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Abstract: Postmortem carbon monoxide (CO) and hydrogen cyanide (HCN) diffusion under ambient
conditions was assessed in a human cadaver model. The main objective of this study was to
determine whether the postmortem diffusion of HCN and CO greatly affected the determination
of HCN, carboxyhemoglobin (COHb), and carboxymyoglobin (COMb). Layered samples of blood,
musculocutaneous, and muscular specimens were collected from the adult cadavers and placed in
the tight chambers designed for the purpose of this experiment. The specimens were treated with
CO and HCN for 24 h. COHb and COMb were determined using headspace gas chromatography
(GC) with an O-FID detector while the HCN values were assessed using a GC headspace with an
NPD detector. It was shown that the skin substantially limited the diffusion of CO which penetrated
the superficial layers of the muscle very slightly, all the while not affecting the blood level of COHb
in the 4.5 cm layer of the muscle located underneath. There were no differences regarding the CO
diffusion between superficially charred and thermally coagulated compared to that observed in intact
integuments. In addition, the cutaneous sample deprived of the adipose layer was not shown to be a
barrier to the moderate diffusion of CO into the blood layer below. HCN was found to easily diffuse
from the skin to the blood vessels (vein specimens), and partial charring and thermocoagulation of
the superficial muscular layer favored the diffusion of cyanides into the tissues. Similarly to CO,
HCN diffusion to the blood and muscles was greatly limited by the adipose layer.

Keywords: combustion gas poisoning; hydrogen cyanide; carboxyhemoglobin; carboxymyoglobin;
post-mortem diffusion

1. Introduction

Due to the combustion of organic substances, wool, plastics, etc., toxic gases, such as
carbon monoxide (CO) and hydrogen cyanide (HCN) are produced [1]. Many fire-related
fatalities are caused by one or both of these gases. The toxic effects of HCN and CO are
additive; however, both contribute to tissue hypoxia via different mechanisms [2–5]. In
cases of charred corpses that are found at the site of a fire, forensic experts must determine
whether the victim was alive when the fire started, since there are cases wherein a fire was
started in order to cover up criminal traces, such as homicide, for example. Diagnostic
procedures for HCN poisoning (for forensic purposes) involve determinations of cyanide
(total or free form) in blood and tissues by various methods [6]. CO poisonings are
diagnosed by determining the percentage of COHb [7–10]; whereas, in the case of partial
charring of corpses and thermal coagulation of blood, CO poisonings can be diagnosed
by carboxymyoglobin determinations in specimens of the deeper layers of muscles [11].
However, CO affinity for myoglobin is a few times lower than for hemoglobin. Both CO
and HCN are lighter than air. HCN is soluble in water (in the form of weak hydrocyanic
acid) while CO is slightly soluble.
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1.1. CO Diffusion

Examples of easy CO penetration through gypsum wallboards have been reported [12].
The penetration ability of atmospheric CO into the tissues is commonly used in the food
industry to stabilize the color of the meat [13]. In living subjects, CO absorption in blood
through the pulmonary alveoli is well studied and known to be extremely rapid, while
its possible penetration through the skin integuments is largely overlooked. However,
in many older German sources, authors have recommended sampling blood for COHb
analysis from corpses exposed to CO atmospheres from cardiac cavities and not from
peripheral veins, due to the risk of diagnostic errors related to passive diffusion through the
integuments [14–16]. We are aware of only one such recommendation in the older English
textbooks [17]. The current scientific literature generally does not mention recommend-
ing sampling from cardiac cavities; however, this practice is still used in many forensic
institutions nowadays.

Historical background: The issue of postmortem CO diffusion through integuments
and into soft tissues was first highlighted by Wachholz and Lemberger [18,19], who placed
the corpses of newborns in containers filled with pure CO and observed significant changes
in livor color after only a 30 min incubation. Their findings were corroborated by Mirto,
Dominicis, Strassmann, and Stoll [19–21]; however, they also used the corpses of newborns
and infants and determined COHb qualitatively only. Schwarzacher and Reuter [22,23]
have demonstrated that after a 14 h exposure of corpses to CO, the gas permeates the
superficial veins and superficial muscular layers exclusively. Moreover, Breitenecker
has found that after a 48 h CO incubation period, a 2–5% concentration of COHb was
found in the heart and cranial sinuses, and a 75% concentration was found in superficial
subcutaneous veins [14].

1.2. HCN Diffusion

Cyanide may be one of the major contributors to mortality observed in approxi-
mately 3000–6000 deaths from home structure fires occurring in the years 1980–2021 in
the United States [24]. Many synthesized (melamine, polyamide, polyurethane, polyacry-
lonitrile, urea–formaldehyde) and natural (e.g., wool, silk) compounds may release HCN
during burning [25]. Importantly, HCN can also be absorbed through the skin [26,27].
Drinker [28] and Potter [29] have reported that workers exposed to HCN became dizzy
and fell unconscious despite wearing gas masks providing respiratory protection. The
pulmonary absorption of HCN is much faster compared to the dermal absorption; the
amount and speed of absorption through the human skin depend on the amount of skin
moisture as well as the duration of skin contact [27,30]. An average LD 50 value for der-
mal exposure of 100 mg/kg body weight was estimated for humans [31]. Concentrations
of 7000–12,000 mg/m3 were shown to be fatal after a 5 min exposure of workers with
self-contained respirators that were not provided with an effective skin protection [32].
Moreover, cases of postmortem CO diffusion have also been reported [33]. On the other
hand, no HCN nor carboxymyoglobin have been found in the blood samples collected from
corpses burned after death (homicide, suicide, accident) [34].

The purpose of the study was to determine whether the postmortem diffusion of
gases affected HCN, COMb, and COHb levels in blood and tissues of corpses exposed to
HCN and CO in the atmosphere. The study design was approved by the local bioethics
committee (KE-0254/217/2017).

2. Material and Methods
2.1. The Study Material

Blood from the femoral vein, fragments of skin from the lumbar region with the
adipose tissue, sections from the femoral muscle, and fragments of the great saphenous
vein showing no putrefaction changes were collected from adults about 24–48 h after death.
Fragments of the vessels of an approximate length of 2 cm were filled with blood (about
1 mL) and tied at both ends. Toxicology tests were performed (ordered by the prosecutors’
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offices) and no concentrations of COHb and COMb as well as HCN were detected, which
excluded CO and HCN poisoning. The tissues were cut into cuboids adjusted to the
experimental chamber. The superficially charred muscle was obtained from the muscle
specimen charred on an electric heat plate until the thickness of macroscopically visible
coagulation was 0.5 cm and cut into 4 × 4 × 4.5 cm pieces.

2.2. Chemicals

Formic acid 80% (Merck, Darmstadt, Germany), H2SO4 96% pure for analysis (POCH,
Gliwice, Poland), potassium cyanide (Aldrich, St. Louis, MO, USA), polysiloxane-stable
pasta, and neutral colorless (Soudal Pty Ltd., Glendenning, Australia) were used.

2.3. Analytical Equipment

Gas chromatograph Trace GC-Ultra with headspace autosampler Tri-Plus (Thermo-
Finnigan, San Jose, CA, USA) was used. Capillary columns and detectors used were
as follows: COHb/COMb determination—Molesiv 0.5 mm × 30 m (Agilent J&W, Santa
Clara, CA, USA), O-FID detector (methanizer-equipped FID), HCN determination—GS-Q
(Agilent J&W, Santa Clara, CA, USA), and NPD detector.

2.4. Experimental Equipment

Chambers used for exposure of the study material to CO and HCN effects were
constructed from 4 mm thick plexiglass slabs (Figure 1).
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Figure 1. The chamber for CO experiments before and after assembly.

The 4 × 4 cm chambers were composed of 2 parts: an upper and a lower part. The
study material was placed in the upper part, 10 cm in height. The specimen borders were
sealed along the chamber walls (from the side of the gas-filled chamber) using polysiloxane-
stable pasta. The chamber was closed superiorly with a tight stopcock. The lower chamber
was filled with either CO or HCN. Both parts were separated by a grid in order to securely
contain the material. The lower chamber for the CO experiments was 2 cm high and had
inlets and outlets through which CO was pumped using a peristaltic pump (Figure 2a).
A 1.5 L Tedlar sampling bag (Merck, Darmstadt, Germany) was used to capture and use
>90% CO formed via the dehydration of 80% formic acid (25 mL) in the presence of 96%
sulfuric acid (12.5 mL, added dropwise) [35]. Before the experiment, the air from the
Tedlar bag was removed using a vacuum pump—the effect of air deposition was therefore
scarce (negligible). Throughout the experiment, gas circulated in a closed loop between
the chamber and the bag with a flow rate of 6 mL/min. The lower chamber for the HCN
experiments was 10 cm high in order to hold a 10 mL glass beaker with 5 mL of concentrated
H2SO4. During the experiment, the chamber was placed on a thermoblock maintaining
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the temperature of +30 ◦C in order to increase the efficiency of the reaction. A 1 mL of 3%
KCN solution (in water) was injected into the beaker with sulfuric acid through the inlet,
which decomposed into HCN and K2SO4. Excessive HCN was poured into the Tedlar bag
through the outlet (Figure 2).
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Figure 2. A diagram of CO (a) and HCN (b) experiments.

3. The Course of the Experiment

The tissue specimens were placed in the experimental chamber and sealed with
polysiloxane pasta.

The following experimental patterns were used:

1. A 4 × 4 cm skin fragment of fatty tissue (approx. 1.5 cm in depth)—a fragment of
vessel with blood–muscle (approx. 4.5 cm in depth)—a second fragment of the vessel
with blood);

2. Skin (without subcutaneous tissue)—vessel with blood–muscle–vessel;
3. Muscle–vessel with blood;
4. Superficially charred muscle–vessel with blood.

The specimens were exposed to CO at +25 ◦C and to HCN at +30 ◦C (above the boiling
point of HCN, +26 ◦C). Four runs were made for each experimental system. The exposure
was discontinued after 24 h, the veins filled with blood were removed and the muscle was
immediately frozen in the chamber at −20 ◦C. The 5 mm peripheral layers were discarded.
From the remaining muscular part, three 1 cm segments were cut, starting from the lower
side more exposed to the gas (symbolic layers 1, 2, and 3). Concentrations of COMb or HCN
(depending on the gas used) were determined 3 times in each sample to quantify the depth
of possible diffusion. COHB and COMb were determined using a GC headspace with
an O-FID detector [9,11], whereas levels of HCN in blood and muscles were determined
using a GC headspace with an NPD detector [36]. Both methods were validated for routine
(forensic) analysis.

4. Results

Table 1 presents the results of COHb and COMb determinations (% sat.) and Table 2
presents levels of HCN (blood: mg/L, muscle: mg/kg).
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Table 1. Concentrations (% sat.) of COHb in blood and COMb in 3 layers of muscles after the 24 h
CO exposure.

Patterns of
Tissue Layers Skin Fat Blood Muscle

0–1 cm
Muscle
1–2 cm

Muscle
2–3 cm Blood

1 layer present layer present

0.4 0.1 0.1 <0.1 0.3

0.2 0.2 0.1 <0.1 0.2

<0.1 0.4 <0.1 0.0 0.0

<0.1 0.4 0.2 0.0 <0.1

2 layer present layer absent

24.9 2.8 0.3 0.2 1.6

28.2 2.2 0.2 0.2 0.8

7.3 1.0 <0.1 0.0 <0.1

16.2 1.9 0.1 0.0 1.1

3 layer absent layer absent layer absent

3.7 <0.1 0.0 0.3

4.6 0.0 0.0 0.3

6.5 0.1 0.1 1.6

7.6 0.1 0.1 0.5

4 layer absent layer absent layer absent

8.2 * <0.1 <0.1 <0.1

5.8 * <0.1 <0.1 0.3

1.5 * 0.4 0.1 2.4

1.6 * 0.3 0.1 1.0

*—superficially charred muscle (see Section 2.1).

Table 2. Concentrations of HCN in blood (mg/L) and 3 muscle layers (mg/kg) after the 24 h exposure
at +30 ◦C.

Patterns of
Tissue Layers Skin Fat Blood Muscle

0–1 cm
Muscle
1–2 cm

Muscle
2–3 cm Blood

1
layer

present
layer

present

2.80 0.60 0.00 0.00 0.00

2.43 0.08 0.02 <0.02 0.00

0.74 0.06 0.04 <0.02 0.03

0.99 0.05 0.02 <0.02 0.06

2
layer

present
layer

absent

20.50 2.61 1.23 0.00 0.00

47.85 5.37 1.40 0.00 0.00

48.91 1.16 0.30 0.06 0.00

38.61 2.72 0.84 0.00 0.00

3 layer
absent

layer
absent

layer
absent

17.26 7.19 0.08 0.02

15.97 8.31 0.06 0.00

15.32 13.63 2.86 0.30

19.78 9.11 1.90 0.11

4 layer
absent

layer
absent

layer
absent

13.92 * 11.00 2.60 1.99

15.44 * 8.37 2.27 0.56

16.79 * 4.80 0.81 0.36

13.78 * 7.91 1.89 0.45

*—superficially charred muscle (see Section 2.1).
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During the experiment with CO, a gradual change in the colors of the muscle into
bright red from the side flushed with the gas was visible (Figure 3 and a Video S1 available
online).
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superficial charring; (c) brighter, vividly red diffusion area.

In tests 2–4, the coloration reached the maximum depth of about 1–1.5 cm. Concerning
the samples without a subcutaneous fatty tissue layer, the mean blood concentration of
COHb in the vessels located under the skin was 19% (range 7–28%) and of HCN was
38.97 mg/L (20.50–48.91 mg/L). In the superficial muscle layer, the mean HCN concentra-
tion was 2.96 mg/kg, at a depth of approximately 2 cm it was 0.94 mg/L, and at a depth of
approximately 3 cm it was very low—below the limit of quantitation (LOQ = 0.02 mg/kg)
in three out of four samples.

5. Discussion

The major objective of this experiment was answering the question of whether the
postmortem diffusion of CO/HCN could affect the determination of COHB/COMB and
HCN in the corpses that were found at the site of fire after death. In case of a living
(breathable) victim, diffusion through the skin layers had a very slight influence compared
to the pulmonary absorption [37].

The results of our experiments demonstrate that even a modest adipose tissue thick-
ness of approximately 1.5 cm collected from normosthenic corpses excellently prevents CO
diffusion. The 24 h exposure to >90% CO resulted only in trace CO hemoglobin saturation.
Likewise, trace saturation of myoglobin was also observed in the superficial muscle layer.
The isolating properties of the skin denudated of subcutaneous tissue by scraping were
markedly worse: in blood, about 7–28% COHb, while in the superficial muscle layer, about
1–3% COMb. A relatively wide range of COHb saturation in the examined samples may be
related to individual properties of donor subjects, e.g., variability of skin thickness. When
the unprotected muscle was exposed (Table 1, patterns 3), CO diffusion was limited to the
superficial layer, demonstrating that the 1 cm layer of muscle effectively protects against
CO diffusion deep into the tissues.

The hemoglobin saturation with CO was found to be greatly higher compared to the
myoglobin saturation. The above can be associated with the higher CO binding affinity
of hemoglobin, which contains four particles of heme (myoglobin only contains one).
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Charring and thermal coagulation of the superficial muscle layer only slightly increased
myoglobin saturation with CO in the muscle layers below the coagulated region. It should
be strongly emphasized that in the blood located under the 4.5 cm muscle layer, even when
superficially coagulated (experiments 4), the concentrations of COHb did not increase to
the levels that could be considered toxic in real cases.

It was shown that HCN is quite easily diffused through the superficial skin into
subcutaneous veins, and, notably, readily permeated into the deeper layers of denuded
muscles. HCN, in the presence of water, forms weak hydrocyanic acid (prussic acid), which
diffuses through the tissues; hence the high concentrations of cyanides in highly hydrated
blood (about 80% H20) and the ability to penetrate deep muscle layers. In all samples,
cyanides diffused to a depth of at least 1 cm. In the second layer (1–2 cm), they were absent
in one test, and in the third layer (2–3 cm), traces of cyanides were not found in 4 out of
16 tests. Autolysis and putrefaction can be excluded as important sources of endogenous
HCN in the 24 h experiments. The specimens did not show putrefaction changes, and
the concentration of HCN in each trial gradually decreased from the superficial layer.
Furthermore, the thermal coagulation of the superficial muscle layer did not suppress the
HCN diffusion. Our findings demonstrate that the thermal coagulation of the superficial
muscle layer favored cyanide penetration into deeper layers and blood located below the
4.5 cm muscle layer. The diffusion of cyanides is likely to be facilitated by the dehydration
of proteins in the coagulated muscle and the shift of water deeper into the muscle. However,
a thicker layer of adipose tissue greatly limited HCN diffusion into the blood and muscles.
This conclusion can be drawn from the comparison of the experiments performed according
to pattern number 1 and pattern number 2 (for CO and HCN).

6. Limitations of the Study

Since it was impossible to consider the effects of high temperature on the acceleration
of diffusion (in fire conditions), a very long exposure time was accepted (i.e., 24 h). In real
fire cases, the diffusion of toxic gases into the body is undoubtedly faster and the time of
exposure is substantially shorter as compared to the conditions of our experiment. The
evaluation of these relations requires further studies with an experimental chamber of
different designs. A slight diffusion in the case of extremely high CO and HCN concentra-
tions under the conditions of a 24 h experiment indicate the negligibly low influence of the
postmortem diffusion of those cases (especially into the deeper layers of the corpse) on the
concentrations of COHB and HCN in real forensic settings. CO levels as high as 3000 ppm
(0.3% vol.) were observed for some fires [38], and in some experimental fire settings, vol-
ume concentrations greater than 10% were observed [39], whereas HCN concentrations
only reached 42 ppm [40]. However, this information should be considered very carefully,
especially when investigating the tissues collected from heavily charred corpses.

7. Conclusions

In the cases of corpses brought out of fire conditions, the collection of muscle or blood
from a depth of several centimeters should eliminate the risk of postmortem diffusion, all
the while enabling the confirmation of intravital CO (even in charred corpses) along with
HCN inhalation. The blood should not be collected from the vessels lying directly under
the skin, especially in slim individuals without substantial subcutaneous fatty tissue layers.
However, HCN may even diffuse into the profound muscles and vessels in the case of
charred corpses with denudation of thermally coagulated muscles. In such cases, it may be
a cause of false-positive diagnoses of fatal poisonings with this gas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10110707/s1, Video S1: Experiment-video.
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