, sanitation, and hygiene (WASH)
infrastructure is associated with childhood stunting [28–30]. Certain facets of agricultural
activity have also demonstrated relationships with child growth. In Indonesia, children
exposed to high levels of pesticides due to involvement in agricultural activities at school
age were found to be over three times more likely to experience stunting than unexposed
children [31]. In rural South Africa, prenatal exposure to insecticides associated with indoor
residual spraying (e.g., pyrethroids) has been associated with lower childhood growth in
early life [32]. Along with these stressors, the air pollutant, PM2.5, is a stressor that can be
composed of pesticides and other similar chemicals.

Air pollution epidemiological literature has some data linking air pollution exposures
to childhood growth outcomes. In-utero exposure to ambient PM2.5 was significantly
associated with a higher risk of stunting among children living in Bangladesh [16]. Ambient
PM2.5 is especially of concern in households using biomass fuel for cooking, since doing
so can increase indoor air pollution [33,34] and is significantly associated with childhood
stunting [35–37]. Tobacco smoke in the home, another contributor to poor household air
quality, is also correlated with significantly higher risks of childhood stunting [37].

East African countries demonstrate similar experiences of environmental risk factors
related to stunting prevalence. Poor sanitary conditions have been associated with higher
stunting [38–42]. Agricultural risk factors are critical to consider as projections indicate
future changes in Africa’s climate. Despite an estimated 77% of sub-Saharan African
households that use polluting cooking fuel, the associations between biomass fuel exposure
and ambient outdoor air pollution and stunting in children within this context have been
understudied [43].

This study aims to test the hypothesis that prenatal exposure to ambient PM2.5 is
negatively associated with height-for-age and stunting in East African children under
five. We combine existing health, sociodemographic, and environmental datasets at the
individual, household, and area levels for children in six countries within the East African
Community (EAC) region. We apply multilevel linear regression modeling to these data
to quantify the crude and adjusted exposure-response relationship of modeled prenatal
ambient PM2.5 exposure on height-for-age and stunting.
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2. Materials and Methods
2.1. Study Area

The East African countries included in the analysis are Uganda, Rwanda, Ethiopia,
Burundi, Kenya, and Tanzania. These countries’ boundaries are connected and share an
anthropological and genetic history [44]. The sources of air pollution are mostly similar in
these countries, as this region is experiencing rapid urbanization but still retains extensive
rural populations with a heavy reliance on the agricultural sector, subsistence agriculture,
and use of solid fuels for cooking [6,45,46]. Anthropogenic sources of PM2.5 in the region
include traffic, industrial facilities, combustion of solid waste, charcoal and wood, and
agrochemical usage [47,48].

2.2. DHS Survey Data

This project used nationally-representative health survey data from fifteen waves of
the DHS for six countries between 2006 and 2019. Table 1 shows the waves and years of DHS
data that were included for each country and the sample size of each wave based on the
study’s inclusion criteria. The DHS is a two-stage cluster sample, where randomly sampled
clusters of households from enumeration areas are surveyed. A detailed methodology
of DHS is available elsewhere [49]. Therefore, we obtained a representative cross-section
of East African children under five. The inclusion criteria for children under 5 in this
study included (1) less than 60 months old at the time of the survey, (2) a valid height-
for-age standard deviation value calculated, (3) singleton births, and (4) a matched PM2.5
estimate (see Figure 1). Other variables from the DHS were obtained for use as covariates
in statistical models (see Section 2.4 Statistical Analyses).
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Table 1. Demographic Health Survey waves for each country included in the study.

Country DHS Wave Analyzed Sample Size

Burundi 2010 3376
2016–2017 5876

Ethiopia 2011 8627
2016 8319
2019 4967

Kenya 2008–2009 4742
2014 17,716

Rwanda 2010 3952
2014–2015 3402

2019 3708
Tanzania 2010 6352

2015–2016 8722
Uganda 2006 1859

2011 1883
2016 4215

2.3. Pre- and Postnatal Particulate Matter PM2.5 Exposure and Crop Estimation
2.3.1. Predicted PM2.5 Surfaces

The PM2.5 concentration data in this research comes from the Atmospheric Compo-
sition Analysis Group (ACAG) global PM2.5 estimates from 1998 to 2020 [50]. ACAG
provides data on ground-level prediction surfaces of average monthly PM2.5 concentration
available at a spatial resolution of 0.1◦ × 0.1◦ (1 km × 1 km grid). ACAG derived these
satellite-based global PM2.5 prediction surfaces by combining aerosol optical depth (AOD)
data from the satellite instruments MODIS (Moderate Resolution Imaging Spectroradiome-
ter) and MISR (Multiangle Imaging Spectroradiometer) with chemical transport models
and ground-based air monitoring data [51].

2.3.2. Linkage of PM2.5 Data with DHS Data

We spatially linked the spatial grid points of the modeled PM2.5 raster data with DHS
data by using the latitude and longitude of each DHS cluster for each child in our study. The
DHS provides these geographic coordinates with a 2 km uncertainty in urban clusters and
a 5 km uncertainty in rural clusters to protect the confidentiality of participants. Therefore,
we assigned each cluster a buffer zone of 2 km and 5 km for urban and rural clusters,
respectively [16]. We clipped the PM2.5 prediction surfaces for each cluster buffer zone to
assign exposures. Specifically, we used the Zonal Statistics tool in ArcGIS to calculate an
average PM2.5 of grid-point values within each cluster buffer.

2.3.3. Percent Crop Estimates

We retrieved land-use data from the European Space Agency (ESA) Climate Change
Initiative (CCI) project. This project provides maps of land cover classifications at 300 m
resolution from the years 1992 to 2015 (v2.0.7) and from 2016 to 2019 (v2.1.1) [52,53]. Studies
have used this dataset to track land cover changes at global and regional scales [54,55].
The raster data for global land use cover for each DHS wave year was downloaded and
analyzed in ArcGIS Pro. Briefly, we first clipped yearly raster data to the East Africa region.
We then converted yearly crop cover raster values to polygons values by averaging the crop
cover raster values for buffers of urban and rural clusters. Thus, we calculated an annual
percent cropland cover for each DHS cluster, enabling a crop-cover exposure assignment
for each child based on birth year.

2.3.4. Prenatal and Postnatal Exposure Estimates

Prenatal PM2.5 exposure was estimated using the months preceding each child’s
reported date of birth [16]. Specifically, for each child’s gestation period, the child’s date
of birth (given by the DHS) was subtracted by 268 days, providing the starting month
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of gestation. Next, we calculated the child-specific PM2.5 prenatal exposures (including
the month of birth) by averaging each month within the estimated gestation period. We
calculated the child-specific postnatal exposures using the child’s date of birth and the date
of the child’s height measurement (also given by DHS) [16].

2.4. Statistical Analyses

We calculated summary statistics for all study variables and performed bivariate
analyses (ANOVA) to compare the levels of height-for-age with each covariate selected for
the study. We constructed a directed acyclic graph (DAG) (see Figure S1, Supplemental
Materials) to choose a candidate for testing bivariate relationships. We used general
additive models (GAMs) to quantify the exposure-response relationship between prenatal
PM2.5 exposure estimates and height-for-age, including random effects for the child’s
mother, primary sampling unit (PSU) cluster, country, and month of birth. Smoothing
terms were fit to adjust for the non-linear effects of birth year and percent crop coverage on
height for age. Additional tested models included breastfeeding (Model 2) and postnatal
PM2.5 exposure (Model 3) as other covariates. In addition, we used multivariable logistic
regression to estimate the adjusted Odds Ratios (OR) between prenatal and postnatal
ambient PM2.5 exposures for stunting. Both exposures were fit as quartiles of exposure and
were included in the same model to estimate their independent effects on stunting. Since
stunting is considered a common health outcome, we can assume the OR approximates
the RR. Therefore, we used the adjusted ORs estimated from the model and converted
them to Relative Risk (RR) of stunting using the oddsratio_to_riskratio function in the
effectsize package (version 0.8.2) in R [56,57]. Using these RR estimates, we also computed
a population attributable fraction (PAF) that can be attributed to ambient PM2.5 among
children exposed prenatally and postnatally. The following formula was used to compute
the PAF:

pd ∗ (RR − 1)/RR

where pd is the proportion of cases (stunted) exposed to the risk factor (in this case, the
proportion of children in the highest quartile of PM2.5 exposure [0.25]) and RR is the relative
risk of stunting associated with the exposure [58].

Variables for Covariate Adjustment

Household-level covariates included the type of residence (urban or rural), wealth
index, and use of polluting fuel. Maternal and child-level variables, including maternal
education and information on the child’s breastfeeding history, were also analyzed. The
DHS survey reported the wealth index as quintiles, which we fit as covariates in their
original form. We reclassified the DHS variable for polluting fuel into a binary variable as
a cleaner energy source (0 = electricity, LPG, natural gas, and biogas) versus a polluting
energy source (1 = kerosene, coal, lignite, charcoal, wood, straw/shrubs/grass, agricultural
crop, animal dung, briquette, bottle gas, and other). Using multivariable logistic regression,
we performed multiple imputation on missing values for polluting fuel use (N = 1616).
We reclassified the duration of breastfeeding variable into a binary variable indicating
“ever breastfed” (≥1 month) or “never breastfed”. Missing observations for breastfeeding
were also imputed (N = 9387) using multivariable logistic regression. The breastfeeding
variable was conceptualized as “ever” and “never” because the analysis was robust enough
to identify the effect of early-childhood nutrition on the outcome.

3. Results
3.1. Summary and Descriptive Statistics

Our final study sample size included 87,716 children under five with prenatal PM2.5
exposure estimates in six East African countries (Table 2). For the complete sample, children
were exposed to an entire-pregnancy average of 25.83 µg/m3 ambient PM2.5, five times
above the WHO recommended level of 5 µg/m3 annually. Rwanda had the highest prenatal
PM2.5 exposure on average (37.06 µg/m3), followed by Burundi (36.98 µg/m3), Uganda
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(30.46 µg/m3), Tanzania (21.81 µg/m3), Kenya (21.43 µg/m3), and Ethiopia (21.05 µg/m3).
Generally, children born during the wet season had lower levels of prenatal PM2.5, and
during the dry season, higher levels of prenatal PM2.5. We also observed higher PM2.5 levels
in the dry seasons for Burundi, Kenya, Rwanda, Tanzania, and Uganda (Figure 2) (see
Figure S2, Supplemental Materials, for annual trends). Ethiopia and Kenya had the most
negligible monthly variability, with no apparent seasonal trend. Regardless of seasonal
variations, children in Burundi and Rwanda experienced prenatal PM2.5 exposures above
the mean.

Table 2. Summary statistics of study population characteristics overall and stratified by country.

All Countries Burundi Rwanda Kenya Tanzania Ethiopia Uganda

Number of children <60 months 87,716 9252 11,062 22,458 15,074 21,913 7957

Mean prenatal PM2.5 (µg/m3) 25.98 37.03 37.02 22.09 23.22 19.69 31.27
Mean height-for-age z-score −1.51 −2.17 −1.59 −1.19 −1.53 −1.54 −1.30
Percent Stunted 37.16 54.25 37.80 27.95 35.72 38.58 31.05
Mean age in months 28.69 28.72 29.09 28.99 27.66 29.12 27.94
Mean birth order 3.62 3.76 3.20 3.25 3.64 3.95 4.05
Percent Girls 49.44 49.47 49.49 49.34 50.02 49.03 49.65
Percent Rural 80.80 91.29 85.14 69.59 76.91 86.06 83.72
Percent used polluting fuel for cooking 97.48 99.85 98.99 93.41 99.37 97.53 99.63
Percent ever breastfed 98.47 99.30 99.60 98.73 98.81 96.99 98.45

Survey package functions in R were used to account for the complex stratified random sampling used by DHS.
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Figure 2. Seasonal trend of prenatal PM2.5 exposures stratified by child’s month of birth and by
country. The horizontal black line shows the overall PM2.5 population average (25.83 µg/m3), five
times above the WHO annual recommended maximum level of 5 µg/m3.

Overall, children’s height-for-age z-score in the study population was low (mean = −1.51
[95% CI: −1.49, −1.53]). The height for age Z-scores were lowest in Burundi (mean = −2.17),
and the highest was in Kenya (mean = −1.19) (Table 2). Most of the country’s height-for-
age distribution was around the mean for the months of birth, with little to no noticeable
variation (Figure 3) (see Figure S3, Supplemental Materials, for annual trends). Height-for-
age among children in Burundi was below the height-for-age mean of the study population.
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Figure 3. Height-for-age standard deviation by child’s month of birth for each country.

The mean child age was 28.69 months, with 49.4% of the study population being
comprised of girls. Most of the children in the sample resided in a rural setting (80.8%),
ranging from 69.6% rural in Kenya to 91.3% rural in Burundi. The vast majority (97.5%) of
the households included in the sample used solid fuel for cooking.

3.2. Bivariate Analyses

A bivariate analysis for each study covariate (Table 3) shows that all are associated
with height-for-age at a significance level of less than 0.001, except breastfeeding (p > 0.05).
Although breastfeeding was not significant, we included it in Model 2 because it is a known
risk factor for height for age.

Table 3. Results from bivariate analyses of each covariate’s association with height-for-age.

Covariate Height-for-Age Mean (SD) p-Value

Urban/rural status <0.001
Urban −1.03 (1.46)
Rural −1.59 (1.51)

Maternal education <0.001
No education −1.68 (1.63)

Primary −1.51 (1.43)
Secondary −1.03 (1.39)

Higher −0.52 (1.35)
Wealth index <0.001

1st quintile (poorest) −1.65 (1.60)
2nd quintile −1.66 (1.47)
3rd quintile −1.56 (1.45)
4th quintile −1.40 (1.44)

5th quintile (richest) −0.94 (1.44)
Polluting fuel use <0.001

Clean −0.53 (1.36)
Polluting −1.49 (1.51)

Breastfeeding status 0.2
Never −1.53 (1.62)
Ever −1.47 (1.52)
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3.3. Association between Pprenatal PM2.5 Exposure and Height forAge

The crude model (Table 4) indicates that a 10 µg/m3 increase in prenatal PM2.5 expo-
sure is associated with a lower height for age Z-score of −0.143 (95% CI: −0.154, −0.131).
After controlling for rurality, maternal education, wealth index, percent crop cover, and use
of polluting fuel (Model 1), a 10 µg/m3 increase of prenatal PM2.5 was associated with a
lower height-for-age Z-score by −0.08 (−0.98, −0.62). After controlling for the child ever
being breastfed (Model 2), a 10 µg/m3 increase of prenatal PM2.5 exposure was associated
with a lower height-for-age by −0.095 (−0.114, −0.076). After controlling for the indepen-
dent effect of postnatal PM2.5 exposure (Model 3), the effect of prenatal PM2.5 exposure on
height for age was slightly attenuated (β = −0.069 [−0.097, −0.041]). The effect of postnatal
PM2.5 exposure on height-for-age (β = −0.05 [−0.08, −0.02]) was slightly smaller than the
prenatal effect estimate, but had a similar magnitude in the exposure-response relationship.

Table 4. Generalized additive modeling results showing crude and adjusted effect estimates for a
10 µg/m3 increase of prenatal PM2.5 exposure and height-for-age in children under 5 years old.

Model 0 Model 1 a

β (95% CI)
Model 2 b

β (95% CI)
Model 3 c

β (95% CI)

Prenatal PM2.5 exposure −0.143 ***
(−0.154, −0.131)

−0.080 ***
(−0.98, −0.062)

−0.095 ***
(−0.114, −0.076)

−0.069 ***
(−0.097, −0.041)

Type of residence
Urban reference

Rural −0.824 ***
(−1.125, −0.524)

−0.836 ***
(−1.167, −0.505)

−0.955 ***
(−1.287, −0.623)

Maternal education
1st quartile reference

2nd quartile 0.272 *
(0.031, 0.514)

0.472 ***
(0.218, 0.726)

0.466 ***
(0.211, 0.721)

3rd quartile 2.247 ***
(1.886, 2.607)

2.602 ***
(2.214, 2.990)

2.623 ***
(2.232, 3.013)

4th quartile 4.707 ***
(4.085, 5.329)

5.111 ***
(4.420, 5.803)

5.266 ***
(4.571, 5.962)

Wealth index
1st quintile reference

2nd quintile 0.418 **
(0.135, 0.701)

0.366 *
(0.064, 0.668)

0.466 **
(0.163, 0.770)

3rd quintile 1.464 ***
(1.168, 1.761)

1.321 ***
(1.013, 1.642)

1.431 ***
(1.116, 1.747)

4th quintile 2.740 ***
(2.430, 3.051)

2.616 ***
(2.289, 2.944)

2.736 ***
(2.408, 3.065)

5th quintile 5.788 ***
(5.398, 6.179)

5.692 ***
(5.278, 6.106)

5.775 ***
(5.360, 6.191)

Use of polluting fuel
No reference

Yes −0.763 *
(−1.472, −0.053)

−0.374
(−1.165, 0.418)

−0.455
(−1.250, 0.340)

Ever Breastfed
No reference

Yes 0.812 *
(0.002, 1.622)

0.804 **
(−0.006, 1.613)

Postnatal PM2.5 exposure −0.050 ***
(−0.080, −0.020)

Observations 87,716 87,716 78,329 75,949
AIC 321,509 312,053 279,426 269,255

*** p < 0.01, ** p < 0.05, * p < 0.1. a Model 1: Smoothing terms for the year of birth, percent crop, and random
effects for primary sampling unit, mother, the month of birth, and country (graph of smoothed variables can be
seen in Figures S4 and S5). b Model 2: Ever breastfed added to the model. c Model 3: Postnatal PM2.5 exposure
added to the model. CI: Confidence Interval.
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Other covariates were independently associated with height-for-age Z-score, and
associations were in the expected directions (Table 4). For instance, children in rural
communities had significantly lower height-for-age compared with children in urban
communities. Higher maternal education, household wealth index, and ever breastfed
were all independently associated with higher height-for-age Z-scores after adjustment.
While using a polluting fuel was significantly associated with lower height-for-age Z-score
in Model 1, this association became null after adjusting for ever breastfed (Model 2).

3.4. Association between Prenatal and Postnatal PM2.5 Exposure and Stunting

Relative to the lowest prenatal PM2.5 exposure group, the highest quartile of prenatal
PM2.5 exposure is associated with a 12% (7%, 17%) higher risk of stunting (Table 5). Inde-
pendent of prenatal PM2.5 exposure and relative to the lowest postnatal PM2.5 exposure
group, the highest quartile of postnatal PM2.5 exposure is associated with an 11% (6%, 16%)
higher risk of stunting. These results suggest that 2.7% and 2.5% of the population at-
tributable risk of stunting in the study area are due to ambient prenatal PM2.5 and postnatal
PM2.5 exposures, respectively. The RR of stunting for all other risk factors considered in the
model are further summarized in Table 5.

Table 5. Adjusted relative risks of quartiles of prenatal and postnatal PM2.5 exposure for stunting
among children under 5 years old in the East Africa Region.

Adjusted RR (95% CI)

Prenatal PM2.5 exposure quartiles
4.55–19.4 µg/m3 reference
20.4–24 µg/m3 1.00 (0.97, 1.03)
25–32.7 µg/m3 1.02 (0.98, 1.06)

32.7–52.4 µg/m3 1.12 (1.07, 1.17)
Postnatal PM2.5 exposure quartiles

2.62–19.8 µg/m3 reference
20.8–24.1 µg/m3 1.02 (0.99, 1.04)
25.1–33.1 µg/m3 1.02 (0.98, 1.06)
34.1–74.7 µg/m3 1.11 (1.06, 1.16)

Type of residence
Urban reference
Rural 1.06 (1.03, 1.09)

Maternal education
1st quartile reference
2nd quartile 0.96 (0.94, 0.99)
3rd quartile 0.78 (0.74, 0.81)
4th quartile 0.58 (0.52, 0.64)

Wealth index
1st quintile reference
2nd quintile 0.95 (0.92, 0.97)
3rd quintile 0.88 (0.86, 0.91)
4th quintile 0.77 (0.75, 0.80)
5th quintile 0.57 (0.54, 0.60)

Use of polluting fuel
No reference
Yes 1.08 (0.99, 1.17)

Ever Breastfed
No reference
Yes 0.91 (0.84, 0.98)

Observations 75,949
AIC 94,760

The adjusted RR was computed using the modeling output of Odds Ratios estimated with multivariable logistic
regression, adjusting for year of birth and percent crop as smoothing terms and random effects for primary
sampling unit, mother, the month of birth, and country. Full modeling output is provided in the Supplemental
Materials (see Table S1). CI: Confidence Interval; RR: Relative Risk; AIC: Akaiki information criterion.
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4. Discussion

Using multiple waves of nationally representative DHS data for children under five
in six East African countries, our results show a robust negative exposure-response re-
lationship between prenatal ambient PM2.5 exposure and height-for-age Z-scores and a
positive prenatal PM2.5 exposure-response relationship for stunting. Additionally, our
analysis found that the overall average prenatal ambient PM2.5 exposure (25.83 µg/m3) far
exceeded the WHO annual guideline for ambient PM2.5 (5 µg/m3 [59]).

From the fully adjusted models, we observe significant adverse effects on height for
age in the study population (β range: −0.095 to −0.069 SD, Table 4). Our findings suggest
an adverse shift in the population mean and distribution of height-for-age Z-scores due
to prenatal PM2.5 exposure. Such population-level impacts imply that more children are
likely to fall into the clinically relevant classification of stunting due to elevated PM2.5
levels. Indeed, the fully adjusted logistic regression model (Table 5) showed that the
highest quartile of prenatal PM2.5 exposure is associated with a 12% higher risk of stunting
compared to the lowest exposure group. The elevated risk of stunting from elevated
prenatal ambient PM2.5 exposure underscores the clinical significance of our results.

The population attributable fraction (PAF) is a useful metric for evaluating the relative
contribution that a specific risk factor has on important population health indicators. In our
study, we estimated that 2.8% and 2.5% of stunting in East Africa is attributed to the highest
quartiles of exposure to prenatal PM2.5 and postnatal PM2.5, respectively. The estimated
PAF for stunting due to exposure to polluting cooking fuel is 7.2% in our study. Together,
the highest quartiles of prenatal and postnatal PM2.5 exposures, along with cooking with
polluting fuel, attribute to up to 12.5% of stunting risk in East Africa. This finding further
highlights the need for health policy and health promotion to emphasize air pollution
mitigation, for both ambient and household sources, and to achieve the global target to
reduce childhood stunting.

Our results compare favorably with data from the limited number of studies that have
investigated the exposure-response relationship between ambient prenatal PM2.5 exposure
and childhood height-for-age and stunting using DHS data [16,22]. Spears et al. [16,22]
found in India that a 10 µg/m3 increase in PM2.5 was associated with a 0.005 standard
deviation reduction in child height [16,22]. Their effect estimate is an order of magnitude
lower than what we observed in our study. This effect size difference may be explained by
various study design differences, such as our use of entire-pregnancy exposure estimates or
more spatially resolved exposure estimates. For example, the India study used the nearest
monitoring data to reflect exposure for an entire city, which can contribute to significant
exposure misclassification that would bias effects downward. Differences in population
vulnerability to PM2.5 effects may also explain these differences.

In Bangladesh, Goyal et al. found that children prenatally exposed to levels of entire-
pregnancy PM2.5 in the highest quartile were 1.13 times more at risk of stunting than
children prenatally exposed to PM2.5 levels [16,22]. In our study, we observed a similar
effect size, where children in the highest quartile were up to 1.12 times more at risk of
stunting compared to the lowest quartile of exposure. This Bangladesh study used similar
ACAG PM2.5 estimates. However, the ACAG estimates were only available annually at the
time of their study. In contrast, our study used updated model estimates of monthly PM2.5
concentrations, which likely reduced exposure misclassification for our study. Moreover,
we estimated postnatal exposure to control for any possible residual confounding that may
be attributed to ambient PM2.5 exposure after the prenatal period.

Our estimates for PAF also compares favorably with recent country-level PAF estimates
for ambient PM2.5 on risk of low birth weight (LBW) in Burundi, Ethiopia, Kenya, Rwanda,
Tanzania, and Uganda [19]. Ghosh et al. (2021) estimated that a median PAF of 2.04% of
LBW risk is attributable to prenatal ambient PM2.5 exposure in these countries, while our
study estimates a prenatal ambient PM2.5 PAF of 2.7% for stunting [19].

Our findings are notably consistent with the existing literature concerning other child-
growth risk factors. The bivariate and adjusted models showed that children residing in
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rural areas were likelier to have lower height-for-age and higher stunting than their urban
counterparts. This is consistent with other studies identifying rurality as a risk factor for
childhood growth impairment [60–62]. Like other studies, maternal education and wealth
index was also significantly associated with better growth outcomes in our study [63–65].
The use of polluting fuel was significantly negatively associated with height-for-age in
our study, which is also consistent with other studies that have found strong associations
between childhood growth and biomass fuel for cooking [35,37].

The results on seasonal trends showed that prenatal PM2.5 exposure varied based
on being born in the wet or dry season. Noticeably, the dry seasons had higher levels
of PM2.5, and the wet seasons had lower levels of PM2.5. Previous studies also show
that PM2.5 depends on seasonally varying factors, including weather conditions. A study
conducted in Uganda found that higher monthly precipitation was significantly predictive
of lower PM2.5 levels [66]. This finding suggests that infants born during the dry season
face disproportionately higher levels of prenatal ambient PM2.5 exposures in our study
area. However, there was no clear association between seasonality (wet versus dry) and
height-for-age.

Additionally, there were differences in air pollution between countries. These differ-
ences may be partly explained by the economic development differences between countries
in our study. According to the World Bank, the three countries below the population mean
PM2.5 levels: Kenya, Tanzania, and Ethiopia, had the highest gross domestic product in
2021 [67,68].

There are several limitations to this study. There is a risk of exposure misclassification
in our study attributed to maternal factors during pregnancy. These maternal factors could
include moving between homes during pregnancy or gestation periods that did not go
to full term. For instance, our PM2.5 exposure estimation assumed that the mother lived
in the same house during the nine months preceding the DHS household survey, which
may not be the case for some mothers. In addition, other pollutants potentially affect the
outcome of height-for-age, such as sulfur dioxide, nitrogen dioxide, and ozone [69,70].
These co-pollutants were not included in the analysis as covariates because the data was
unavailable for the region. Also, our study did not explore the composition of PM25.
Ambient PM2.5 air pollution is composed of different types of chemicals, which our study
could not assess.

Furthermore, we used calculated PM2.5 exposures with primarily satellite-driven
estimates, as ground-level data was unavailable for much of the study area to validate
predictions. However, the reported R2 from the ACAG cross-validated model was 0.90–
0.92, suggesting reliable estimates [50]. When going through the inclusion criteria, several
individuals were excluded (N = 63,284) from the analysis. However, we assume that these
unmatched observations are missing randomly, which should not introduce selection bias
in the study. Additionally, even though we used the DAG to identify the variables to
be included in the models, residual confounding could still be present in the model and
should be considered when interpreting the results of the estimated exposure-response
relationships between prenatal and postnatal PM2.5.

The strengths of this study include analyzing nationally representative data for six
East African countries using several waves of the Demographic Health Surveys (DHS).
This approach enabled us to spatially link births reported in the DHS with monthly PM2.5
values and estimate PM2.5 prenatal exposures and effects at the individual level after
controlling for multiple relevant confounding variables. Using GAMs in a hierarchical
modeling framework allowed us to further account for non-linear temporal confounders,
the hierarchical structure of the DHS survey itself, and height-for-age outcome. Our study
also leveraged newly available high spatial and temporal resolution data on PM2.5 estimates
provided on a global scale. While previous studies using DHS data in Bangladesh and India
relied on long-term annual global PM2.5 values and month-of-birth PM2.5 measurement
data, we analyzed PM2.5 global estimates available at a monthly scale and a prediction
model that improved from previous versions. Therefore, we could derive entire-pregnancy
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exposure estimates incorporating between-season variability of PM2.5, which previous
studies did not include. Therefore, our approach to exposure estimation should entail
lower exposure misclassification and, thus, more refined PM2.5 effect estimates than the
India and Bangladesh studies. Another significant strength of our analysis is the use of
multiple models with different risk factors that allowed us to interrogate the robustness of
prenatal PM2.5 effect estimates. For instance, we could control for postnatal exposures that
could confound the relationship between prenatal exposures and height for age. Indeed,
adjusting for postnatal PM2.5 resulted in attenuation in the prenatal effect estimate for
height-for-age.

5. Conclusions

We observed a significant negative exposure-response relationship between prenatal
ambient PM2.5 and childhood height-for-age in East Africa. We also found a positive
exposure-response relationship between postnatal PM2.5 exposure estimates and stunting.
Currently, stunting remains a high-priority issue in East Africa because it has implications
for morbidity and mortality and the overall economy in the long term. These results
highlight that exposure to ambient air pollution is a priority for childhood health and
development, starting from gestation through early childhood. There is also a need for
further expansion of ground air monitoring in these countries and substantial policy
changes concerning air pollution reduction in East Africa.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10110705/s1, Figure S1: Directed Acyclic Graph; Figure S2:
Trend of prenatal PM2.5 exposures stratified by child’s year of birth and by country; Figure S3: Trend
of height-for-age stratified by child’s year of birth and by country; Table S1: Crude and adjusted odds
ratios for a 10 µg/m3 increase of prenatal PM2.5 exposure and stunting in children under 5 years old.
Figure S4: Plots of non-linear effects on height-for-age for (A) year of birth and (B) percent crop cover;
Figure S5: Plots of non-linear effects on stunting for (A) year of birth and (B) percent crop cover.
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