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Abstract: Drug-induced liver injury (DILI) is a major cause of the withdrawal of pre-marketed drugs,
typically attributed to oxidative stress, mitochondrial damage, disrupted bile acid homeostasis, and
innate immune-related inflammation. DILI can be divided into intrinsic and idiosyncratic DILI with
cholestatic liver injury as an important manifestation. The diagnosis of DILI remains a challenge
today and relies on clinical judgment and knowledge of the insulting agent. Early prediction of
hepatotoxicity is an important but still unfulfilled component of drug development. In response,
in silico modeling has shown good potential to fill the missing puzzle. Computer algorithms,
with machine learning and artificial intelligence as a representative, can be established to initiate a
reaction on the given condition to predict DILI. DILIsym is a mechanistic approach that integrates
physiologically based pharmacokinetic modeling with the mechanisms of hepatoxicity and has
gained increasing popularity for DILI prediction. This article reviews existing in silico approaches
utilized to predict DILI risks in clinical medication and provides an overview of the underlying
principles and related practical applications.

Keywords: drug-induced liver injury; in silico models; computer algorithm; machine learning;
DILIsym; PBPK

1. Introduction

More than 30,000 drugs have been developed for diverse diseases, of which 1100 drugs
could potentially cause liver injury. In the United Kingdom, the incidence of drug-induced
liver injury (DILI) was reported as 13.9 per 100,000 inhabitants [1], while contemporary
studies in China suggested a higher incidence of 23.8 per 100,000 persons with a different
etiology from that of Western countries [2]. As one of the most severe adverse drug reactions
(ADRs), DILI can damage the liver, causing acute liver failure (ALF), and fulminant hepatic
failure that eventually requires a liver transplant or causes death [3–5]; however, due to the
assorted clinical features and complex mechanisms of DILI, clinicians often fail to detect the
condition early and miss the critical window to treat the patient effectively [6]. Incidents of
DILI have been the major reason for regulatory bodies to decline new drug applications,
or for pharmaceutical companies to modify dosing and regimens, declare prescription
warnings, or withdraw the drug entirely from the market [7].

Currently, there are emerging preclinical human-relevant in vitro models used to
evaluate the toxic injury of drug candidates to the liver. In these models, either single-cell
type or multi-cell type assays can be performed [8]. The main difference between these
two kinds of assays is the number of cell types used in the experiments. Only one of the
primary human hepatocytes, immortalized liver-derived cell lines (e.g., HepG2, HuH7)
or hepatocyte-like cells derived from stem cells, are generally used in single cell-type
in vitro models, while multiple cell lines or multicellular co-culture systems are used as the
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representative of in vivo cellular behavior in multicell type assays [9]. Three-dimensional
in vitro liver co-culture systems were also developed for the investigation of DILI, where
cytochrome P450 (CYP450) inducibility and bile canaliculi-like structures are imitated [10].
Besides cytotoxicity assays, other in vitro assays are conducted to research the specific
mechanism of potential hepatotoxicity. For example, the glucose-galactose assay and
oxygen uptake assay can be conducted for the determination of mitochondrial injury [11].
Investigation for BSEP inhibition by drugs can be also a manner to evaluate DILI [12].
In addition, covalent binding assays and reactive metabolite trapping are used to detect the
formation of reactive metabolites that can commonly cause liver injury [13].

Animal models also play an important role in the pharmacokinetics and toxicity re-
searches of drug metabolism in vivo relevant to DILI. Several models of chimeric mice with
humanized hepatocytes have been developed over the years, most of which require the dam-
age of endogenous mouse hepatocytes followed by a transplant of human liver cells. Highly
immunodeficient NOG mice (TK-NOG) are a humanized liver model expressing a herpes
simplex virus type 1 thymidine kinase (HSVtk) transgene and mouse liver cells that were
ablated after exposure to ganciclovir [14]. Humanized liver Fah−/−/Rag2−/−/Il2rg−/−
(FRG) mice were developed by Azuma et al. by transplanting human hepatocytes into
FRG mice whose endogenous hepatocytes were damaged due to the genetic block of the
tyrosine catabolic pathway [15]. These humanized liver models exhibit comparable liver
enzyme expression levels and activity to the donor livers [16], as an alternative tool to
study the potential damage to the human liver of drug candidates. In addition to mouse
models with humanized livers, several human CYP-transgenic mouse models have been
generated. CYP450 humanization in mice can be achieved through the cross-breeding of a
human CYP-transgenic mouse with a mouse-CYP knockout mouse or directly knocking
in the human genes to replace the mouse genes [17]. However, CYP450 humanization in
mice can only investigate the action of a single human CYP transgene on drugs, hence the
limited significance of these models to human drug hepatotoxicity assessment [18].

Commonly used tests to assess DILI, including in vitro experiments or in vivo animal
models mentioned above, are sometimes inaccurate when the data were extrapolated
to humans. In addition, it is difficult to detect DILI during prospective clinical trials as
the relatively low DILI occurrence rate compared to other serious adverse events (SAEs)
requires a disproportionately large sample size for detection. Ethical considerations also
forbid re-challenge tests for DILI [19,20]. Although an interactive software “Evaluation
of Drug-Induced Serious Hepatotoxicity” (eDISH), released by the FDA in 2004, aims
at monitoring and evaluating drug liver toxicity in clinical trials, it mainly depends on
the acquired clinical data (e.g., serum level of alanine aminotransferase) obtained from
each trial subject and it cannot predict drug hepatotoxicity before drugs are applied in
humans [21]. Therefore, early diagnosis of DILI or the timely referral of patients is of great
importance for a drug throughout its whole lifespan. In silico methods provide an effective
approach to screening drugs that may cause hepatotoxicity. We aim to review the major
underlying mechanisms of DILI and the in silico approaches to predict DILI risks, including
computer algorithm models and the DILIsym model.

2. The Classification and Mechanisms of DILI
2.1. Classification

DILI is defined as a series of reactions triggered by exposure to any artificial or
natural compound that leads to acute or chronic liver injury according to the course of
the disease. It can also be divided into intrinsic DILI (InDILI) and idiosyncratic DILI
(IDILI) based on the pathophysiological mechanism. Intrinsic liver injury is usually dose-
dependent and can be predicted directly from human or animal models [22]. InDILI is
relatively common and generally occurs within 1 to 5 days after supratherapeutic doses
of the perpetrator drug are given. InDILI is typically observed as elevated hepatic serum
aminotransferase or alkaline phosphatase (or both) without jaundice. On the other hand,
IDILI is relatively rare and unpredictable, with acute hepatocellular hepatitis as the primary
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manifestation, and has a latency period ranging from 5 to 90 days [23]. Additionally, IDILI
is less dose-dependent and has significant interindividual differences, posing difficulties
in predicting injury occurrence through animal experiments [24]. In addition to InDILI
and IDILI, cholestatic liver injury is also an important classification of DILI. It is caused
by impaired biliary transport resulting in the accumulation of bile acids in the liver and
systemic circulation [25].

2.2. Mechanisms
2.2.1. Oxidative Stress

Oxidative stress results from the excessive generation of reactive oxygen species
(ROS), which are harmful to cells. For example, hydroxyl radicals can react directly with
DNA components, phospholipids, and protein side chains to damage macromolecular
structures and cause cell necrosis and apoptosis [26]. In addition, ROS can also change
the functions of subcellular organelles, leading to alteration of the membrane permeability
of the endoplasmic reticulum, sarcoplasmic reticulum, and mitochondrial reticulum to
damage cells [27] (Figure 1). Some hepatotoxic drugs can be metabolized into reactive
molecules with similar actions to ROS, which are known as reactive metabolites.
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Figure 1. The mechanisms of drug−induced liver injury (DILI). Bile acid (BA) is transported into
hepatocytes by NTCP and OATP2 and drained into bile canaliculus through MRP2 and BSEP. After
entering into hepatocytes through OATP3, unconjugated bilirubin (UB) can be converted into con-
junction bilirubin (CB), which exits hepatocytes via MRP2/3. Aquaporin−8 (AQP8) is responsible
for maintaining the osmotic water permeability of the canalicular membrane. Inhibition of both
MRP2/3/4, BSEP, and AQP8 by drugs can induce accumulation of bile acid and result in cholestasis.
Inhibition of NTCP and OATP2/3 can induce increased plasma levels of bile acid. Some hepatotoxic
drugs or their metabolites can be recognized as reactive molecules that present a similar action like
reactive oxygen species (ROS), which damage mitochondria and cellular macromolecules, or directly
impair mitochondrial function and cause the excessive generation of ROS, resulting in cell injury and
death. NTCP, sodium taurocholate cotransporting polypeptide. OATP, organic anion transporter
polypeptide. MRP, multidrug resistance-associated protein. BSEP, bile salt export pump.
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Acetaminophen (APAP), extensively used as an antipyretic, is a dose-dependent
hepatotoxic drug. The main metabolic pathway of APAP at the therapeutic dose is phase
II conjugation, where APAP is converted to nontoxic compounds including glucuronide
derivatives (APAP-glu, 52–57%) and sulfate derivatives (APAP-sul, 30–44%). These polar
metabolites are then excreted via urine. Only approximately 5% of APAP is oxidized by
CYP450 enzymes in phaseImetabolism to form N-acetyl-P-benzoquinone imine (NAPQI),
a strong oxidant, and subsequently conjugates with glutathione (GSH) [28]. However, a
comparative proportion of APAP will undergo the phase I metabolizing pathway when
phase II conjugating enzymes are saturated after excessive doses of APAP are given. This,
in turn, produces more NAPQI and increases the need for GSH for conjugation [29]. Once
GSH is exhausted, the reactive metabolite NAPQI will accumulate, leading to the damage
of intracellular macromolecules and mitochondria [30]. Additionally, the depletion of GSH
accelerates the formation of reactive oxygen and nitrogen in hepatocytes, further activating
Kupfer and pleomorphic nuclear cells and leading to cell damage [31].

2.2.2. Mitochondrial Toxicity

Mitochondria are essential organelles in eukaryotes. They are responsible for not
only the production of energy—in the form of adenosine triphosphate (ATP)—but also
the regulation of cellular biological activities including biosynthetic processes, calcium
homeostasis, stress responses, and cell death [32]. Dysfunctional mitochondria would
greatly disrupt normal physiological activities, leading to decreased ATP formation, ROS
overproduction, and cell necrosis [33] (Figure 1). It has been reported that mitochondrial
injury can occur during the development of DILI [34]. Many hepatotoxic drugs can disrupt
mitochondria directly. Some drugs (such as rotenone, paroxetine, simvastatin, and tamox-
ifen) block electron transfers in the mitochondrial respiration chains [35], while others
(such as troglitazone, amiodarone, valproic acid, tamoxifen, or glucocorticoids) diminish
the β-oxidation of fatty acids in mitochondria through inhibiting acyl-CoA synthases,
carnitine palmitoyl transferase I, or mitochondrial β-oxidation enzymes [36]. Additionally,
some drugs can directly act on the mitochondrial genome and affect mitochondrial DNA
(mtDNA) replication and translation, inducing mtDNA depletion that impedes oxidative
phosphorylation [37]. Mitochondrial function can also be impaired following oxidative
stress and abnormal cellular signal transduction induced by drugs. APAP can further
activate Jun N-terminal kinase (JNK) signaling involving Apoptosis signal-regulating ki-
nase 1 (ASK-1) and mitogen-activated protein kinase kinase kinase (MAPKKK), inducing
the opening of the mitochondrial permeability transition pore and orchestrating the full
collapse of mitochondrial function [38].

2.2.3. Altered Bile Acid Homeostasis

The generation and secretion of hepatic bile depend on several transporters for bile
acid transport and transmembrane water flow, such as sodium ion-dependent cholic acid
transporters, bile salt removal pumps, and a number of water channels [39]. Cholesta-
sis and mixed cholestasis are the primary manifestations of drug-induced liver injury in
humans [25] that are caused by dysfunctional transporters involved in bile acid home-
ostasis (Figure 1). The bile salt export pump (BSEP), a biliary efflux transporter, plays a
crucial role in driving intracellular organisms and exogenous substrates into bile. The
inhibition of BSEP by some hepatotoxic drugs including cyclosporine, troglitazone, and
bosentan can lead to the accumulation of intracellular bile acids and cholestatic damage
in drug-induced liver injury [40]. However, it is challenging to predict liver damage from
BSEP inhibition via preclinical animal models, thus many crucial mechanisms of drug-
induced cholestasis remain poorly understood [41]. Besides BSEP, the sodium taurocholate
cotransporting polypeptide (NTCP) is another predominant transporter located on the
basolateral/sinusoidal membrane of hepatocytes that mediates the uptake of bile acids
from the blood [42]. Kristina et al. demonstrated that some clinically hepatotoxic drugs
(such as troglitazone and rifampin) could inhibit NTCP and obstruct the bile acids up-
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take into hepatocytes, which increased plasma levels of bile acids [43]. In addition, other
biliary transporters like multidrug resistance proteins (P-glycoprotein and MDR3), mul-
tidrug resistance-associated protein 2/3/4 (MRP2/3/4), and organic anion transporting
polypeptides 2/3 (OATP2/3) represent potential targets in drug-induced cholestasis [44].

Dysfunctional water channel proteins can also contribute to bile flow impairment.
Aquaporin-8 (AQP8), a member of the aquaporin family of membrane channel proteins that
facilitate osmotic pressure-driven water transport, is highly expressed on the canalicular
membrane of hepatocytes [45]. Many studies showed that the downregulated expression
of AQP8 was correlated with the reduced water permeability of the bile duct in a variety
of cholestasis models [46], accounting for micellar concentrations of bile acids in the
canaliculus and decreased choleresis [45].

2.2.4. Innate and Idiosyncratic Immune Responses

Hepatic inflammation is the common manifestation of many liver diseases, including
drug-induced hepatotoxicity [47]. The liver is the key organ of the immune system, and
it is also the immune organ to show the resistance of lymphocytes [48]. Inflammatory
phenotypes can be attributed to innate immune responses produced by Kupffer cells,
monocytes, neutrophils, and lymphocytes. Activation of Kupffer cells and recruitment of
macrophages and immune cells would lead to inflammation and injury due to increased
cytokine release [49]. These events are significant factors in the initiation and maintenance
of drug-induced liver injury and are especially important for the manifestation of IDILI.

Cytokines are important to regulate innate and specific immunity and also function
as signals for potential danger. These messenger proteins bind to specific target cell
receptors and can stimulate or inhibit cellular involvement in immune responses [30]. Some
studies have reported that the decrease in interleukin-10 (IL-10) expression can cause severe
consequences in IDILI patients due to the change of promoter and the reduction in serum
eosinophil levels [50]. In addition, the drug and its metabolites can activate the immune
response in the liver. For example, NAPQI, which accounts for the major hepatotoxicity
risk of APAP, would trigger the broken balanced state of the innate immune system by
activating signal transduction and transcription factor pathways involving inflammatory
cascades following GSH depletion and covalent binding [51]. Previous studies have also
shown that increased serum levels of high mobility group protein B1 (HMGB1)—a pro-
inflammatory protein—could occur in patients who overdosed on APAP, suggesting that
APAP-induced liver injury could be associated with innate immune inflammation [52].

3. The Prediction of DILI by In Silico Models
3.1. Knowledge-Based Prediction

Computer algorithms can be established to predict DILI based on a series of training
data, which can be applied clinically or during drug development. To facilitate analysis,
most DILI events can be divided into the input cause and output result. Input causes
include the properties of drugs, such as chemical structures, gene expression profiles, and
cell and tissue images. These properties are used to determine the probability of DILI
occurrence. Output results could include in vitro and in vivo hepatotoxicity, changes in
biomarkers, or clinical adverse events related to DILI [53]. By summarizing the rules
between drug properties and DILI occurrence (see Figure 2) using computer algorithms
followed by proper and sufficient training, clinicians can predict the DILI risk of a new
drug by preliminary properties.
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Figure 2. The process of knowledge-based prediction. In knowledge-based prediction, drug prop-
erties including molecular descriptors, molecular fingerprints, gene expression profiles, cellular
indicators, and their mode of action are used to develop a certain relationship rule with the existing
drug-induced liver injury (DILI) outcome, using classification algorithm, shallow machine learning,
or deep learning methods. Through sufficient training, validation, and refinements, these models can
be applied to predict the DILI risk of a new drug by preliminary properties.

3.1.1. Cheminformatics-Based Model

Chemical structures are commonly associated with the bioactivity of drugs and closely
relate to the occurrence and severity of DILI. As a result, the development of Quantitative
Structure-Activity Relationship (QSAR) via in silico models plays an important role in the
prediction and assessment of DILI. In QSAR, the structure of each chemical compound will
be treated as a vector known as a molecular descriptor. Then the functional relationship
between molecular descriptors and a DILI-related biological activity of molecules (repre-
sented by a scalar) will be constructed [54]. Different chemical structure-based descriptors
have been proposed, ranging from those with simple characteristics (that is molecular
weight and number of carbon atoms) to sophisticated encodings typically referred to as
“molecular fingerprints” [55].

There are different computational programs to process the input information, which
can be divided into explicitly coded decision rules and implicitly defined rules. Explic-
itly coded decision rules are commonly used when expert toxicology or hepatotoxicity
knowledge is available, in which the assessment of hepatotoxicity is determined by a fixed
classification algorithm based on chemical structures [56]. However, most statistical models
use implicitly defined rules, namely machine learning to achieve the same outcome. The
primary algorithms typically can be trained with the ultimate decision rules obtained with
optimization techniques [57].
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Expert Knowledge Approaches

With the expert knowledge approaches (explicitly coded decision rules), known drug
information is used to identify specific fragments of molecules that are associated with DILI.
These are generally called structural alerts [58]. Egan et al. developed 74 computational
alerts based on the structural and mechanistic information of 244 molecules using the
Vertex cheminformatics platform (VERDI) that forms one of the published structural alert
techniques. Of the 74 structural alerts, over 80 percent were related to the functional groups
that are mainly converted to reactive toxic metabolites [59]. Derek for Windows is another
knowledge-based tool for predicting toxicity, covering carcinogenicity, mutagenicity, skin
sensitization, hepatotoxicity, and reproductive toxicity [60]. Greene et al. collected over
1266 chemicals and developed structure−activity relationships as structural alerts using
Derek for Windows. The external evaluation of this model achieved an overall concordance
of 56%, specificity of 73%, and sensitivity of 46% [61].

Besides structural alerts, some classification algorithms are developed to utilize exist-
ing drug knowledge for the DILI judgment. For example, Zhu and Kruhlak proposed a scor-
ing rule for post-marketing DILI data of 2029 drugs with 13,555 drug-adverse event pairs
and classified them as DILI-positive or -negative according to their respective scores [62].

Machine Learning Approaches

As mentioned above, the decision-making algorithms of machine learning (ML) are
implicitly defined and typically obtained by algorithm optimization. Machine learning can
be further classified as shallow ML methods (numerous naive Bayes classifiers, k-nearest
neighbors, support vector machines, and random forests) and deep learning methods based
on the so-called deep artificial neural networks with at least two hidden layers [63].

Due to their good accuracy, there are increasing numbers of predictive statistical
models using machine learning methods. Chen et al. established a QSAR model using the
Decision Forest algorithm, to calculate molecular descriptors from 2D chemical structures
by Mold2. The model was trained by 197 drugs and assessed by 3 validation data sets
with an overall estimated accuracy of 73.6% in high-confidence therapeutic subgroups [64].
Zhang et al. developed a computational model using human datasets and the Naive Bayes
classifier approach. The structural features of various compounds were analyzed using
1D descriptors, AlogP, molecular properties, molecular property counts, surface area and
volume, topological descriptors, and the extended connectivity fingerprints (ECFP), with
overall prediction accuracy, sensitivity, and specificity of 94.0%, 97.1%, and 89.2% for the
training set, respectively [65]. Liu et al. employed the Support Vector Machine (SVM) and
random forest (RF) algorithms with ECFP4 fingerprints, Mordred molecular descriptors,
and the predicted protein targets as chemical structure-derived descriptors for developing
DILI classifiers [66].

Deep learning algorithms are increasingly popular in the prediction of DILI. Xu et al.
constructed the DILI prediction model using the undirected graph recursive neural net-
works (UGRNN) method, relying only on a few suitable molecular descriptors with suitable
representations that are learned automatically from the data. The DL-Combined model,
which performed better than previous DILI prediction models, was trained on 475 drugs
and predicted 198 drugs with 86.9% accuracy, 82.5% sensitivity, and 92.9% specificity [67].
Nguyen-Vo et al. used convolutional neural networks combined with molecular fingerprint-
embedded features to screen DILI compounds and obtained an average accuracy of 89% [68].
Li et al. employed five conventional ML algorithms, including K-nearest neighbor (KNN),
logistic regression (LR), SVM, RF, and extreme gradient boosting (XGBoost) in a three-
layer neural network based on the Mold2 descriptors for the development of the DeepDILI
model. The model was ultimately used to predict any DILI concern for potential 2019-nCOV
treatments [69].
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3.1.2. Bioactivity-Based Model

To complement and improve chemical structure-based models, additional informa-
tion in the form of biological drug properties such as gene expression data (i.e., genomic
biomarkers for DILI prediction) and cellular indicators are necessary. Most gene expres-
sion data are accessible in some large-scale biomedical datasets such as the Connectivity
Map (CMap) project, which is a collection of transcriptional expression data derived from
cultured human cells treated with various compounds [70] and Genomics-Assisted Toxi-
city Evaluation System (TG-GATEs), another large toxicogenomics database with higher
diversity of data structures [71]. The gene expression profile can be regarded as one of the
drug features and correlated to hepatotoxicity outcomes for the prediction of DILI. Liu
et al. collected different types of drug features, including chemical fingerprints, molecular
descriptors, binding proteins, gene expression, therapeutic classifications, and different
DILI endpoints such as liver failure, jaundice, biomarker increase, hepatomegaly, and
hepatitis, and used these data to train logistic regression and random forest classifiers. The
resultant areas under the receiver operating characteristic curve (AUC) were approximately
0.8 for certain DILI endpoints indicating that such a combination generally improved the
model performance compared to only using a single feature [72]. Li et al. developed an
eight-layer Deep Neural Network (DNN) model for DILI prediction using transcriptomic
profiles of human cell lines and the model also achieved a comparative AUC of 0.798 for
the independent validation set [73].

In addition, in vitro indicators determined by imaging assays can be a feature of
chemical compounds, such as mitochondrial damage, oxidative stress, and intracellular
glutathione. For example, Zhu et al. used human hepatocyte imaging assay technology
(HIAT) descriptors that included several biochemical indicators (e.g., lipids and glutathione)
of 156 DILI-positive and 136 DILI-negative compounds to build a DILI predictive model.
Compared to the chemical structure-based model alone, the hybrid models combined with
chemical structures and in vitro biological data could enhance the prediction accuracy of
human hepatotoxicity [74]. Puri et al. collected preclinical liver biopsy histopathology
images for 10 common drugs that presented hepatic necrosis DILI phenotypes and input
them into an artificial neural network to develop an AutoML model. This model was able
to classify necrotic liver injury patterns accurately with an average precision of 98.6% [75].

Mechanisms of drug action can also be considered during the modeling process.
Wu et al. incorporated the mode of action of 333 drugs into the QSAR model, which was
divided into active and inactive and yielded a predictive accuracy of 0.711 [76].

3.2. Mechanism-Based Prediction

A mechanistic approach that is currently being developed—known as DILIsym—
could provide a bottom-up prediction of liver safety liabilities in new drug candidates.
It integrates pharmacokinetics exposure, mechanisms of hepatotoxicity, and interpatient
variability into the modeling process to demonstrate the frequency and the extent of a new
DILI in an average patient or a specific population [77] (Figure 3).

DILIsym can simulate the occurrent process of hepatotoxicity, incorporating submod-
els for the production of reactive metabolites, and generation of ROS (oxidative stress).
Mitochondrial dysfunction can be further investigated in MITO-sym [78], accumulation of
toxic bile acids within the hepatocytes, lipotoxicity, as well as hepatocyte regeneration in
response to injury [79]. DILIsym can also analyze the interaction between hepatocytes and
immune cells and simulate the production of innate immune responses in DILI [80]. Com-
bining the time-concentration profile in specific organs with the dose-effect relationship of
each biological process in DILI production assessed with in vitro systems [81], DILIsym
will predict the time-dependent death of hepatocytes and hence the time-dependent release
of biomarkers into serum [82].
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Figure 3. The illustration of DILIsym. DILIsym model integrates physiologically based pharmacoki-
netic (PBPK) model, hepatotoxic mechanisms of drugs, and population variability to simulate the
occurrence and development of drug−induced liver injury (DILI), predicting the time−dependent
release of biomarkers into serum and assisting the determination of DILI mechanisms. Mitochondrial
dysfunction can be further investigated in MITOsym.

During the modeling process of DILIsym, a physiologically based pharmacokinetic
(PBPK) model is created using available parameters related to the drug properties and
physiological structures to estimate the time-dependent exposure of the drug in the region
of interest. With the development of modeling theory, technology in the engineering field,
and the popularization of computer technology and computing software, PBPK modeling
techniques have matured considerably since their inception in the early 1930s [83]. The
PBPK model mathematically describes the physiological processes, including absorption,
distribution, metabolism, and excretion (ADME) of chemicals within the body of an or-
ganism through computers [84]. Unlike the classical atrioventricular model, most of the
parameters of the PBPK model have physiological significance. Once the parameters are
determined, the model can simulate and predict drug disposition in a specific organ or
tissue under various conditions. As a result, the PBPK model is recognized as a “bottom-
up” model [85]. Due to its superior predictive capability, PBPK models have been applied
widely in many fields, including the development of drug candidates the design of clinical
trial protocols [86], as well as the prediction of clinical drug-drug interactions [87].

The first drug modeled by DILIsym was APAP where the model generated oxidative
stress accounting for APAP overdosed hepatotoxicity. The modeling was used to propose
the optimal treatment protocol with N-acetyl cysteine [88]. Subsequently, Smith et al.
predicted the clinical risk of hepatotoxicity of ubrogepant, telcagepant, and MK-3207
through DILIsym modeling. Telcagepant and MK-3207 were predicted to cause the rise
out of the upper limit of normal ALT or total bilirubin at clinical pharmacologic doses, in
accordance with clinical observation. Ubrogepant was predicted to be safe for the liver
in all simulated individuals at all efficacious doses and a 10-fold higher amount than the
proposed clinical dose, supporting the liver safety profile of ubrogepant in clinical trials [89].
Diane et al. also used DILIsym to compare the potential liver toxicity of oral riluzole tablets
versus BHV-0223, a novel sublingual formulation of riluzole. The results suggested that
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sublingual BHV-0223 had reduced hepatic exposure and, consequently, posed a lower risk
of liver toxicity compared with riluzole oral tablets [90].

Several fundamental DILI mechanisms are integrated into DILIsym, including mito-
chondrial toxicity, bile acid-mediated toxicity, and oxidative stress. By sequentially turning
off each of these hepatotoxicity mechanisms and observing the DILI outcome change degree
of each alteration, the predominant mechanism of hepatotoxicity can be found [91]. By
adjusting the parameters associated with hepatotoxicity mechanisms, the ultimate change
in DILI outcome can be observed (i.e., parameter sensitivity analyses) to facilitate the
conduct of in vitro assays. Therefore, DILIsym can be used to explore the profound effect
on the human hepatotoxicity of specific drugs. Tolvaptan, an anti-hyponatremia drug
for treating autosomal dominant polycystic kidney disease (ADPKD) is a good example
to demonstrate such a feature by DILIsym. Tolvaptan had received a black box warning
regarding hepatotoxicity. In clinical practice, ADPKD patients are assumed to be more
susceptible to tolvaptan-induced liver injury based on the evidence that no signals of
liver safety emerged during prior clinical trials or clinical use of tolvaptan in non-ADPKD
patient populations. James et al. used DILIsym to simulate the impact of reduced biliary
efflux, which was one of the common manifestations in ADPKD patients on tolvaptan-
associated hepatotoxicity. They altered the biliary excretion parameters Vmax of tolvaptan
and DM-4103, the main metabolite of tolvaptan, and observed the resultant changes in the
pharmacokinetics of tolvaptan and DM-4103, bile acid, mitochondrial homeostasis, and
clinical biomarker measures. The results showed that a reduction in the biliary excretion
Vmax of tolvaptan had a minor impact on tolvaptan pharmacokinetics and hepatotoxicity,
but that of DM-4103 resulted in marked hepatic accumulation of DM-4103 and bile acids,
reductions in hepatic ETC activity and ATP concentrations and increase in hepatotoxicity
plasma biomarkers. This DILIsym model supported the hypothesis that impaired biliary
efflux increased susceptibility to tolvaptan-associated hepatotoxicity observed in patients
with ADPKD, and MRP2 played a more prominent role in tolvaptan-associated liver injury
owing to the inhibition of DM-4103 on MRP2 [92].

4. Discussion

According to the General Practice Research Database (GPRD), the crude incidence of
drug hepatotoxicity in the UK is 2.4 cases per 100,000 people per year [1]. Delayed diagnosis
and treatment of DILI have resulted in an increased burden on the healthcare system, as
well as causing preventable morbidity and mortality among patients who rely on these
drugs. In addition to clinical consequences, DILI is also a major reason for drug withdrawal
and a cost driver for pharmaceutical companies. As such, there is an urgent need to
improve the capability to predict DILI risks at the early stage of drug development. The
pharmaceutical industry has increasingly turned to in silico modeling, and the technique
could hold the key to better risk prediction.

Knowledge-based predictive models use the computational algorithm and specific
descriptors to develop the relationship between the drug properties and DILI outcome and
further predict the DILI risk. The most challenging problem of knowledge-based predictive
models is the lack of DILI annotation datasets, which can be defined as a comprehensive
collation of drug information, including the hepatotoxicity descriptions from available data,
dosing regimen, basic properties, related study results, and the risk classification schemes
of DILI into a single database. There are various public DILI annotation datasets with
different drugs and content, for example, the LiverTox Dataset [93], the LTKB dataset [94],
and DILIst [95]. However, these datasets are still several orders of magnitude smaller than
the benchmark datasets used in drug discovery [96]. This is the bottleneck that restricts
widespread validation and application of knowledge-based predictive models to the devel-
opment of new chemical entities. Ma et al. established a property augmentation approach
to include massive training data and significantly improved the predictive accuracy to
81.4% using cross-validation [97], indicating the importance of the data size for the predic-
tive results. In this case, more effort should be made with the extension of DILI annotation
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datasets. For example, some drugs withdrawn from the world market or only listed in one
country can be embraced into the research scope. In addition, the risk judgment of drugs
in datasets can be more concrete and precise by incorporating information both from the
literature and clinical outcomes.

In addition, DILI is often simplified to a qualitative classification problem in the
case of computational predictions. This approach, however, does not provide sufficient
information on essential factors such as dose dependency or affected patient population
during model development. Consequently, the practical applicability of such models is
limited. Mechanism-based prediction algorithms such as DILIsym can combine cell assays,
PBPK modeling, and interindividual variation into a single model to predict the time
course of drug hepatotoxicity. The ability to simulate different dosing regimens and to
predict the corresponding DILI risk of each regimen can help to clarify some fundamental
clinical questions, including the dose-dependency of a particular drug and determination
of safety margin can be undertaken through dose escalations in the virtual subjects within
DILIsym [98]. Additionally, hepatotoxicity prediction using DILIsym can circumvent the
problem of species differences in preclinical DILI research, especially bile acid-associated
liver injury [99,100]. However, the DILIsym model does not include all mechanisms of
hepatotoxicity, primarily the immune-related liver injury as previously described. This
could potentially lead to a certain degree of underestimation of the risk of DILI. In addition,
the DILIsym model cannot mimic various special populations, especially the diseased
population that is most vulnerable to DILI. Lastly, most in silico predictive models of DILI,
exclude information on macromolecules, metallic, and inorganic compounds resulting in
few predictions of DILI of these drugs. These problems can turn into the main research
interests of DILI prediction in the future.

DILI in China accounts for about 20% of the hospitalization rate of acute liver in-
jury [101], which could be attributed to both western medicine and traditional Chinese
medicine (TCM) [24]. This highlights the importance and urgent need to predict TCM-
induced liver injury in China and other regional countries that utilize TCM as part of
the healthcare system. Huang et al. used the validated QSAR model that was based on
the Liver Toxicity Knowledge Base to investigate the hepatotoxic potential of identified
ingredients in the Traditional Chinese Medicine Database of Taiwan. The result showed
74.8% of 9160 unique chemicals possessed hepatotoxic potential, with high hepatotoxic
potential for 100 chemical ingredients [102]. The results called for immediate attention
to conducting comprehensive assessments of TCM-induced liver injury, especially using
mixed model approaches that have been proposed to improve the predictive accuracy of
computational models of TCM-induced toxicity. Typically these models would integrate
physicochemical data, observational data on drug toxicity, and biological information into
a single database for model development using different machine-learning methods [103].
For example, Li et al. successfully used an SVM classifier to delineate the relationship
between in vitro hepatotoxic benchmark concentrations and in vivo AUC of training sets,
followed by estimating the in vivo plasma profile based on the cytotoxicity data of natural
products derived from traditional Chinese medicines (NP-TCMs) of interest by in vitro–
in vivo extrapolation (IVIVE) relationship. Then, the oral dosing schedules of NP-TCMs
were predicted using PBPK modeling reversely to help safety assessment of TCM-induced
liver injury [104].

Theoretically, all subjects who received a drug share the same risks of experiencing
hepatotoxic drugs. However, certain populations will be more vulnerable to hepatotoxic
drugs. Applying in silico models mentioned above in the analyses of DILI risk factors
among vulnerable patient groups is of great significance for DILI research. Related genes
have always been studied to understand the pathogenesis of specific DILIs. Moore et al.
used machine learning approaches, including multivariate adaptive regression splines
(MARS), multifactor dimensionality reduction (MDR), and logistic regression to investigate
single-nucleotide polymorphism (SNP)–SNP interaction as a potential DILI risk factor [105].
Moreover, gender has also played an important role in IDILI. Women are more susceptible to
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hepatotoxicity from certain drugs, such as minocycline and methyldopa [106]. In addition,
environmental factors leading to drug-induced liver injury cannot be ignored. Excessive
drinking may increase the risk of DILI caused by duloxetine, APAP, methotrexate, and
isoniazid [24]. However, few DILI predictions focus on vulnerable populations, which can
be one of the important issues for further study.

In conclusion, we have introduced two main types of in silico models for DILI predic-
tion: knowledge-based models using the computational algorithm and mechanism-based
models using DILIsym, which could be used to evaluate the risk of drug-associated liver
adverse events in both clinical settings and drug development processes.
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