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Abstract: Microplastics have caused great concern in recent years. However, few studies have com-
pared the toxicity of different sizes of microplastics in fishes, especially commercial fishes, which
are more related to human health. In the present study, we revealed the effects of varying sizes
of microplastics on grass carp embryos and larvae using scanning electron microscopy (SEM) and
fluorescence imaging. Embryos were exposed to 80 nm and 8 µm microplastics at concentrations of 5,
15, and 45 mg/L. Toxicity kinetics of various sizes of fluorescent microplastics were analyzed through
microscopic observation in the larvae. Results found that nanoplastics could not penetrate the em-
bryo’s chorionic membrane, instead they conglutinated or aggregated on the chorion. Our results are
the first to explore the defense mechanisms of commercial fish embryos against microplastics. Larvae
were prone to ingesting their own excrement, resulting in microplastic flocculants winding around
their mouth. For the first time, it was found that excreted microplastics could be reconsumed by fish
and reaccumulated in the oral cavity. Microplastics of a certain size (1 µm) could be accumulated in
the nasal cavity. We speculate that the presence of a special groove structure in the nasal cavity of
grass carp larvae may manage to seize the microplastics with a particular size. As far as we know,
this is the first report of microplastics being found in the nasal passages of fish. Fluorescence images
clearly recorded the toxicity kinetics of microplastics in herbivorous fish.

Keywords: microplastic; grass carp; size; accumulation; re-consumption

1. Introduction

The last five years have witnessed a rapid surge of published articles on microplastic
pollution, which testifies to the great concern this pollutant has posed in recent
years [1,2]. Although first raised as an issue by Thompson et al., 2004 [3], microplas-
tics were first discovered in North America in the 1970s in the form of small spheres in
plankton off the coast of New England [4]. Subsequently, other researchers also found that
these tiny particles were not only in the aquatic environment [5–7], but also in soil [8,9],
organisms [10–12], and even in the atmosphere [13,14]. According to the US National
Oceanic and Atmospheric Administration (NOAA) in 2008, plastics smaller than 5 mm in
size were identified as microplastics (MPs) [15]. With the development of cognition and
technology, smaller microplastics were classified into nanoplastics (NPs). Although not
clearly defined, particles within 100 nm in scale were commonly referred to as nanoplas-
tics [16–18]. The 21st century has been called the age of plastics [19], largely because plastics
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are indispensable in contemporary life. Unfortunately, used plastics are not recycled or
managed well, resulting in an increasing amount of waste getting discarded into the envi-
ronment every year [20,21]. After physical, chemical, and biological degradation, plastics
turn into microplastics or nanoplastics, which have become a threat to the ecological envi-
ronment and human health [22,23]. People are now horrified by their huge numbers and
extremely worried about the potential threat microplastics pose when they enter living
organisms, because it means the plastics could threaten our health through the food chain,
and even through drinking and simply breathing [24–26].

Many researchers have focused on the impact of microplastics on aquatic organ-
isms, especially on algae [27–29] and shellfish [30,31], whereas relatively few studies have
been conducted on fish [32,33]. In addition to the type, shape, concentration, and color
of microplastics, particle size is one of the key factors influencing microplastics toxico-
logical effects [34–36]. In general, the smaller particle size, the more toxic they are to
organisms [16–18]. Specifically, on the one hand, microplastics with larger specific surface
areas can adsorb more pollutants, resulting in enhanced toxicity. On the other hand, the
smaller size of the microplastics, the longer they are retained in the body, increasing the
risk of potential damage. For example, Ivleva et al. (2017) found rapid accumulation of
<15 µm microplastics and concluded that smaller particles were of more concern than the
larger ones [37]. Both 0.05 and 10 µm microplastics increased oxidative stress in marine
copepod, but smaller microplastics raised more reactive oxygen species (ROS) [38]. The
growth and reproduction of copepod showed a size-dependent decline after exposure to
microplastics for 16 d [39]. These studies speculated that the effects of microplastics with
different sizes on organisms are different, and toxicity usually increases with decreasing
size. However, few studies compared the toxicity of varying sizes of microplastics in fish,
especially commercial fish. Commercial fish refers to fish that can be bought in the market
and cooked in the kitchen, and are more directly related to human health.

Compared to adult fishes, larvae are more sensitive to environmental stress [40,41].
Especially in its early stages, the pigment on the fish body surface is not fully formed, but the
fish can feed and swim freely, making them ideal specimens to study dynamic distribution
processes of microplastics in the body [42]. Fish eggs with lipophilic chorionic membranes
could be potential surfaces for increased microplastic deposition and accumulation. Both
periods (the larval and eggs) are critical for fish populations because of their high sensitivity
to pollutants [43,44]. Batel et al. (2018) found that smaller and heavier microplastics
(1–5 mm) accumulated in high numbers on the surface of zebrafish egg chorions [45].
Zhang et al. (2020) speculated that weak physical forces and/or electrostatic interactions
operated between the chorion membrane and microplastics [46]. Fluorescence images of
accumulation and egestion of microplastics in filter feeding tadpoles (Xenopus tropicalis)
were concentration dependent [47]. The impacts of microplastics on embryo and larval fish
can be directly reflected by fluorescence micrograph and SEM images. Our research group
have focused on the differences of toxicity kinetics of microplastics in larvae with three
feeding types and found that the effects of microplastics on fish were species-specific [42].
The results showed that the ingestion of microplastics in hybrid snakehead (carnivores) was
lower than that in bighead carp (filter feeders) and mrigal (omnivores), while mrigal larvae
were less effective to remove microplastics than bighead carp larvae. There is little research
available on herbivorous fish [48], since this species is fewer, and samples are hard to obtain.
However, grass carp (Ctenopharyngodon idella), as the typical representative of herbivorous
fish, is a commercial fish with the largest amount of aquaculture in China [49,50].

In the present study, grass carp embryo and larvae were the model organisms, and
different sizes of polystyrene microspheres were the exposure xenobiotics. Embryos at
12 h post fertilization (hpf) were exposed to 0.08 and 8 µm microplastics at various concen-
trations. In order to facilitate observation, green and red fluorescent microplastics were
selected to visually reflect the dynamic distribution processes of microplastics in larvae.
Toxicity kinetics of microplastics were analyzed through microscopic observation. This
is the first study to investigate the accumulation, distribution, and egestion of microplas-
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tics in grass carp larvae. Therefore, our results aimed at bridging the gap on effects of
microplastics in herbivorous fish.

2. Materials and Methods
2.1. Microplastics and Fish

We used microspheres with mean diameters of 0.08 and 8 µm (Dae Technology Co.,
Ltd., Tianjin, China) for the embryo toxicity assay, and fluorescent microspheres for larval
exposure and elimination experiments. Green fluorescent polystyrene microspheres (ex-
citation wavelength: 488 nm; emission wavelength: 518 nm) with mean diameters of 0.5
and 5 µm were purchased from Dae Technology Co., Ltd. (Tianjin, China). Orange fluo-
rescent polystyrene microspheres (excitation wavelength: 540 nm; emission wavelength:
580 nm) with mean diameter of 1 µm were bought from the same company. Red fluo-
rescent polystyrene microspheres (excitation wavelength: 620 nm; emission wavelength:
680 nm) with mean diameter of 5 µm were bought from Tianjin BaseLine ChromTech
Research Centre (Tianjin, China). SEM figures of all kinds of microspheres are shown in
Supplementary Figure S1.

The embryos of grass carp obtained from a stock farm in Qingyuan city, Guangdong
Province, China, were packed in oxygenated bags and transferred to the lab immediately.
They were then acclimatized in a 100 L glass tank prior to the exposure test. The dechlo-
rinated circulating water conditions were as follows: water temperature 25.4 ± 1.3 ◦C,
pH 7.0 ± 0.3, dissolved oxygen 6.5 ± 0.6 mg/L, and 14 h light/10 h dark photoperiod. The
animals used in the present study were cultured and sacrificed following the terms of use
of animals approved by the Animal Care and Use Committee of South China Agricultural
University (identification code: 20210236; date of approval: 27 May 2021).

2.2. Embryo Toxicity Assay

The experimental embryos of grass carp were all in organogenesis stage (12 hpf).
Microspheres with two sizes (0.08 and 8 µm) and at three concentrations (5, 15, and
45 mg/L) were used for the embryo toxicity assay. Each of the 15 embryos were assigned
to glass Petri dishes with a diameter of 5 cm containing 5 mL test solution at random.
There were two control groups that did not contain microplastics. The experiment was
repeated three times. A total of 360 individuals and 24 glass Petri dishes were used. Embryo
mortality was observed and recorded every two hours. The embryos were considered dead
when they turned white.

2.3. SEM Analysis of Embryo

After 2, 4, 6, and 8 h exposure, embryos were collected and analyzed as described
by [42,51], with slight modifications. The two sample preparation methods are as follows:
(a) critical point drying: embryos were fixed in 4% paraformaldehyde for more than 24 h,
rinsed thrice with 0.1 M phosphate-buffered saline (PBS, pH 7.4) for 15 min, and postfixed
with 1% osmium tetroxide for 1.5 h at room temperature. Dehydration was carried out
sequentially with ethanol concentrations of 30%, 50%, 70%, and 90% once for 10 min,
followed by 100% ethanol twice for 10 min. After dehydration, samples were replaced with
isopentyl acetate twice for 15 min, then dried in critical point desiccators (EP CPD300, Leica,
Germany) overnight and stored at room temperature for SEM analysis; (b) freeze drying
method: embryos were fixed in 3% glutaraldehyde for more than 24 h, and rinsed six times
with 0.1 M PBS for 20 min. The dehydration procedure was similar to method (a), followed
by replacement with tert-butanol twice for 20 min. After dehydration, embryos were dried
in a vacuum freeze dryer (ES2030, Hitachi, Japan) and stored at room temperature for SEM
analysis.

Before observation, samples were sputter-coated with an electrically conductive gold-
palladium alloy in vacuum via a High Vacuum Sputter Coater (Leica EM ACE600, Ger-
many). SEM images were taken with a Zeiss EVO MA 15 scanning electron microscope
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(Carl Zeiss AG, Jena, Germany) and FEI Verios 460 scanning electron microscope (Thermo
Fisher Scientific, Waltham, MA, USA).

2.4. Exposure and Elimination Experiment of Larvae

The experimental larvae were hatched from normal fertilized eggs in clean water. We
chose larvae that hatched after 24 h for the exposure and elimination experiment. They
were exposed to 10 mg/L microplastics with diameters of 0.5 and 5 µm (green fluorescent
microplastics) and 1 and 5 µm (red fluorescent microplastics), respectively, for four days.
During the experiment, five samples from each group were taken out every 12 h and rinsed
with clean water, and photographed under the fluorescence microscope (Nikon C-HGFI)
equipped with a Nikon SMZ18 camera.

For the elimination experiment, the remanent larvae were transferred into 200 mL
glass beakers containing clean water for four days. Each of the three samples were chosen
every 12 h, rinsed with clean water, and photographed as described before.

3. Results
3.1. Effects of Microplastics on Embryos

There were no significant differences in the survival rates of grass carp embryos among
all groups after 8 h exposure (Supplementary Figure S2). Even in a very high concentration
of microplastics (45 mg/L), embryos could still hatch normally. There was no difference in
morphology or fetal heart rate either.

3.2. Effects of Microplastics on Chorion Membranes

In order to maintain the stereoscopic morphology of the embryo, we used two sample
preparation methods for SEM analysis. Unfortunately, the size of the fertilized eggs of grass
carp was about 4 mm, and chorion membranes were shriveled or deformed to varying
degrees after drying (Supplementary Figure S3) due to the technical difficulty.

High-definition enlarged images showed that the membrane surface was uneven, and
there were many irregular protuberances (Figure 1). 80 nm microplastics were congluti-
nated or aggregated on the embryo chorion (Figure 2). The pore structures were observed
in some embryos (Figure 3), but whether they were caused by microplastics was unclear. In
critical point drying, the pores on the membrane surface appeared to be torn open to show
a fibrous structure (Figure 3C,D). In addition, rod-shaped bacteria appeared and attached
to some of the membrane surface (Supplementary Figure S4).

3.3. Uptake and Accumulation of Green Fluorescent Microspheres in Grass Carp Larvae

Grass carp larvae (about 9 mm in length) were observed to the microplastics exposure
experiment for four days. During the first 24 h of exposure, green autofluorescence was
observed in the thoracic cavity of the larvae, both in the control (Supplementary Figure
S5a,b) and exposed groups (Figure 4a,b). After three days of exposure, autofluorescence in
the larvae faded, leaving remnant fluorescence in the yolk sac. Photographs of the control
group under fluorescent lenses are shown in Supplementary Figure S5.

In the exposed group, 5 µm microplastics gradually accumulated in the intestines of
the larval grass carps from 36 h to 60 h (Figure 4c–e). However, from 72 h to 96 h, there
was no fluorescent signal in the intestines, and all the microplastics accumulated in the
oral cavity (Figure 4f–h). Under a brightfield microscope, obvious flocculation could be
observed around the oral cavity (Figure 4F–H).

In the exposed 72–96 h of 0.5 µm microplastics, the fluorescent particles in some of
the intestinal tracts were not removed (Supplementary Figure S6f–h), while most of the
microplastics accumulated in the oral cavity. The accumulation of 0.5 µm microplastics
during 36–60 h was similar with that of 5 µm microplastics (Supplementary Figure S6c–e).
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3.4. Uptake and Accumulation of Red Fluorescent Microspheres in Grass Carp Larvae

There was no red fluorescence in grass carp larvae of the control group
(Supplementary Figure S7). However, grass carp larvae after exposure to 5 µm red
fluorescent microplastics showed red autofluorescence in the thoracic cavity at 12–24 h
(Figure 5a,b). After 36 h of exposure, red fluorescence appeared in a strip shape, indicating
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that the 5 µm red fluorescent microplastic had entered the intestines of the larval grass carp
(Figure 5c–h). Autofluorescence in the thorax of grass carp was band-shaped. Unlike 5
µm green fluorescent microplastics, 5 µm red fluorescent microplastics accumulated in the
intestines during exposure.

3.5. Elimination of Green Fluorescent Microspheres in Grass Carp Larvae

The elimination test also lasted for four days. No fluorescent microplastics were
found in the intestines of grass carps in the control group (Supplementary Figure S8). As
shown in Supplementary Figure S9, after 4 days of exposure to 5 µm green fluorescent
microplastics, floccules and fluorescent substances around the oral cavity of the larval grass
carps did not disappear during four days of the elimination test, while the larvae could
swim normally. The cleaning situation was similar for larvae exposed to 0.5 µm green
fluorescent microplastics (Supplementary Figure S10). It is worth noting that grass carps in
the control group did not have flocculent entanglement near their mouths.

3.6. Elimination of Red Fluorescent Microspheres in Grass Carp Larvae

No fluorescent microplastics were found in the intestines of grass carps in the control
group (Supplementary Figure S11). We observed that 5 µm red fluorescent microplastics
accumulated in the intestines of grass carps during exposure. Over the elimination course of
48 h, microplastics were gradually removed from the intestines (Supplementary Figure S12a–d).
During the 60–96 h of elimination, red fluorescence mainly concentrated in the oral cavity
of grass carps, and floccules also appeared at this time (Supplementary Figure S12e–h).

The accumulation sites of 1 µm fluorescent microplastics were different from those of
5 µm fluorescent microplastics. At 24 h after exposure, red fluorescent signals appeared at
the nose of the larval grass carp (Figure 6a,b). After 36 h of exposure, 1 µm microplastics
gradually entered the intestines, but the red fluorescent signal in the nose was still not
eliminated (Figure 6c–h). Notably, after 96 h, microplastics seemed to be more concentrated
around the oral cavity (Figure 6h). Under a brightfield microscope, obvious floccules could
be observed (Figure 6H).

Orange fluorescent microplastics with 1 µm size in the grass carp intestines were
removed from the body at the early stage of the elimination experiment (within 12 h).
However, the fluorescence in the nose always existed (Supplementary Figure S13). The
close-up is shown in Figure 7. From the images of the larvae, we could not determine
whether the fluorescence was in the nasal region. Compared with the appearance of adult
grass carp (Supplementary Figure S14), we found that the nasal cavity of grass carp was
very obvious.
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4. Discussion
4.1. Effects of Microplastics on Embryos

We studied the effects of microplastics of different sizes and varying concentrations
on grass carp embryos. Results showed that embryos at 12 hpf were not affected by mi-
croplastics with nano size or high concentrations. SEM photos showed that microplastics
centered and aggregated on the embryo chorion, but couldn’t penetrate into the interior.
Fertilization and development of fish eggs are in vitro. Nutrients needed for the devel-
opment of the embryo come from the yolk, and there is little need to obtain nutrients or
excrete waste from outside the embryo. During the development of the embryo, the dense
chorionic membrane structure is helpful for protection, since the fish eggs have to face
various environmental stresses. However, the function of irregular protuberances on the
membrane surface (Figure 1) was unclear, and adverse effects caused by the tiny particles
on chorion was unmeasurable. Our results were similar with [46], in which they also found
that microplastics could be adsorbed on the outer membrane surface making the membrane
layer irregular in zebrafish embryos after being exposed to 10 µm microplastics at 10 mg/L
for 48 h. They deduced that there were weak physical forces and/or electrostatic interac-
tions between the chorion membrane and microplastics. Another report showed that silver
nanoparticles with an average diameter of 11.6 nm were passively diffused into zebrafish
embryos through chorion pore canals [52]. However, most research results supported the
conclusion that no overt embryotoxicity occurred when nanoparticles aggregated on the
chorion of embryos [53].

Fish eggs can be divided into adhesive, pelagic, demersal, and floating eggs according
to their specific gravity and viscosity. The zygotes of zebrafish, a model organism commonly
used in the laboratory, are demersal eggs, which are characterized with a larger density
than water and a smaller yolk gap [46]. However, the zygotes of grass carps used in this
experiment are floating eggs, which are characterized by water absorption and expansion,
large perivitelline space, and suspension in the water layer [54]. The differences in the
surface chorionic membrane of various types of fish eggs might lead to the discrepancy in
conglutination of microplastics, which have not been studied thoroughly. This could be of
significant concern, and it is important to address the effects with individual differences.
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4.2. Effects of Microplastics of Different Sizes on Fish

The effects of 5 µm microplastics with green and red fluorescence exposure results
were not the same, which suggested the importance in the selection of microplastic ma-
terials. This is likely because different materials would obtain different experimental
results. Even when different groups of researchers use microplastics of the same size as
the material, cross-sectional comparisons should be treated with caution. Fluorescent dye-
labeled microplastics bring convenience to observation, but also create a certain confusion.
Catarino et al. (2019) found that manufactured fluorescent microplastics leached their
fluorophores, and fluorophores possibly accumulated in the zebrafish gut, rather than
the microplastics themselves [55]. By carefully comparing our experimental results with
those of Catarino et al. (2019), we confirmed that what entered the grass carp guts were
fluorescent microplastics, rather than fluorophores. The biggest difference was whether
they were distributed in bands or strips in the body. However, although it was confirmed
that they were the same particle size of 5 µm, the difference of toxicity kinetics in red and
green fluorescent microplastics during the exposure experiment could not be accounted for.
Commercial microplastic pellets, especially those with fluorescence, need to be carefully
selected and considered.

The green fluorescent microplastics sized 0.5 and 5 µm showed no size-dependent
effects. They both accumulated mainly in the digestive and oral tracts of grass carp larvae
via oral ingestion regardless of exposure and depuration time. In general, small particles
led to prolonged retention time and high bioavailability. A number of past results indicated
that uptake of microplastics in organisms significantly depended on particle size. For
example, Lu et al. (2016) found both 5 and 20 µm microplastics in the intestines and gills
of adult zebrafish, while only the smaller-sized microplastics in the liver [56]. In addition,
although no significant differences between histopathological changes were observed in
the tissues for fish exposure to the 70 nm and 5 µm microplastics, larger-sized microplastics
induced increased activities of superoxide dismutase (SOD) and catalase (CAT). Yang et al.
(2020) found that 70 nm microplastics could enter the epidermis more easily than 5 µm
microplastics in goldfish larvae, leading to muscle mesenchymal cell damage and nerve
fiber atrophy [57]. The size-dependence effects of 0.05, 0.5 and 6 µm microplastics on
rotifers were observed, such as reduction of growth rate, lifespan, and fecundity [39]. The
size range of microplastics causing differences of biological effects is species-specific, which
may be closely related to the organism’s own tissue structure. Future research should focus
on the interaction of microplastic size and the research object.

Interestingly, 1 µm orange fluorescent microplastics could accumulate in the nasal
cavity of grass carp larvae, and could not be removed once they entered. We suspect
that there is a special groove structure about 1 µm in the nasal cavity of grass carp larvae
which manage to seize the microplastics with the particular size. As far as we know, this
is the first report of microplastics being found in the nasal passages of fish. Recently, a
study reported the accumulation of 23 nm microplastics in the brain of juvenile grass carp,
which could cause multiple adverse effects, including impaired growth/development,
behavioral changes, and anti-predatory defensive response associated with oxidative
stress [58]. Another study found that microplastics were accumulated in gills close to blood
vessels, indicating the respiratory system as one of the main egestion ways for microplastics
in fish [59,60]. Microplastics with a diameter of 25 and 50 nm also accumulated in the
eye, which could either be from outer epidermal or internal biodistribution through the
intestinal epidermis [61]. The tissue specificity of microplastic accumulation in organisms
and the resulting potential harm need to be studied further.

4.3. Excretion and Re-Consumption of Microplastics

In the 96 h of exposure, 5 µm red fluorescent microplastics accumulated in the digestive
tract of grass carp larvae, and fluorescence intensity decreased during the elimination
experiment. However, the green fluorescent microplastics, whether 0.5 or 5 µm in size,
were excreted after 72 h exposure. The gut residence time of microplastics ingested by the
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fish seemed to be related to the fluorescent dye, independent of the size. But the retention
time in rotifers likely correlated with the size of the microplastic [39]. The residence time
of microplastics in organisms may depend on the gut space of organisms and the type,
shape, size and concentration of the materials. The slow excretion of plastics might damage
or block the digestive tract, thus affecting food consumption and the energy acquirement
for vital functions. Moreover, longer retention times might prolong the negative effects.
Most laboratory toxicology experiments use regular, smooth microspheres as experimental
materials, which may have different residence times for experimental materials and field
samples (such as fibers or fragments). The residence time of microplastics in fish and their
effects are, however, still beyond our knowledge.

There was still strong fluorescent during depuration period, indicating that grass carp
larvae could re-accumulate feces containing microplastics in the oral cavity. For the first
time, it was found that excreted microplastics could be reconsumed by fish and reaccu-
mulated in the oral cavity. We suspect that the mechanism of why the re-accumulated
microplastics remained in the oral cavity is related to the mouth structure and fecal proper-
ties of grass carp larvae. The process of consuming-excreting-reconsuming microplastics
may increase the potential for bioaccumulation. Such a process of reconsuming was not
observed in the previous toxicity kinetics of carnivorous, omnivorous, and filter-feeding lar-
vae [42]. Although most commercial freshwater fishes in the larval stage are planktivorous,
the processes of uptake, accumulation, and elimination of microplastics are species-specific.
Studies have shown that feces excreted by organisms after microplastics exposure carried
microplastics, and changed the sedimentation rate, which was one of the major pathways
for vertical translocation. Cole et al. (2016) hypothesized a mechanism in which floating
plastics were transported out of surface water through a combination of microplastics and
fecal pellets [62]. They found that the sinking rate of fecal pellets incorporated within
microplastics decreased by 2.25-fold because of the reduction in density. However, another
study pointed out that excreted polyethylene microplastics coated by intestinal liquids
resulted in aggregation and sinking [36]. More studies are needed to further explain the
deposition and transportation mechanisms of microplastics.

5. Conclusions

This study aimed to reveal the effects of varying microplastic particle sizes on grass
carp embryos and larvae from the perspective of SEM and fluorescence imaging. The results
showed that nanoplastics could not penetrate the chorionic membrane of the embryos, but
could conglutinate and aggregate on the chorion. A high concentration of microplastics
exposure did not affect the development of embryos during organ formation. Toxicity
kinetics from green and red fluorescence microplastics with the same particle size (5 µm)
exposure were unexpectedly different. Feces containing microplastics reaccumulated into
the oral cavity. Green fluorescent microplastics of 0.5 and 5 µm showed no size-dependent
effects. Microplastics of 1 µm accumulated in the nasal cavity. Further studies should pay
more attention to the choice of microplastics as the materials and the fish as the model
organisms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10020076/s1, Figure S1: SEM figures of all kinds of polystyrene
microspheres: 5 µm green fluorescent microplastics (A); 0.5 µm green fluorescent microplastics (B);
5 µm red fluorescent microplastics (C); 1 µm orange fluorescent microplastics (D). Figure S2: The
survival rates of grass carp embryos among all groups when exposure to 8 µm (A) and 80 nm (B)
microspheres. Figure S3: Chorion membranes of grass carp after drying. The size of microplastics
and exposure time are shown in the figure. Figure S4: Rod-shaped bacteria were attached to some of
the membrane surface. Figure S5: The control group in brightfield microscope (capital letters) and
green fluorescent microscope (lowercase letters). Observation time was labeled in the figure. Scale bar
= 2 mm. Figure S6: The larvae of grass carp after exposure to 0.5 µm green fluorescent microplastics.
Photographs were taken under a brightfield microscope (capital letters) and green fluorescent micro-
scope (lowercase letters). Observation time was labeled in the figure. Scale bar = 2 mm. Figure S7: The
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control group in brightfield microscope (capital letters) and red fluorescent microscope (lowercase
letters). Observation time was labeled in the figure. Scale bar = 2 mm. Figure S8: The control group
during elimination test in brightfield microscope (capital letters) and green fluorescent microscope
(lowercase letters). Observation time was labeled in the figure. Scale bar = 2 mm. Figure S9: The
larvae of grass carp after depurating from 5 µm green fluorescent microplastics. Photographs were
taken under a brightfield microscope (capital letters) and green fluorescent microscope (lowercase
letters). Observation time was labeled in the figure. Scale bar = 2 mm. Figure S10: The larvae of
grass carp after depurating from 0.5 µm green fluorescent microplastics. Photographs were taken
under a brightfield microscope (capital letters) and green fluorescent microscope (lowercase letters).
Observation time was labeled in the figure. Scale bar = 2 mm. Figure S11: The control group during
elimination test in brightfield microscope (capital letters) and red fluorescent microscope (lowercase
letters). Observation time was labeled in the figure. Scale bar = 2 mm. Figure S12: The larvae
of grass carp after depurating from 5 µm red fluorescent microplastics. Photographs were taken
under a brightfield microscope (capital letters) and red fluorescent microscope (lowercase letters).
Observation time was labeled in the figure. Scale bar = 2 mm. Figure S13: The larvae of grass carp
after depurating from 1 µm red fluorescent microplastics. Photographs were taken under a brightfield
microscope (capital letters) and red fluorescent microscope (lowercase letters). Observation time was
labeled in the figure. Scale bar = 2 mm. Figure S14: The appearance of adult grass carp. The area
marked in the red box is the nasal cavity.

Author Contributions: Conceptualization, C.Z. and Z.Z.; methodology, Q.W.; software, S.W.; valida-
tion, C.Z., L.L. and J.Z.; formal analysis, Z.Z.; investigation, Z.Z.; resources, J.Z.; data curation, L.L.;
writing—original draft preparation, C.Z. and Z.Z.; writing—review and editing, J.Z.; visualization,
L.L.; supervision, J.Z.; project administration, C.Z.; funding acquisition, J.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was funded by China Agriculture Research System of MOF and MARA (CARS-
45-50).

Institutional Review Board Statement: All experiments were approved by the Animal Care and Use
Committee of South China Agricultural University (identification code: 20210422; date of approval:
22 April 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available in Section 4 and supple-
mentary material.

Conflicts of Interest: The authors report that they have no conflict of interest.

References
1. Wang, C.; Zhao, J.; Xing, B. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357. [CrossRef]
2. Rahman, A.; Sarkar, A.; Yadav, O.P.; Achari, G.; Slobodnik, J. Potential human health risks due to environmental exposure to

nano-and microplastics and knowledge gaps: A scoping review. Sci. Total Environ. 2021, 757, 143872. [CrossRef]
3. Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.; McGonigle, D.; Russell, A.E. Lost at sea: Where is

all the plastic? Science 2004, 304, 838. [CrossRef]
4. Carpenter, E.J.; Anderson, S.J.; Harvey, G.R.; Miklas, H.P.; Peck, B.B. Polystyrene spherules in coastal waters. Science 1972, 17,

749–750. [CrossRef]
5. Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of

the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [CrossRef]
6. Guo, X.; Wang, J. The chemical behaviors of microplastics in marine environment: A review. Mar. Pollut. Bull. 2019, 142, 1–14.

[CrossRef]
7. Wong, J.K.H.; Lee, K.K.; Tang, K.H.D.; Yap, P.S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates,

impacts and sustainable solutions. Sci. Total Environ. 2020, 719, 137512. [CrossRef]
8. He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological

risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [CrossRef]
9. Li, J.; Song, Y.; Cai, Y. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks.

Environ. Pollut. 2020, 257, 113570. [CrossRef] [PubMed]
10. Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015, 207, 190–195.

[CrossRef] [PubMed]

http://doi.org/10.1016/j.jhazmat.2020.124357
http://doi.org/10.1016/j.scitotenv.2020.143872
http://doi.org/10.1126/science.1094559
http://doi.org/10.1126/science.178.4062.749
http://doi.org/10.1016/j.envint.2017.02.013
http://doi.org/10.1016/j.marpolbul.2019.03.019
http://doi.org/10.1016/j.scitotenv.2020.137512
http://doi.org/10.1016/j.trac.2018.10.006
http://doi.org/10.1016/j.envpol.2019.113570
http://www.ncbi.nlm.nih.gov/pubmed/31767234
http://doi.org/10.1016/j.envpol.2015.09.018
http://www.ncbi.nlm.nih.gov/pubmed/26386204


Toxics 2022, 10, 76 13 of 14

11. Zhang, C.; Wang, S.; Pan, Z.; Sun, D.; Xie, S.; Zhou, A.; Wang, J.; Zou, J. Occurrence and distribution of microplastics in commercial
fishes from estuarine areas of Guangdong, South China. Chemosphere 2020, 260, 127656. [CrossRef] [PubMed]

12. Zhou, A.; Zhang, Y.; Xie, S.; Chen, Y.; Li, X.; Wang, J.; Zou, J. Microplastics and their potential effects on the aquaculture systems:
A critical review. Rev. Aquac. 2021, 13, 719–733. [CrossRef]

13. Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020,
703, 135504. [CrossRef]

14. Wright, S.L.; Ulke, J.; Font, A.; Chan KL, A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an
evaluation of transport. Environ. Int. 2020, 136, 105411. [CrossRef] [PubMed]

15. Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic
Marine Debris; University of Washington Tacoma: Tacoma, DC, USA, 2009.

16. Gigault, J.; Halle, A.T.; Baudrimont, M.; Pascal, P.; Gauffre, F.; Phi, T.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What
is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [CrossRef]

17. Gonçalves, J.M.; Bebianno, M.J. Nanoplastics impact on marine biota: A review. Environ. Pollut. 2021, 273, 116426. [CrossRef]
18. Shen, M.; Zhang, Y.; Zhu, Y.; Song, B.; Zeng, G.; Hu, D.; Wen, X.; Ren, X. Recent advances in toxicological research of nanoplastics

in the environment: A review. Environ. Pollut. 2019, 252, 511–521. [CrossRef]
19. Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-de-

Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [CrossRef]
20. Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [CrossRef]

[PubMed]
21. de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems.

Glob. Change Biol. 2018, 24, 1405–1416. [CrossRef]
22. Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic

pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [CrossRef]
23. Huang, D.; Tao, J.; Cheng, M.; Deng, R.; Chen, S.; Yin, L.; Li, R. Microplastics and nanoplastics in the environment: Macroscopic

transport and effects on creatures. J. Hazard. Mater. 2021, 407, 124399. [CrossRef]
24. Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [CrossRef]
25. Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and

implications for human health. Environ. Int. 2018, 115, 400–409. [CrossRef] [PubMed]
26. Prata, J.C.; Da, C.J.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible

human health effects. Sci. Total Environ. 2020, 702, 134455. [CrossRef] [PubMed]
27. Mao, Y.; Ai, H.; Chen, Y.; Zhang, Z.; Zeng, P.; Kang, L.; Li, W.; Gu, W.; He, Q.; Li, H. Phytoplankton response to polystyrene

microplastics: Perspective from an entire growth period. Chemosphere 2018, 208, 59–68. [CrossRef]
28. Wu, Y.; Guo, P.; Zhang, X.; Zhang, Y.; Xie, S.; Deng, J. Effect of microplastics exposure on the photosynthesis system of freshwater

algae. J. Hazard. Mater. 2019, 374, 219–227. [CrossRef] [PubMed]
29. Zhao, T.; Tan, L.; Huang, W.; Wang, J. The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate

Karenia mikimotoi: The inhibition of growth, chlorophyll and photosynthetic efficiency. Environ. Pollut. 2019, 247, 883–889.
[CrossRef] [PubMed]

30. Graham, P.; Palazzo, L.; Andrea De Lucia, G.; Telfer, T.C.; Baroli, M.; Carboni, S. Microplastics uptake and egestion dynamics in
Pacific oysters, Magallana gigas (Thunberg, 1793), under controlled conditions. Environ. Pollut. 2019, 252, 742–748. [CrossRef]
[PubMed]

31. Ding, J.; Li, J.; Sun, C.; Jiang, F.; He, C.; Zhang, M.; Ju, P.; Ding, N.X. An examination of the occurrence and potential risks of
microplastics across various shellfish. Sci. Total Env. 2020, 739, 139887. [CrossRef]

32. Garrido Gamarro, E.; Ryder, J.; Elvevoll, E.O.; Olsen, R.L. Microplastics in Fish and Shellfish—A Threat to Seafood Safety? J.
Aquat. Food Prod. Technol. 2020, 29, 417–425. [CrossRef]

33. Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf. 2020, 189,
109913. [CrossRef] [PubMed]

34. Pelka, K.E.; Henn, K.; Keck, A.; Sapel, B.; Braunbeck, T. Size does matter—Determination of the critical molecular size for the
uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos. Aquat. Toxicol. 2017, 185, 1–10. [CrossRef] [PubMed]

35. Ding, J.; Huang, Y.; Liu, S.; Zhang, S.; Zou, H.; Wang, Z.; Zhu, W.; Geng, J. Toxicological effects of nano- and micro-polystyrene
plastics on red tilapia: Are larger plastic particles more harmless? J. Hazard. Mater. 2020, 396, 122693. [CrossRef] [PubMed]

36. Hoang, T.C.; Felix-Kim, M. Microplastic consumption and excretion by fathead minnows (Pimephales promelas): Influence of
particles size and body shape of fish. Sci. Total Environ. 2020, 704, 135433. [CrossRef] [PubMed]

37. Ivleva, N.P.; Wiesheu, A.C.; Niessner, R. Microplastic in Aquatic Ecosystems. Angew. Chem. -Int. Ed. 2017, 56, 1720–1739.
[CrossRef]

38. Choi, J.S.; Hong, S.H.; Park, J. Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the
marine copepod Tigriopus Japonicus. Mar. Environ. Res. 2020, 153, 104838. [CrossRef]

39. Jeong, C.; Won, E.; Kang, H.; Lee, M.; Hwang, D.; Hwang, U.; Zhou, B.; Souissi, S.; Lee, S.; Lee, J. Microplastic Size-Dependent
Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus). Environ.
Sci. Technol. 2016, 50, 8849–8857. [CrossRef]

http://doi.org/10.1016/j.chemosphere.2020.127656
http://www.ncbi.nlm.nih.gov/pubmed/32679373
http://doi.org/10.1111/raq.12496
http://doi.org/10.1016/j.scitotenv.2019.135504
http://doi.org/10.1016/j.envint.2019.105411
http://www.ncbi.nlm.nih.gov/pubmed/31889555
http://doi.org/10.1016/j.envpol.2018.01.024
http://doi.org/10.1016/j.envpol.2021.116426
http://doi.org/10.1016/j.envpol.2019.05.102
http://doi.org/10.1073/pnas.1314705111
http://doi.org/10.1126/sciadv.1700782
http://www.ncbi.nlm.nih.gov/pubmed/28776036
http://doi.org/10.1111/gcb.14020
http://doi.org/10.1007/s11356-018-3508-7
http://doi.org/10.1016/j.jhazmat.2020.124399
http://doi.org/10.1021/acs.est.7b00423
http://doi.org/10.1016/j.envint.2018.03.007
http://www.ncbi.nlm.nih.gov/pubmed/29653694
http://doi.org/10.1016/j.scitotenv.2019.134455
http://www.ncbi.nlm.nih.gov/pubmed/31733547
http://doi.org/10.1016/j.chemosphere.2018.05.170
http://doi.org/10.1016/j.jhazmat.2019.04.039
http://www.ncbi.nlm.nih.gov/pubmed/31005054
http://doi.org/10.1016/j.envpol.2019.01.114
http://www.ncbi.nlm.nih.gov/pubmed/30731314
http://doi.org/10.1016/j.envpol.2019.06.002
http://www.ncbi.nlm.nih.gov/pubmed/31195174
http://doi.org/10.1016/j.scitotenv.2020.139887
http://doi.org/10.1080/10498850.2020.1739793
http://doi.org/10.1016/j.ecoenv.2019.109913
http://www.ncbi.nlm.nih.gov/pubmed/31735369
http://doi.org/10.1016/j.aquatox.2016.12.015
http://www.ncbi.nlm.nih.gov/pubmed/28142078
http://doi.org/10.1016/j.jhazmat.2020.122693
http://www.ncbi.nlm.nih.gov/pubmed/32353735
http://doi.org/10.1016/j.scitotenv.2019.135433
http://www.ncbi.nlm.nih.gov/pubmed/31896224
http://doi.org/10.1002/anie.201606957
http://doi.org/10.1016/j.marenvres.2019.104838
http://doi.org/10.1021/acs.est.6b01441


Toxics 2022, 10, 76 14 of 14

40. Amado, L.L.; Monserrat, J. Oxidative stress generation by microcystins in aquatic animals: Why and how. Environ. Int. 2010, 36,
226–235. [CrossRef]

41. Sun, H.; Lü, K.; Minter, E.J.A.; Chen, Y.; Yang, Z.; Montagnes, D.J.S. Combined effects of ammonia and microcystin on survival,
growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. J. Hazard. Mater. 2012, 221,
213–219. [CrossRef]

42. Zhang, C.; Wang, J.; Zhou, A.; Ye, Q.; Feng, Y.; Wang, Z.; Wang, S.; Xu, G.; Zou, J. Species-specific effect of microplastics on fish
embryos and observation of toxicity kinetics in larvae. J. Hazard. Mater. 2021, 403, 123948. [CrossRef] [PubMed]

43. Steer, M.; Cole, M.; Thompson, R.C.; Lindeque, P.K. Microplastic ingestion in fish larvae in the western English Channel. Environ.
Pollut. 2017, 226, 250–259. [CrossRef] [PubMed]

44. Pannetier, P.; Morin, B.; Le Bihanic, F.; Dubreil, L.; Clérandeau, C.; Chouvellon, F.; Van Arkel, K.; Danion, M.; Cachot, J.
Environmental samples of microplastics induce significant toxic effects in fish larvae. Environ. Int. 2020, 134, 105047. [CrossRef]

45. Batel, A.; Borchert, F.; Reinwald, H.; Erdinger, L.; Braunbeck, T. Microplastic accumulation patterns and transfer of benzo[a]pyrene
to adult zebrafish (Danio rerio) gills and zebrafish embryos. Environ. Pollut. 2018, 235, 918–930. [CrossRef]

46. Zhang, R.; Wang, M.; Chen, X.; Yang, C.; Wu, L. Combined toxicity of microplastics and cadmium on the zebrafish embryos
(Danio rerio). Sci. Total Environ. 2020, 743, 140638. [CrossRef] [PubMed]

47. Hu, L.; Su, L.; Xue, Y.; Mu, J.; Zhu, J.; Xu, J.; Shi, H. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles
of Xenopus tropicalis. Chemosphere 2016, 164, 611–617. [CrossRef]

48. Liu, Y.; Jia, X.; Zhu, H.; Zhang, Q.; He, Y.; Shen, Y.; Xu, X.; Li, J. The effects of exposure to microplastics on grass carp
(Ctenopharyngodon idella) at the physiological, biochemical, and transcriptomic levels. Chemosphere 2022, 286, 131831. [CrossRef]
[PubMed]

49. Yu, E.; Xie, J.; Wang, G.; Yu, D.; Gong, W.; Li, Z.; Wang, H.; Xia, Y.; Wei, N. Gene Expression Profiling of Grass Carp (Ctenopharyn-
godon idellus) and Crisp Grass Carp. Int. J. Genom. 2014, 639687. [CrossRef] [PubMed]

50. Tang, M.; Lu, Y.; Xiong, Z.; Chen, M.; Qin, Y. The Grass Carp Genomic Visualization Database (GCGVD): An informational
platform for genome biology of grass carp. Int. J. Biol. Sci. 2019, 15, 2119–2127. [CrossRef] [PubMed]

51. Hashizume, H.; Itoh, S.; Tanaka, K.; Ushiki, T. Direct Observation of t-Butyl Alcohol Frozen and Sublimated Samples Using
Low-Vacuum Scanning Electron Microscopy. Arch. Histol. Cytol. 1998, 61, 93–98. [CrossRef]

52. Lee, K.J.; Nallathamby, P.D.; Browning, L.M.; Osgood, C.J.; Xu, X.N. In Vivo Imaging of Transport and Biocompatibility of Single
Silver Nanoparticles in Early Development of Zebrafish Embryos. ACS Nano 2007, 1, 133–143. [CrossRef]

53. Fent, K.; Weisbrod, C.J.; Wirth-Heller, A.; Pieles, U. Assessment of uptake and toxicity of fluorescent silica nanoparticles in
zebrafish (Danio rerio) early life stages. Aquat. Toxicol. 2010, 100, 218–228. [CrossRef]

54. Wang, Y.; Chen, F.; He, J.; Chen, J.; Xue, G.; Zhao, Y.; Peng, Y.; Xie, P. Comparative ultrastructure and proteomics of two economic
species (common carp and grass carp) egg envelope. Aquaculture 2021, 546, 737276–737284. [CrossRef]

55. Catarino, A.I.; Frutos, A.; Henry, T.B. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive
without adequate controls. Sci. Total Environ. 2019, 670, 915–920. [CrossRef] [PubMed]

56. Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics
in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [CrossRef] [PubMed]

57. Yang, H.; Xiong, H.; Mi, K.; Xue, W.; Wei, W.; Zhang, Y. Toxicity comparison of nano-sized and micron-sized microplastics to
Goldfish Carassius auratus Larvae. J. Hazard. Mater. 2020, 388, 122058. [CrossRef] [PubMed]

58. Guimarães AT, B.; Estrela, F.N.; Rodrigues AS, D.L.; Chagas, T.Q.; Pereira, P.S.; Silva, F.G.; Malafaia, G. Nanopolystyrene particles
at environmentally relevant concentrations causes behavioral and biochemical changes in juvenile grass carp (Ctenopharyngodon
idella). J. Hazard. Mater. 2021, 403, 123864. [CrossRef]

59. Yin, L.; Chen, B.; Xia, B.; Shi, X.; Qu, K. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition
of marine jacopever (Sebastes schlegelii). J. Hazard. Mater. 2018, 360, 97–105. [CrossRef]

60. Parenti, C.C.; Ghilardi, A.; Della Torre, C.; Magni, S.; Del Giacco, L.; Binelli, A. Evaluation of the infiltration of polystyrene
nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects. Environ.
Pollut. 2019, 254, 112947. [CrossRef] [PubMed]

61. van Pomeren, M.; Brun, N.R.; Peijnenburg, W.J.G.M.; Vijver, M.G. Exploring uptake and biodistribution of polystyrene
(nano)particles in zebrafish embryos at different developmental stages. Aquat. Toxicol. 2017, 190, 40–45. [CrossRef] [PubMed]

62. Cole, M.; Lindeque, P.K.; Fileman, E.; Clark, J.; Lewis, C.; Halsband, C.; Galloway, T.S. Microplastics Alter the Properties and
Sinking Rates of Zooplankton Faecal Pellets. Environ. Sci. Technol. 2016, 50, 3239–3246. [CrossRef] [PubMed]

http://doi.org/10.1016/j.envint.2009.10.010
http://doi.org/10.1016/j.jhazmat.2012.04.036
http://doi.org/10.1016/j.jhazmat.2020.123948
http://www.ncbi.nlm.nih.gov/pubmed/33264992
http://doi.org/10.1016/j.envpol.2017.03.062
http://www.ncbi.nlm.nih.gov/pubmed/28408185
http://doi.org/10.1016/j.envint.2019.105047
http://doi.org/10.1016/j.envpol.2018.01.028
http://doi.org/10.1016/j.scitotenv.2020.140638
http://www.ncbi.nlm.nih.gov/pubmed/32679492
http://doi.org/10.1016/j.chemosphere.2016.09.002
http://doi.org/10.1016/j.chemosphere.2021.131831
http://www.ncbi.nlm.nih.gov/pubmed/34411925
http://doi.org/10.1155/2014/639687
http://www.ncbi.nlm.nih.gov/pubmed/25525591
http://doi.org/10.7150/ijbs.32860
http://www.ncbi.nlm.nih.gov/pubmed/31592084
http://doi.org/10.1679/aohc.61.93
http://doi.org/10.1021/nn700048y
http://doi.org/10.1016/j.aquatox.2010.02.019
http://doi.org/10.1016/j.aquaculture.2021.737276
http://doi.org/10.1016/j.scitotenv.2019.03.194
http://www.ncbi.nlm.nih.gov/pubmed/30921723
http://doi.org/10.1021/acs.est.6b00183
http://www.ncbi.nlm.nih.gov/pubmed/26950772
http://doi.org/10.1016/j.jhazmat.2020.122058
http://www.ncbi.nlm.nih.gov/pubmed/31951993
http://doi.org/10.1016/j.jhazmat.2020.123864
http://doi.org/10.1016/j.jhazmat.2018.07.110
http://doi.org/10.1016/j.envpol.2019.07.115
http://www.ncbi.nlm.nih.gov/pubmed/31400664
http://doi.org/10.1016/j.aquatox.2017.06.017
http://www.ncbi.nlm.nih.gov/pubmed/28686897
http://doi.org/10.1021/acs.est.5b05905
http://www.ncbi.nlm.nih.gov/pubmed/26905979

	Introduction 
	Materials and Methods 
	Microplastics and Fish 
	Embryo Toxicity Assay 
	SEM Analysis of Embryo 
	Exposure and Elimination Experiment of Larvae 

	Results 
	Effects of Microplastics on Embryos 
	Effects of Microplastics on Chorion Membranes 
	Uptake and Accumulation of Green Fluorescent Microspheres in Grass Carp Larvae 
	Uptake and Accumulation of Red Fluorescent Microspheres in Grass Carp Larvae 
	Elimination of Green Fluorescent Microspheres in Grass Carp Larvae 
	Elimination of Red Fluorescent Microspheres in Grass Carp Larvae 

	Discussion 
	Effects of Microplastics on Embryos 
	Effects of Microplastics of Different Sizes on Fish 
	Excretion and Re-Consumption of Microplastics 

	Conclusions 
	References

