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Abstract: Chlorinated paraffins (CPs), a class of persistent, toxic, and bioaccumulated compounds,
have received increasing attention for their environmental occurrence and ecological and human
health risks worldwide in the past decades. Understanding the environmental behavior and fate
of CPs faces a huge challenge owing to the extremely complex CP congeners. Consequently, the
aims of the present study are to summarize and integrate the bioaccumulation and biotransformation
of CPs, including the occurrence of CPs in biota, tissue distribution, biomagnification, and trophic
transfer, and biotransformation of CPs in plants, invertebrates, and vertebrates in detail. Biota
samples collected in China showed higher CP concentrations than other regions, which is consistent
with their huge production and usage. The lipid content is the major factor that determines the
physical burden of CPs in tissues or organs. Regarding the bioaccumulation of CPs and their
influence factors, inconsistent results were obtained. Biotransformation is an important reason for
this variable. Some CP congeners are readily biodegradable in plants, animals, and microorganisms.
Hydroxylation, dechlorination, chlorine rearrangement, and carbon chain decomposition are potential
biotransformation pathways for the CP congeners. Knowledge of the influence of chain length,
chlorination degree, constitution, and stereochemistry on the tissue distribution, bioaccumulation,
and biotransformation is still scarce.
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1. Introduction

Chlorinated paraffins (CPs), known as poly-chlorinated n-alkanes (PCAs), are pro-
duced by the chlorination of different n-alkanes with the formula CnH2n+2−mClm. They are
divided into short-chain (SCCPs, C10–13), medium-chain (MCCPs, C14–17), and long-chain
CPs (LCCPs, C ≥ 18) according to the lengths of their carbon chain. Recently, very-short-
chain CPs (vSCCPs, chain lengths below 10) have been reported in wildlife and human
samples [1,2]. CPs have the advantages of low volatility, flame retardancy, good electrical
insulation, and low cost. Consequently, CPs have been used as plasticizers, flame retar-
dants, and additives in metal cutting fluids, adhesives, coatings, rubber, and sealants with
a global CP production of more than two million tons per year [3,4].

CPs are highly persistent in the environment, are bioaccumulative and toxic to animals
and humans, and have a high probability of undergoing long-range environmental trans-
port. SCCPs were designated as persistent organic pollutants (POPs) and listed in annex A
of the UN Stockholm Convention in 2017. This regulation has resulted in a limit in the use
and production of SCCPs. A substantial amount of research has reported the occurrence of
CPs in abiotic media such as sediment [5], soils [6], and airs [7], as well as in the biota [8].
Nevertheless, the understanding of the environmental behavior, fate, and potential risks is
still scarce because of the extremely complex CP congeners and the difficulties regarding
accurate quantification.
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Some reviews on CPs have been produced in the last ten years, and most of them
focused on analysis method, environmental distribution, and toxicity [9–12]. The data on
CPs in organisms have increased over the last decade, and studies on the trophic trans-
fer of CPs in both aquatic and terrestrial food webs has increased substantially in recent
years [13,14]. The concerns regarding the biotransformation of CPs have also been continu-
ously increasing. Thus, the aim of the present study is to compile our present knowledge on
the bioaccumulation and biotransformation of CPs in biota and identify knowledge gaps,
i.e., to some further research needs. The review is based on data retrieved from studies pri-
marily on chlorinated paraffins in biology (published between 1982 and 2022). We searched
the databases Web of Science and CNKI as well as websites from national and international
organizations such as the U.S. EPA, the World Health Organization (WHO), and the EU.
The search strategy was based on the following keywords: chlorinated paraffin, occurrence,
tissue distribution, bioaccumulation, biotransformation, and metabolism. We consulted
627 references in total, and based on the objectives of this review, 115 were selected and
classified into 5 major categories: (i) Occurrence of CPs in organisms, including aquatic
biota, terrestrial biota, humans and human foodstuffs samples (68 references); (ii) Tissue
distribution of CPs in organisms (9 references); (iii) Bioaccumulation of CPs in organisms
(25 references); (iv) Biotransformation of CPs in organisms, including plants, invertebrates,
and vertebrates (22 references).

2. Occurrence of CPs in Organisms

Data on CPs in biota were mostly obtained from China from 2010 onwards (Table 1).
This is plausible considering that China has been the largest global producer and consumer
of CPs since 2007, producing up to 1,000,000 metric tons in 2009 [15], and CP contamination
has become a major environmental concern in China. A precise comparison of CP concen-
trations among different regions or countries is difficult since the samples were collected
in different periods and the species differed between different studies. Additionally, the
concentrations were expressed using different units (ng/g dw, ng/d ww, ng/d lw, etc.).
Generally, CP concentrations in aquatic organisms from China were several orders of
magnitude higher than those from other regions or countries (Table 1). Relatively high
CP concentrations were found in aquatic organisms collected from e-waste recycling sites
such as those in Qingyuan and Taizhou, China [13,16,17]. SCCPs have also been reported
at relatively high concentrations in mollusks from the Liaohe estuary [18] and fish from
Liaodong Bay [19] (Table 1).

Table 1. Levels of CPs in the aquatic biota, terrestrial biota, humans, and human foodstuffs samples.

Site Organisms SCCPs MCCPs Reference

Mean/Median Range Mean/Median Range

Aquatic biota
Qingyuan, China Fish and invertebrates 1700–95,000 a [13]
Qingyuan, China Fish, snake, bird eggs 1200–250,000 a 2300–200,000 a [17]
Qingyuan, China Insects 52–410 c 40–740 c [20]

Guiyu, China Catfish 30,800 a 11,400–70,400 a [16]

Hong Kong, China
Fishes 801 ± 253 a 280–1940 a 1820 ± 934 a 502–4770 a

[21]Crustaceans 422 ± 162 a 202–694 a 593 ± 306 a 205–1190 a

Mollusks 328 ± 79 a 259–506 a 603 ± 132 a 464–874 a

Liao Estuary, China Mollusks 66,500 a 28,100–120,400 a [18]
Liaodong Bay, China Fish 968 b 53.3–2907 b [22]
Liaodong Bay, China Invertebrates and fish 20,100 a 2300–76,500 a [19]
Liaodong Bay, China Fish 376.3–8596 a 22.37–5097 a [23]

Bohai Sea, China Bivalves 1710.5 b 476.4–3269.5 b [24]
Pearl River Estuary, China Marine organism 870–36,000 a [25]
Pearl River Estuary, China Marine organism 210–21,000 a [26]

East China Sea Marine organism 155 ± 215 c 12.8–1819 c [27]

South China Sea
Finless porpoises 2800 a 570–5800 a 5100 a 670–11,000 a

[28]Humpback dolphins 5500 a 920–24,000 a 13,000 a 1400–56,000 a

Bohai Sea, China Mollusk 1410 b 64.9–5510 b [8]
China Farmed crabs 543 a 82–1760 a nd–680 a [29]

Dianshan Lake, China Wild aquatic organisms 10,000–1,300,000 a [30]
Taiwan, China Freshwater Fish nd–2,320,000 a [31]
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Table 1. Cont.

Site Organisms SCCPs MCCPs Reference

Mean/Median Range Mean/Median Range

Hainan, China Coral /800 a 184–7410 a /1490 a 305–14,800 a [32]

China
Fish of the Pearl Real Delta 16,000 ± 12,000 a 3000–41,000 a

[33]Farmed freshwater fish 5900 ± 8100 a 220–51,000 a

Fish of the Yangtze River Delta 3000 ± 1600 a 900–7300 a

Baltic Sea Marine organisms nd–220 a nd–390 a [34]
Antarctic Fish and mosses 262 b 69.0–504 b [22]
Antarctic Fish 1500 ± 500 a [35]

Ny-Ålesund and London
Island, Svalbard, Arctic

Algae, gammarids, and cod 178.9 b [36]

Persian Gulf, Iranian Larak coral tissue 112 b 28.5–200 b 65.9 b 15.5–136 b [37]
France Fish /728 a 63–1492 a /4430 a 99–11,300 a [38]

Antarctic Humpback whales nd–46 a [39]
Northern Europe Fish and seabird 28–880 a 14–3700 a [40]
North Baltic Sea Liver of fish 19–286 c 25–260 c [41]

Greenland and Iceland and
Sweden Bivalves marine mammals <5.2–570 a <8.6–270 a [42]

Norway Herring gull blood and eggs 5–200 c 3–630 c [43]

German Aquatic and terrestrial
organisms nd–350 a nd–1800 a [44]

Greenland, Denmark Bird and marine mammals 220–2200 c [10]
South Korea Black-tailed gull eggs 1180–2931 a 694–2023 a [45]

Terrestrial biota

Taizhou, China Apple snail 314 b 137–821 b [46]

Guiyu, China Chicken eggs 2300–6800 a
[47]Goose eggs nd–150,000 a

Guiyu, China Pigeon 7600 a 4700–11,000 a [16]
Qingyuan, China Bird species 620–17,000 a [48]
Qingyuan, China Chicken 460–13,000 a [49]

Qingyuan, China
Insect 2200–9000 a 990–11,000 a

[50]Birds 6100–48,000 a 2000–33,000 a

Frogs and toads 8100–24,000 a 4600–17,000 a

Tibetan, China

tree bark 2900–7000 a 1800–5700 a

[51]needle 2400–6400 a 1600–5000 a

lichen 1400–6100 a 700–4000 a

moss samples 1500–5300 a 900–4000 a

Tibetan, China
Plants 4300 ± 2830 a

[14]Plateau pika 1870 ± 1090 a

Eagle 723 ± 536 a

Tibetan, China Chicken and goose eggs 3098–6999 a [52]
China Mature maize plant 381 b 119–61,999 b 551 b 77.6–52,930 b [53]

Beijing, China Plants 127 ± 116 b 13–593 b 289 ± 148 b 21–785 b [54]

German

Fauna sample (mussels, fish,
birds, earthworms, and roe

deer)
Flora sample (tree shoots and

leaves)

nd–350 a nd–1800 a [44]

Greenland, Denmark

Black guillemot eggs
Glaucous gull liver
Ringed seal blubber

Polar bear adipose tissue

220–2200 c [10]

South Korea Black-tailed gull (Larus
crassirostris) eggs 1180–2931 a 694–2023 a [45]

Humans and human foodstuffs

Beijing, China Maternal serum 21.7–373 c 3.76–31.8 c
[55]Cord serum 8.51–107 c 1.33–12.9 c

China Breast milk in urban and rural
areas

/393 a

/525 a
131–808 a

139–1543 a
/472 a

/576 a
94–1714 a

211–1089 a [56]

Henan, China Human placentas 593 a 98.5–3771 a 316 a 80.8–954 a [57]

China
Hair /239 b 19.2–877 b /325 b 16.9–893 b

[58]
Nails /154 b 57.7–355 b /233 b 61.0–476 b

China
Cereal samples 343 c 51.6–981 c 213 c

[59]Legume samples 328 c 47.1–801 c 184 c

Jinan, China Human serum /13,800 a 1670–42,700 a /15,200 a 1350–38,900 a [60]
China Human blood /3500 a 370–35,000 a /740 a 130–3200 a [61]

China

Maternal serum, /117,100 d /38,900 d

[62]Cord serum, /70,000 d /25,600 d

Placenta /30.3 c /19.0 c

Breast milk /82,600 d /26,100 d

China Human milk /303 a /35.7 a [63]
China,
Korea,
Japan

Breast milk
nd–54 a

nd–20 a

nd–20 a
[64]

South China
Maternal 3280–10,400 d 1300–5500 d

[65]cord blood 890–4130 d 890–1690 d

placenta 3.18–9.12 c 1.91–4.89 c

Taizhou, China Paddy seeds 17.6 b 4.9–55.1 b [46]
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Table 1. Cont.

Site Organisms SCCPs MCCPs Reference

Mean/Median Range Mean/Median Range

Jinan, China Food samples 69.3 ± 74.4 c 8.27–268 c [66]
China Aquatic food samples 1472 c 215–4200 c 80.5 c 9.0–586 c [67]
China Cooking oil <9–7500 c [68]
China Cooking oil nd–16,055 c nd–11,612 c [69]
China Meat 129 ± 4.1 c 15.7–469 c 5.7 ± 0.59 c 0.3–23.8 c [70]

China
Infant formulas, 7.95 c 2.32–54.2 c 1.67–20.9 c

[71]Cereals 4.26 c 2.73–8.81 c 1.21–8.24 c

Purees 4.66 c 1.33–8.43 c 0.53–5.41 c

China Food samples nd–120 c nd–100 c [72]
China Green tea 55.7 b 4.99–717 b 33.5 b 2.55–543 b [73]

China
Noodle 1200 c 59–3000 c 140 c 12–520 c

[74]Seasoning 1400 c 160–3300 c 160 c 8–650 c

Noodle soup 560 d 160–1500 d 540 d 19–1500 d

China Raw milk 1470 a 130–5770 a 170 a 6.8–800 a [75]
German Infant food nd–190 a Nd–32 a [76]
Europe Baby food nd–3765 a [77]
German Vitamin E supplements 3810 a nd–61,100 a 15,200 a nd–151,000 a [78]

UK Human milk /180 a 49 to 820 a /21 a 6.2 to 320 a [79]
Czech Human serum /370 a 150–2600 a /360 a 200–2110 a [80]

a: Unit is ng/g lw, b: ng/g dw, c: ng/g ww, d: ng/L, nd: no detect. /data: indicated median.

Data on CPs in terrestrial biota are all from China. Similar to aquatic organisms, high
SCCP concentrations were also detected in terrestrial biota collected from e-waste recycling
areas [16]. Surprisingly, CP concentrations in plants and animals collected from Tibet,
China, were also comparable with those in the e-waste recycling area [14,51,52], indicating
high CP pollution in this area, although the intensity of anthropogenic activities in this area
was thought to be lower.

SCCPs and MCCPs have been detected in human tissues including fingernails, hair,
blood, cord serum, the placenta, and breast milk from different countries [55–65,79,80].
Human foodstuffs, including aquatic food, meat, baby food, noodles, green tea, cereals and
beans, milk, rice seeds, and oil food, from China and Europe were also found to contain
SCCPs and MCCPs [46,66–78]. Concentrations of SCCPs in the foodstuffs were generally
higher than concentrations of MCCPs, with the exception of oil-based vitamin E dietary
supplements collected in Germany [78]. However, the concentrations of MCCPs were
similar to or more than the concentrations of SCCPs in most of the human tissues samples,
indicating a higher bioaccumulation of MCCPs than SCCPs in humans.

Earlier studies focused more on SCCPs in aquatic species; however, research on vSCCP,
MCCPs, and LCCPs in terrestrial species or humans has increased in recent years [2,22,44].
LCCPs were first detected in human blood samples in China with median concentrations of
150 ng/g lw, which were lower than those of SCCP (3500 ng/g dw) and MCCPs (740 ng/g
dw) [61]. Since then, LCCPs were detected in marine organisms from the Baltic Sea (nd:
130 ng/g dw) [34], Greenland and Iceland (<0.41–930 ng/g dw) [1], aquatic and terrestrial
organisms from Germany (nd: 2400 ng/g dw) [44], plants from Beijing, China (27–561 ng/d
dw) [54], and cereal and legume samples from China (48.1–664 ng/g dw) [59]. Compared
with SCCPs and MCCPs, the concentrations of LCCPs in the abovementioned samples
were on the same order of magnitude as those of SCCPs and MCCPs. vSCCPS were initially
quantified in aquatic biota samples from the Yangtze River Delta in China with high levels
(2.6–8400 ng/g lw) [2] compared to those of vSCCPs in bivalves and marine mammals from
Greenland and Iceland (<0.12–34 ng/g lw) [42] and those in biota from Germany (nd: 65
ng/g lw) [44]. vSCCPs were also detected in fish and mosses from Liaodong Bay and the
Antarctic at relatively low levels (3.4–153 ng/g dw) [22].

3. Tissue Distribution of CPs in Organisms

Several in vivo exposure experiments investigated the tissue distribution of CPs in
organisms [81–83]. Lipid content was the main factor in determining the physical burden
of CPs in organ tissue. The high concentrations of SCCPs (based on wet weight) were in
the abdominal fat and the feces, and the low concentrations were in the blood, meat, and
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bile fluid when broiler chickens were exposed to SCCP (60% Cl) via diet. An exposure
experiment using laying hens obtained similar results [82]. The amount of SCCP deposited
in the leg meat was higher than that in breast meat due to the higher fat content of leg
meat compared to breast meat in both broiler and laying chickens. An experiment using
rat exposure to SCCPs, MCCPs, and LCCPs revealed that approximately 57.0–76.5% of CPs
were deposited in the liver, 23.1–42.4% of CPs in the fat, while approximately 0.3–1.4%,
0.01–0.04%, and 0.002–0.022% CPs were in the blood, kidneys, and lungs, respectively [83].
The same dependence on the lipid content was also observed in field fish samples. Sun et al.
(2017) [13]. found concentrations of SCCPs (based on wet weight) in snakehead and mud
carp in the order liver > gill > kidney > skin > muscle, and the SCCP concentrations in the
tissue were positively correlated with the content of lipids in tissues (p < 0.001). However,
when the concentration was expressed based on lipid, the muscle SCCP concentrations
were the highest among all tissues in the laying chicken [84]. Sun et al. (2020) found similar
results in chicken collected from an e-waste recycling site [49]. The concentrations of SCCPs
were in the order muscle (6200 ng/g lw) > fat (2400 ng/g lw) > liver (1100 ng/g lw). This
tissue distribution was due to the low lipid content in muscle and metabolism of SCCPs in
the liver.

The deposition of CPs in tissue was also related to carbon chain and degree of chlori-
nation. Mézière et al. (2021) [84] conducted an experiment using laying hens exposed to
different degrees of chlorination (low %Cl and high %Cl) SCCPs, MCCPs, and LCCPs to
investigate the accumulation and distribution of CPs in biota after ingestion. All C10–C36
CPs were detected in the liver. However, differences were observed in CP distribution:
LCCPs with high %Cl were retained in the liver, while LCCPs with low %Cl circulated
through the serum and were distributed in the different compartments but were mostly
excreted through the eggs; SCCPs and MCCPs were found in all tissues at similar levels.
SCCPs with low %Cl were detected at lower levels compared to SCCPs with high %Cl and
MCCP, implying a higher biodegradation potential for SCCPs with low %Cl compared
to CPs with higher %Cl. Du et al. (2020) [85] analyzed the vSCCPs, SCCPs, MCCPs, and
LCCPs in different tissues of terrestrial short-tailed mamushi (Gloydius brevicaudus) and
the semiaquatic red-backed rat snake (Elaphe rufodorsata) from the Yangtze River Delta of
China. The tissue distribution of total CPs content (ww) in the two snakes was in the order
fat (44–1300 ng/g ww) > muscle (39–550 ng/g ww) > liver (41–490 ng/g ww). vSCCPs
(C6–9) and SCCPs (C10–13) were preferentially distributed in the snake liver, while fat was
an important storage compartment for MCCPs (C14–17) and LCCPs (C > 18).

The tissue distribution of CPs also exhibited the specific homologues for specific tissues.
In the studies of CPs in chicken, Sun et al. (2020) [49] observed that the concentration
ratio of muscle to liver of CPs decreased with increased log KOW, while the concentration
ratio of fat to liver increased with increasing log KOW. This result indicated that the
fat prefers to accumulate high log KOW homologues compared to the liver and muscle.
Muscles that preferred to deposit SCCP with lower log KOW compared to liver were also
found in fish samples [13]. The difference in the lipid component was responsible for
this tissue distribution. The proportions of neutral lipids (triglycerides) to total lipids
in the abdominal adipose tissue, liver, and muscle of chickens were 98%, 52%, and 32%,
respectively, while the proportions of polar lipids (phospholipids) to lipids were 1.7%, 46%,
and 65%, respectively [63,86]. It is likely that SCCPs with higher log KOW have a stronger
affinity with neutral lipids than polar lipids.

4. Bioaccumulation of CPs in Organisms

Bioaccumulation is the process of accumulation of chemicals in an organism from the
environment through diet, skin absorption, or respiration that occurs when the chemical
concentration in the organism exceeds that of the surrounding environment or diet after
reaching equilibrium [87]. The bioaccumulation potential of chemicals for evaluation com-
prises the bioaccumulation factor (BAF), bioconcentration factor (BCF), biomagnification
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factor (BMF), and trophic magnification factor (TMF). Generally, the chemical is considered
to be bioaccumulative when BAF/BCF > 5000, BMF/TMF > 1 [88].

Numerous laboratory and field studies showed that CPs had bioaccumulation poten-
tial. The values for the logBAF of ∑SCCPs and ∑MCCPs were estimated as 2.70–4.45 and
2.25–3.64, respectively, for aquatic insects from Qingyuan at an e-waste recycling site [20],
1.48 for soil–vegetation of ∑SCCPs from the Arctic [35], 4.5–6.05 for fish of ∑SCCPs from
Liaodong Bay [19,23], and 2.04–3.79 for marine organisms of ∑SCCPs from the East China
Sea [27]. Following the administration of 14C-labeled CPs in bivalve blue mussels (Mytilus
edulis), the values for the BAF of MCCPs (C16, 34% Cl) and SCCPs (C12, 69% Cl) were esti-
mated at 7000 and 13,900, respectively, indicating that SCCPs with short carbon chains and
high chlorination had strong bioaccumulation [89]. The log BCF values of five different CPs
(Cereclor S45:MCCP 45% Cl; Cereclor 50LV: SCCP 50% Cl; Huels 70C:SCCP 70% Cl; CP-42:
42% Cl, C10–C17, C21–C31; CP-52: 52% Cl; C9–C29) in Daphnia magna were assessed as
6.7–7.0 (Lkg lipid−1). All the CPs tested were bioaccumulative in D. magna [90].

The BMF of ∑SCCPs for oyster–mangrove crab (2.4) from the Pearl River Estuary [25],
Ngas–Agas (1.9) from Antarctica [35], and prey species–finless porpoises (3.1–6.7) and
prey species–Indo-Pacific humpback dolphins (11–38) from Hong Kong [21] were all >1,
indicating the biomagnification of SCCPs in these marine food chains. In juvenile rain-
bow trout that were exposed to CPs (C10H15.3Cl6.7, C14H23.3Cl6.7 and C18H31.4Cl6.6), the
BMFs for ∑SCCPs ranged from 0.9 to 2.8, demonstrating that these CPs had the potential
to biomagnify [91]. In an e-waste recycling pond in South China, the BMF values for
∑SCCPs and ∑MCCPs for fish–water snakes were 2.9 and 2.95, respectively, indicating
biomagnification [17]. The mean BMFs of vSCCPs, SCCPs, MCCPs, and LCCPs in the food
chain (black-spotted frog–red-backed rat snake) were 2.2, 1.9, 1.8, and 1.7, respectively,
indicating the potential for biological magnification. This was the first study to address the
biomagnification potential of vSCCPs and LCCPs [85]. On the other hand, biodilution was
also reported in both marine and freshwater food chains. For examples, the BMFs of SCCPs
and MCCPs for fish–bird in an e-waste recycling pond were 0.08 and 0.1, respectively [17].
The BMFs of ∑SCCP were 0.46 for gammarid–cod from Ny-Ålesund in the Arctic [36],
and were 0.282 and 0.212, respectively, for plant–plateau pika, as well pika–eagle from the
Tibetan plateau [14].

The varied trophodynamic behavior of CPs was also reported in previous studies.
Trophic magnifications of SCCPs were observed in an aquatic food web from Dianshan
Lake in Shanghai (TMF: 1.19–1.57) [30], marine food web from the East China Sea (TMF:
3.98) [27], and zooplankton–shrimp–fish food web (TMF: 2.38) [19] and fish food web
(2.57) [23] from the Liaodong Bay Sea. The TMF of SCCPs and MCCPs in a marine food
web from Hong Kong (TMF: 4.29 and 4.79, respectively) [21] and in a terrestrial food web
dominated by insects from an e-waste recycling site in southern China (TMF: 2.08 and 2.45,
respectively) indicated trophic magnification [13]. The TMF of SCCPs and MCCPs in the
invertebrates–forage fish–lake trout food webs from Lake Michigan and Lake Ontario were
0.97 ± 0.33 and 1.2 ± 0.51, respectively, which is in the margin of trophic magnification and
trophic dilution [92]. The lake trout had lower SCCP concentrations than several of their
prey on a lipid basis, which did not support the biomagnification of CPs. Meanwhile, the
trophic dilution of CPs in food webs was also reported. The TMF of SCCPs in an aquatic
food web from an e-waste recycling site was 0.17 [13]; the TMF values of SCCPs and MCCPs
in a freshwater food web from France were <1 [93]; the TMF of SCCPs in mollusks from
Bohai was 0.396; and the TMF of SCCPs in plant–pike–eagle food chain from the Tibetan
plateau was 0.392 [14].

The biomagnification and biodilution of CPs in both aquatic and terrestrial food
webs were reported in different regions and in different food webs. The structure of food
webs; size of organisms collected; food habits; biotransformation of SCCPs in organisms;
treatment method for any outliers; and even environmental parameters such as water
temperature, dissolved organic matter, and suspended particles may have all contributed
to the differences obtained [19,94,95].
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Both the chlorine content and the carbon chain length determine the physicochem-
ical properties of CPs [96]. Therefore, both may affect the bioaccumulation capacity of
CPs. In a laboratory exposure experiment, pumpkin seedlings were exposed to four
kinds of SCCPs: 1,2,5,6,9,10-C10H16Cl6 (HexCD), 1,1,1,3,8,10,10,10-C10H14Cl8 (OctaCD),
1,1,1,3,10,11-C11H18Cl6 (HexCU), and 1,1,1,3,12,13- C13H22Cl6 (HexCT). The cumulative
amounts of OctaCD, HexCT, HexCU, and HexCD in pumpkin were 59.9%, 40.5%, 33.4%,
and 23.6% of the parent SCCP, respectively, showing that bioaccumulation increased with
the carbon chain length and chlorination degree in plants [97]. The soil–vegetation BAFs of
SCCP in the Arctic support this finding. BAFs increased with increasing content carbon
and chlorine, and the number of carbon atoms was the primary factor regarding the bioac-
cumulation of SCCPs [36]. Fisk et al. [91] observed that the BMFs of CP congeners (C10Cl6.7,
C14Cl6.6, and C18Cl6.7) in juvenile rainbow trout increase with increasing carbon chain
length in a given chlorination content. The BMF of SCCP congeners in a food chain (taper-
tail anchovy–Bombay duck) collected in the Pearl River Estuary showed significant positive
correlations with both number of carbon and chlorine atoms of SCCP congeners [26]. All
these results indicate that both the length of carbon chain and the chlorine content affect
biomagnification of CPs in organisms.

However, some field monitoring provided inconsistent results. The BMFs of SCCP
congeners in the food chain Agas–Ngas from Antarctica decreased from 2.3 for C10 to 0.8
for C13 [35]. Houde et al. (2008) [92] also observed that BMFs in a food web from Lake
Michigan decreased with the increasing carbon chain length of SCCP congeners. In aquatic
organisms collected from a large sewage treatment plant in Beijing, the BMF of SCCP
homologues exhibited significant correlation with chlorine content while no significant
correlation was found between the BMF and carbon chain length [94]. The correlation
between bioaccumulative potential and chlorine content but not between carbon chain
length were also found in other food chains/webs, such as bivalves–sediments from Bohai
Sea [24], and fish–water snake, fish–waterbird food [17], and insect-dominated terrestrial
food webs in an e-waste site in South China [50]. These results imply that chlorination
degree rather than carbon length affects the bioaccumulative potential of CP congeners.

The low bioaccumulative potential with low chlorine content of these CPs may be due
to the metabolization of low-chlorine-content CPs, which were more easily compared to
CPs with higher chlorine content. The carbon chain length has positive and negative effects
on the bioaccumulation of CPs. On the one hand, the lipophilicity of CP congeners increases
with the increasing carbon chain length, which is beneficial to bioaccumulation. On the
other hand, the molecular sizes of CP congeners increase with the increasing carbon chain
length, which reduces the bioaccumulative potential of CP congeners. This could explain
the inconsistent results of the observed effects of carbon chain on the bioaccumulation of
CP congeners.

5. Biotransformation of CPs in Organisms

The biodilution and trophic dilution of CPs in food chains/webs were reported in both
aquatic and terrestrial ecosystems. These abnormal trophic transfer behaviors were highly
suspected to be related to the biotransformation of CPs in high-trophic-level organisms.
The biotransformation of CPs was investigated in the early 1980s [98]. More studies
on biotransformation of CPs have been conducted recently since SCCPs were listed as
emerging POPs.

5.1. Biotransformation of CPs in Plants

Li et al. [99] conducted a series studies on biotransformation of CPs in plants. 1,2,5,5,6,9,
10-C10H15Cl7 was found to produce dechlorination products (C10H17Cl5 and C10H16Cl6
(14.7%) and chlorine rearrangement products (C10H15Cl7) in pumpkin plant (Figure 1). Fur-
ther research on biotransformation of CPs (1,2,5,6,9,10-C10H16Cl6, HexCD; 1,1,1,3,8,10,10,10-
C10H14Cl8, OctaCD; 1,1,1,3,10,11-C11H18Cl6, HexCU; 1,1,1,3,12,13-C13H22Cl6, HexCT) in
pumpkin and soybean seedling indicated that dechlorination, chlorine rearrangement, and
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carbon chain decomposition products were detected (Figure 1). The biotransformation
rate of SCCPs was higher in soybean than in pumpkin seedlings, which may be due to
the higher fat content of soybean seedlings than pumpkin seedlings [97]. To verify that
airborne chlorodecanes were converted by reactive phytogenic volatile organic compounds
(PVOCs), the PVOCs of pumpkin collected in sealed glass bottle reacted with 1,1,1,3,8,10,10-
C10H14Cl8 in a concentration of 96.4 ng/µL under illumination for 10 days, while the
reaction control group did not contain PVOCs. Dechlorination, chlorine rearrangement,
and carbon chain decomposition products were detected with or without PVOCs: C10Cl5–8,
C9Cl6–8, and C8Cl7–8. The PVOCs of pumpkin seedlings promoted these transformations
to a certain extent. In the absence of PVOCs, CPs may react with OH radicals in the
atmosphere [100]
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Figure 1. The transformation pathways of 1,2,5,5,6,9,10-C10H15Cl7, 1,1,1,3,6,12,13-C13H22Cl6, and
1,1,1,3,8,10,10,10-C10H14Cl8 mediated by pumpkin seedling, rice cell, soybean, and PVOCs, respec-
tively. Values in the brackets are the transformation ratios of parent compound to the daughter
compounds. The dotted arrow with the question mark is the pathway which possibly occurs but is
not able to be detected by GC/ECNI-LRMS.

Chen et al. (2020) [101] investigated the biotransformation of CPs (1,2,5,6,9,10-C10H16Cl6
and 52% MCCPs) using suspension rice cell culture exposure systems. In total, 79.53%
of 1,2,5,6,9,10-C10H16Cl6 and 40.70% of 52%-MCCP were metabolized by suspension rice
cells, respectively. Forty and 25 metabolic products for 1,2,5,6,9,10-C10H16Cl6 and 52%-
MCCP, respectively, were identified, including (multi-) hydroxylation, dechlorination,
–HCl– elimination metabolites, (hydroxylation-) sulfation, and glycosylation conjugates.
A comprehensive metabolic molecular network and potential degradation pathway were
proposed. The results of the abovementioned study improved our understanding of the
transformation behaviors of CPs in plant.
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5.2. Biotransformation of CPs in Invertebrates

Degradation of CPs by microorganisms was firstly reported in the 1980s. Omori and
Kodama (1987) [102] isolated four bacterial strains (HK-3, HK-6, HK-8, and HK-10) from
soil. In the presence of n-hexadecane, cometabolic dechlorination of chlorinated paraffins
was observed. The cometabolic dechlorination of CP-150 (C15.4H25.4Cl5.6, 50% Cl) by the
mixture of these four bacteria reached 51% in 36 h.

Allpress and Gowland (1999) [103] isolated a bacterium, a species of Rhodococcus,
later designated isolate S45-1, from a stream in Sheffield, UK. Isolate S45-1 was able to
utilize chlorinated paraffins with chain lengths of between 10 and >20 as sole source of
carbon and energy. The degradation product was identified as γ-butyrolactone (Figure 2).
The pathway postulated for the formation of γ-butyrolactone involved initial attack at the
nonhalogenated site by oxygenase, followed by chain shortening via β-oxidation, resulting
in the formation of 4-chlorobutyric acid. Chemical lactonization of 4-chlorobutyric acid
then leads to γ-butyrolactone formation, which is subsequently slowly catabolized to 4-
hydroxybutyric acid and succinic acid, which allows entry to the tricarboxylic acid cycle.
This is the first report of microbial utilization of chlorinated paraffins as sole source of
carbon and energy. However, when the degree of chlorination was 58.5% (Cereclor S58) or
greater, the growth of bacterium was inhibited.
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Figure 2. The transformation pathways of 1-chlorotetradecane, SCCPs (C6–16, Cl: 14–61% w/w),
SCCPs (C10–13, Cl: 56% w/w), and octachlorotridecanes mediated by Rhodococcus sp. S45-1, Pseu-
domonas sp. Strain 273 and N35, and bacterial enzyme LinB of Sphingobium indicum, respectively.
E2 are the reactions of abiotic and biotic elimination, which are not catalyzed by LinB.

In addition to Gram-positive bacteria, SCCPs were also degraded by Gram-negative
bacteria, such as Pseudomonas. These bacteria were considered aerobic and abundantly
distributed in soil, water, animals, and humans. Pseudomonas sp. strain 273 metabolized
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CPs with a good dechlorination effect, but similar to the strain screened by Allpress
and Gowland (1999) [103], whose bacterial dechlorination cycle needed 20 days or even
longer. Pseudomonas 273 strain could easily degrade monochlorinated alkanes whose
chlorine atoms were located on primary carbons, and before β-oxidation, the chlorine
atoms substituted at the end of SCCPs had to be dehalogenated enzymatically. However,
the oxygenolytic dehalogenase enzymes produced by Pseudomonas strain 273 cannot
metabolize SCCPs with chlorine atoms substituted in a vicinal arrangement [104].

Lu (2013) [105] isolated a bacterial strain identified as Pseudomonas sp. N35 from
soil. This bacterial strain can utilize SCCPs as a sole source of carbon and energy. A total
of 57.5% of chloride was released into the medium as chloride ions in pure culture within
20 days. Bioaugmentation resulted in 73.4% removal of SCCPs in the sludge microcosm
after 30 days of treatment.

Heeb et al. (2019) [106] isolated several Sphingomonadacea strains which can convert
hexachlorocyclohexanes (HCHs) from HCH dump site. The dehydrohalogenase expressed
by such bacteria (also called as LinA2) can catalyze the HCl elimination reaction, which
converts CPs to chlorinated olefins. However, not all SCCP congeners can be transformed
by the bacterial enzyme LinA2. About 20–40% of the exposed CP material was reactive
and readily converted by LinA2 within 24 h, while about 60–80% of the given CP mate-
rial was not, or only slowly, converted by LinA2. In a subsequent study, Heeb and his
colleagues [107,108] reported that under the catalysis of LinB enzyme, dehalohydroxyla-
tion reactions of CPs resulted in mono- and dihydroxylated products, and in mono- and
diolefinic compounds that resulted in corresponding hydroxylated products. However,
the LinB enzyme cannot catalyze HCl elimination to form alkenes. Conversion decreased
with increasing degree of chlorination, while the effect of carbon chain length was less
pronounced.

5.3. Biotransformation of CPs in Vertebrates

In the 1980s, studies of CPs metabolism were mostly performed with radioactive
14C-labeled CPs. Darnerud et al. (1982) [98] conducted a series of in vivo experiment to
investigate the metabolism of CPs in animals. C57B1 mice were exposure to 14C-labeled
chloroalkanes (i.e., C12H16.2Cl9.8, 68.5% chlorination; C20H20.1Cl5.9, 55.9% chlorination;
and C12H25Cl1, 17.4% chlorination) via intravenous injection. After 12 h, 8%, 32%, and
52% of SCCP was exhaled through the respiratory system in the form of 14CO2, indicating
that SCCPs were metabolized into metabolites in mice and CO2 was the final product.
The exhaled amount of 14CO2 decreased with the increase of the degree of chlorination,
implying that low-chlorination CP congener was readily to be metabolized. In the latter
study, mice were transferred to an all-glass metabolism cage to monitor the exhaled air
14CO2 after the same administration above. After adding the cytochrome P-450 inhibitor
piperonyl butoxide, the degradation rate decreased by 84%, which was positively correlated
with the degree of chlorination, indicating that SCCPs with a high degree of chlorination
were more dependent on cytochrome P-450 for degradation [109]. In carp, after intra-
arterial (i.a.) injection of 14C-labeled chloroalkane (C16, 34% Cl), about 6% of dose was
excreted as 14CO2 in 96 h. The metabolic rate in carp was lower than that of mice and quails
(40% metabolized within 8 h) [110].

After gavage of 14C-labeled chloroalkane (C16H30.7Cl3.3, 34.1% Cl and C12H20.1Cl5.9,
55.9% Cl) to Japanese quail, radioactivity was highest in tissues with high metabolic activity
and high cell turnover rate, and in bile and urine. About 40% and 20% of dose was excreted
as 14CO2 in 8 h, respectively [111]. After oral and intravenous injection of 14C-labeled
chloroalkane (C16H20.6Cl13.4, 69% Cl) to quail and C57B1 mice, about only 1% of dose was
excreted as 14CO2 in 8 h. Obviously, the formation of 14CO2 was negatively correlated with
the degree of chlorination of CPs [112].

Åhlman et al. (1986) [113] identified potential metabolites of polychlorinated hexade-
cane (14C-PCHD; 65% chlorine by wt) in rat. A uniformly 14C-labeled reagent was injected
into the portal vein in bile-duct-cannulated rats (5–6 mg/kg) and the bile was collected for
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two or three days. The radioactivity was separated by ion-exchange chromatography into
two major fractions: one acidic, the other amphoteric. N-acetylcysteine (mercapturic acid)
and glutathione conjugation were found, which were produced by PCHD.

Dong et al. (2020) [83] reported the pharmacokinetic modeling for chlorinated paraffins
in rats and humans via in vivo and in vitro exposed SCCP, MCCP, and LCCP to rat and liver
microsomes. The metabolic rates of ∑SCCPs, ∑MCCPs, and ∑LCCPs were 1.31 × 10−6,
2.54 × 10−6, and 3.55 × 10−6/h in rat and 1.31 × 10−6, 2.54 × 10−6, and 3.55 × 10−6/h in
humans. The metabolic rates of CPs were extremely slow and increased with the increased
carbon chain length of CPs.

However, unlike the results of Dong et al. (2020) [83], an in vitro experiment using
human liver microsomes conducted by He et al. (2021) [114] indicated that CPs were
extensively and rapidly metabolized after incubation with human microsomes. After the
incubation with CYP (Cytochrome P450) for two hours, a decrease of 85%, 98%, and 73%
for SCCPs, MCCPs, and LCCP, relative to their negative controls, were observed. After
Phase I and Phase II transformation, concentrations of different groups of CPs decreased
by more than 70%, suggesting a rapid transformation of CPs by HLMs (human liver
microsomes). The biotransformation products included vSCCPs, OH-CPs, CO-CPs, and
COOH-CPs. Potential transformation pathway of CPs was C–C bone cleavage and ketones
were potential products of biotransformation for CPs, especially for long-chain CPs (C > 17).

Lin et al. (2022) [115] reported the metabolism of SCCP in chicken and human via
incubation of 1,2,5,5,6,9,10-heptachlorodecane (HeptaCD) to chicken and human liver
microsomes. Two metabolites, monohydroxylated hexachlorodecane (HO-HexCD) and
monohydroxy heptachlorodecane (HO-HeptaCD), were detected in human liver micro-
somal assays, while only one metabolite (HO-HexCD) was identified in chicken liver
microsomal assays. After 1 h incubation, concentration of HeptaCD in chicken liver micro-
somes decreased by approximately 13%, but by 50% in human liver microsomes, indicating
that the metabolic rate in human liver microsomes were higher than those in the chicken.
The result of Lin et al. (2022) [115] confirmed that CP were extensively and rapidly metab-
olized after incubation with human microsomes. The number of metabolites in Lin et al.
was lower than that found in He et al. (2021) [114], which could be due to the difference in
experiment condition and the extraction method.

The metabolism of SCCPs 1-chlorodecane by cytochrome P450 enzymes was simulated
to use a simplified model of active site of CYPs, a density functional theory. In this theory,
1-chlorodecane can be easily metabolized by CYPs in either low-spin or high-spin state,
but hydroxylation was more major than dichlorination due to the energy barrier. The main
metabolic products were 10-chloro-1-decanol, 10-chloro-decan-5-ol, and 1-chorodecanol
with a rate constant of 42.3−1/h by CYPs in the human body [116].

6. Conclusions and Perspectives

In this article, the current studies on bioaccumulation and biotransformation of CPs
in biota and humans were briefly reviewed. CPs including vSCCPs, SCCPs, MCCPs,
and LCCPs are widely distributed in various biota, including humans, worldwide. The
bioaccumulation and biotransformation of CPs are directly related to carbon chain and
chlorination degree. However, our knowledge on the effects of chain length, chlorination
degree, constitution, and stereochemistry on the bioaccumulation and biotransformation
are still scarce. There are several issues relating to CPs, which should be considered research
priorities:

There is an urgent need for relevant data on MCCPs and LCCPs. SCCPs have been reg-
ulated as POPs since 2017, while MCCPs and LCCPs remain unclassified (UNEP, 2017) [117].
Recent studies indicated that MCCPs, LCCPs, and vSCCPs were ubiquitous in the envi-
ronment and they were also detected in biota samples. The concentrations of MCCPs and
LCCPs were comparable or on the same order of magnitude with those of SCCPs. Some
studies also reported the biomagnification or trophic magnification of MCCPs and LCCPs
in aquatic and terrestrial food chains/webs. Considering the substantial amount of MCCPs



Toxics 2022, 10, 778 12 of 17

and LCCPs produced compared to SCCPs, more concerns should be paid to MCCPs and
LCCPs in further studies.

Future work is needed to study the bioaccumulation and influencing factors (such as
the tissue distribution, degradation, and transformation) of CPs in aquatic and terrestrial
food webs. Similar to other lipophilicity POPs, the lipid content of tissue plays a key role
in the bioaccumulation and tissue distribution of CPs. However, the effects of the carbon
chain length and chlorination degree on the bioaccumulation and tissue distribution are
unclear. Inconsistent results on the biomagnification and trophic magnification of CPs
were obtained according to available data. There is sufficient evidence to support the
biotransformation of CPs by microorganisms, plants, and animals. However, knowledge
gaps still exist. The knowledge on species-specific bioaccumulation and biotransformation
is still scarce. Investigations on the biotransformation of CPs are still in the early stages. No
field monitoring studies have been conducted to detect the metabolites of CPs. How and to
what extent the species-specific biotransformations affect the bioaccumulation and trophic
transfer of CPs are unknown.

Further investigation on the mechanisms of the toxicity of CPs are required. The
bioaccumulative potential, toxicity, and biotransformation pathway vary for different CP
congeners. Not all CPs are equally persistent towards biotransformation, and not all CP
isomers are bioaccumulating and equally toxic. The effects of chain length, chlorination
degree, constitution, and stereochemistry on the bioaccumulation, biotransformation, and
the toxicity are unclear. Therefore, one can question whether a cut based on carbon chain
length is a sufficient criterion for regulation or whether other criteria are needed to assess
and classify medium- and long-chain CPs as well.

As CP metabolites are identified, the toxicity of CP metabolites needs to be evaluated
and studied. Potential CP metabolite candidates, which may resemble chlorine-containing
aliphatic molecule species, had adverse biological effects in earlier studies. Molecular
biological methods can be used to conduct in-depth toxicological studies on CP metabolites
at the molecular, gene, and cell levels.

It is necessary to explore the molecular mechanism of microbial degradation and
possible phytoremediation of CPs among different biological species to determine the key
process of the biological metabolism to reduce the occurrence of CPs in the environment.
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