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Abstract: Information about the potential oral health effects of vaping from electronic cigarettes
(e-cigs) is still sparse and inconsistent. The purpose of this study was to compare the safety and
cytotoxicity of e-cig liquid aerosols versus traditional cigarette (t-cig) smoke on human epithelial
oral cells. T-cig smoke and e-cig aerosols were generated by a newly developed automated smoking
instrument in order to simulate realistic user puffing behaviors. Air–liquid interface transwell cell
cultures were exposed to standardized puff topography (puff duration: 2 s, puff volume: 35 mL,
puff frequency: 1 puff every 60 s) of reference t-cigs or commercially available e-cigs at different air
dilutions. Cell viability, morphology, and death rate were evaluated with MTT and TUNEL assays.
The inflammatory cytokine gene expression of inflammatory genes was assessed by quantitative
RT-PCR. E-cigs and t-cigs indicated similar adverse effects by enhancing cytotoxicity and cell death
in a dose-dependent manner. E-cig aerosol and t-cig smoke treatment expressed upregulation of
inflammatory cytokines up to 3.0-fold (p < 0.05). These results indicate that e-cig smoking may
contribute to oral tissue–cell damage and tissue inflammation. Our approach allows the production
of e-cig aerosol and t-cig smoke in order to identify harmful effects in oral tissues in vitro.

Keywords: human epithelial gingival cells; electronic cigarette; in vitro toxicity; puff topography

1. Introduction

Electronic cigarettes (e-cigs) or battery-operated cigarette products have showed an
exponential increase in consumption during the last decade and have been considered
an epidemic among young adults [1]. E-cigs deliver an aerosol suspension of fine liquid
droplets when vaping, as well as solid particles within the vapor/gas which mainly consists
of nicotine, flavors, and other chemicals, such as variable levels of aldehydes, carbonyls,
propylene glycol, and vegetable glycerin [2]. Information about the harmful oral health
effects of vaping is currently scarce [3]. In addition, e-cigs are commonly marketed as
a safer alternative to traditional cigarettes (t-cigs), as well as a smoking substitution or
cessation tool [2–4]. Despite its purported efficacy as a harm-reduction strategy for quitting
tobacco smoking, e-cigs remain a contentious public health problem. Solid research proving
that e-cigs are “less harmful” is still unavailable, therefore, dual usage of e-cigs and tobacco
cigarettes is still common [4]. There is no evidence that e-cigs help smokers quit [1]. In fact,
a growing body of evidence suggests that electronic cigarettes can serve as a gateway to
tobacco product usage in both adults and children [5,6].

More knowledge is needed to better understand the exposure implications of e-cig
aerosols and their potential for harmful oral consequences. Although e-cig aerosols contain
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fewer hazardous compounds than traditional cigarettes, they still contain several chemical
substances which are not harmless [7,8]. E-cig aerosols contain propylene glycol and
glycerin, the two major ingredients of e-liquids, as well as volatile organic compounds,
carbonyls, and metals [9]. The features of aerosols are determined by the changeable
elements of the e-liquids, such as flavors and nicotine content [10]. Aerosol composition is
influenced by the temperature of the heating coil, the physical properties of the formulation
(viscosity, wettability, etc.), and its specific heat capacity [10]. To determine the harmful
e-aerosol effects on oral tissues, realistic vaping studies with representative puff topography
are still required. Several studies have analyzed the effects of e-cigs on lung cells with
the goal to evaluate the toxic effects on different cells and tissues [11–13]. A number of
negative outcomes on different tissue culture systems (cell death, impaired repair, oxidative
stress) have already been reported [11–14]. However, it is unclear whether the previously
observed correlations are applicable to oral or tissues cell lines. In parallel, several studies
compared e-cigs with t-cigs and often found increased acute toxicity [14–20]. E-cig aerosols
prompt DNA strand breaks in vitro [21] and are known to induce oxidative modifications
of DNA by free radicals [22]. A recent study showed differences in gene expression in
differentiated bronchial epithelial cells between t-cig- and e-cig-exposed cells, with and
without nicotine [23]. The study also showed differences in gene expression signatures in
various pathways like phospholipid and fatty acid triacylglycerol, which were significantly
enriched after e-cig exposure. Screening of an array of cytokines released from the cells
exposed to electronic cigarette vapors or aerosols without additives showed that the basal
components alone could also induce the release of several cytokines and pro-inflammatory
mediators, suggesting the even humectants might have potential harmful effects [22,23].
The specific impact of these cytokines on oral tissues has yet to be defined since much past
research has focused on characterizing the harmful effects of inhaled vapors on the human
airway epithelium. There is also no way of confirming how similar the negative effects of
e-cig aerosols are to those of t-cig smoke.

In the present study, the acute effects of e-cig aerosols and t-cig smoke on toxicity,
death, and inflammation response of human oral epithelial gingival cells were evaluated.
For this purpose, we specially developed a novel automated smoking machine to perform
the realistic envisaged in vitro experiments in a standardized manner.

2. Materials and Methods
2.1. Air–Liquid Interface Cell Culture

Immortalized HGEK-16 cells were donated by the Oral Microbiology Institute, Clinic
of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich,
Zurich, Switzerland [24]. The cells were seeded on transwell 24-well plates (Corning
Inc., Kennebunk, ME, USA) at a density of 2–2.5 × 105 cells/well. All experiments were
performed on transwell 24-well plates and inserts with pore size of 0.4µm [25,26]. The
cells were cultured in an incubator (5% CO2, 95% air at 37 ◦C) with keratinocyte growth
medium (Provitro, Berlin, Germany) containing fibroblast grow factor, epidermal growth
factor, Ca2+ < 0.1 mM, and insulin, without bovine pituitary extract and hydrocortisone
(Merck KGaA, Darmstadt, Germany). After reaching confluence, the medium was changed
to serum-free growth medium in the lower compartment and removed in the upper com-
partment. Cell passage was performed at regular intervals depending on cell growth
characteristics using 0.25% trypsin (Seromond Biochrom, Berlin, Germany). The cell culture
inserts were tested in triplicates and three independent experiments were performed for
each analysis. Only cells between passages 10 and 15 were used.

2.2. Automated Smoking Machine

In order to create the most critical functionalities of a smoking machine and still enable
reliable and comparable in vitro smoke/aerosol cell exposures, a custom-made smoking
machine was developed by the Product Development Group Zurich from the Swiss Federal
Institute of Technology. In the proposed setup, t-cig smoke or e-cig aerosols are generated
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in chamber A and drawn to the dilution chamber B with the help of a motor (4) (Figure 1).
The smoke/aerosol is diluted to a desired ratio with particle-free air in chamber B, and it is
blown to the cell samples in chamber C. A 3D-printed syringe pump generates the smoke
and a serial dilution system dilutes the smoke or aerosol with air. Then, the smoke is led to
a 3D-printed exposure chamber and directly onto the cells. The excess smoke is collected
and safely discarded. The dilution system is based on serial dilution with a syringe pump
(Figure 2) with three valves controlling the flow direction. The syringe pump is connected
to the cigarette holder via a smoke valve (1). The puff is generated by opening the smoke
valve and drawing in smoke in the volume defined by the puff regimen. Then, an air valve
(2) is opened and fresh air is drawn in to generate the dilution. For higher dilutions, some
of the smoke/aerosol–air mixture is pushed out via the air valve, which also serves as
an exhaust valve, and additional fresh air is drawn in again and repeated until the final
dilution is achieved. At the end, the diluted smoke/aerosol–air mixture is directed through
an exposure valve (3) to an exposure chamber and onto the cells (Figure 2).
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Figure 1. Smoking Lung device. (A) Smoking chamber with the cigarette holder. (B) Syringe pump
for puff creation and dilution. (C) “Lung” = exposure chamber for 24-well plates. (D) Box for
microcontroller and LCD screen for parameter selection. (1) Smoke valve. (2) Air and exhaust valve.
(3) Exposure valve and (4) motor.
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Figure 2. Schematic process of the dilution. (A) Open smoke valve (1) to generate puff. (B) Open
air valve (2) to draw in air to dilute the smoke. For higher dilutions, part of the smoke—air mixture
was pushed out of the air valve (2) and additional air was drawn in via the air valve (2). (C) Open
exposure valve (3) to direct the smoke–air mixture into the exposure chamber and onto the cells. At
the end of the cycle, an additional push with fresh air was used to remove the smoke out into the
smoking chamber.
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2.3. Cigarette Smoke and Aerosol Cell Exposure on the Automated Generation System

Air–liquid interface HEGK cell cultures were exposed to t-cig smoke and e-cig aerosol
forms by using a puff topography profile following the ISO 3308:2015 protocol for testing
in vitro cell response, as previously described [25–27]. The ISO 3308:2015 protocol repre-
sents a puff topography derived from human vaping behavior (puff duration: 2 s, puff
volume: 35 mL, puff frequency: one puff every 60 s). In order to assess the in vitro cell
toxicity, cell cultures were exposed to the smoke or aerosols with the help of the automated
smoking machine described above. First, the HEGK cell cultures were exposed in triplicate
to whole smoke generated from a t-cig (1R6F, Kentucky research reference cigarettes, Center
of Tobacco Reference Products, University of Kentucky, Kentucky, USA) and drawn into
the transwell 24-well plates chamber. The lids were removed from tissue culture dishes
and serum-starved HEGK cells were placed in the smoking machine along with the smoke
from one reference t-cig. The t-cig smoke was diluted with fresh air to different dilutions
(1:2, 1:10, 1:50, 1:100); the exposure duration was 6.5 min per cigarette with 1 h rest between
each cigarette. Then, in a new independent experiment, freshly grown triplicates of HEGK
cell cultures were exposed to aerosol generated from a commercially available e-cig (JUUL
C1 device, Juul Labs, Inc., San Francisco, CA, USA) and drawn into the transwell 24-well
plates chamber. The dilutions (1:2, 1:10, 1:50, 1:100) and exposure duration (6.5 min per
cigarette with 1 h rest) used for the t-cig were similarly employed for the e-cig exposure.
The different fresh air dilutions (1:2, 1:10, 1:50, 1:100) were chosen since the puff volume
of 35 mL from the ISO 3308:2015 puff topography is approximately 1/100 of a normal
human lung [25–27]. The E-cig JUUL C1 device model (vaporizer battery-powered e-cig,
pod-closed system vape category) available on the Swiss market was selected based on its
popularity. Each cartridge comprises propylene glycol, glycerin, flavorings, and nicotine
salts in its chemical composition (protonated nicotine). The flavor of the JUUL cigarette
used in our study was “glacier mint”. The operating temperature limit of 100 ◦C was
chosen for the e-cig (typically chosen from a range of 100 ◦C to 315 ◦C). Following the JUUL
producer report, each 5.0% (nicotine-by-weight) JUUL pod or cartridge contained 0.7 mL
with 5.0% nicotine-by-weight and approximately 40 mg nicotine per pod. Regarding the
1R6F t-cig, the certificate of analysis (University of Kentucky, Center for Tobacco Reference
Products, Lexington, Kentucky) confirmed that the value of nicotine was 0.7 mg/cigarette,
which was obtained by using the ISO 3308:2015 puff topography protocol. The 1R6F re-
search t-cigs were stored at 4 ◦C and left to equilibrate at room temperature before use. The
triplicate cell culture inserts were exposed in three independent exposure runs with the
1R6F t-cig or the JUUL C1 e-cig. The smoke and/or aerosol produced were blown into a
dilution chamber of 200 mL volume and immediately diluted with particle-free air. The
dilution air was delivered directly to the dilution chamber. An outlet was used to blow out
any extra smoke or aerosol. In parallel with each smoke/aerosol exposure, fresh triplicate
cell culture inserts were exposed to clean fresh air under identical circumstances and used
as a negative control. The triplicate cell inserts were left untreated as an additional negative
control to be used as baseline comparison for endpoint studies.

2.4. Cell Viability Assay

For cell viability (cytotoxicity), the cells were seeded at a concentration of 2.5× 105 cells/well
on transwell 24-well plates. Then, the cells were exposed to smoke from one t-cig or e-cig
using the ISO 3308:2015 puff topography protocol. The t-cig smoke or e-cig aerosol was di-
luted to maximum 1:100 and was added directly to the cell culture air–liquid interface. The
viability was determined through a colorimetric MTT staining assay according to the man-
ufacturer’s protocol (MTT: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide;
Sigma-Aldrich, Steinheim, Germany), as previously described [28]. The MTT measures the
activity of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent cellular oxi-
doreductase enzymes to reduce the tetrazolium dye MTT to its insoluble formazan, which
is purple in color. The viability measured by the MTT assay was read with an absorbance
microplate reader (Molecular Devices, Sunnyvale, CA, USA) at a test wavelength of 595 nm
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with a reference wavelength of 690 nm. The optical density was calculated as the difference
between the reference wavelength and the test wavelength. In total, the three independent
experiments were conducted in triplicates.

2.5. Morphology and Cell Death Analysis

Cell morphology was evaluated by light microscopy at 0 h and 24 h after exposure
to e-cig aerosol or t-cig smoke. Cell death was accessed with TUNEL assays by using
the kit manufacturer’s protocol (Roche, Indianapolis, IN, USA). HEGK cells exposed to
smoke/aerosol from e-cig or t-cig (1:2 dilution) were fixed in acetic acid at−20 ◦C. The fixed
cells were incubated with TUNEL reaction mixture (terminal deoxynucleotidyl transferase
and nucleotide mixture) for 1 h at 37 ◦C, followed by the addition of peroxidase-conjugated
detection antibody. The DNA fragments were stained with 3,30-diaminobenzidine (DAB)
as the substrate for the peroxidase. The DAPI stain method was performed by fixing the
cells in 4% paraformaldehyde, followed by incubation in 1 g/mL DAPI solution for 30 min
in the dark. The three experiments were done separately. The cells were then examined
under a fluorescence microscope (Zeiss, Oberkochen, Germany).

2.6. Inflammatory Gene Expression Analysis

The released inflammatory mediators were measured after smoke or aerosol exposure
onto the air–liquid interface HEGK cell cultures (in 1 mL per well medium stored at−80 ◦C).
Gene expression of interleukin (IL)-1α, IL-1β, and IL-6 was measured by quantitative real-
time PCR (qRT-PCR). Briefly, the total ribonucleic acid (40 ng) was isolated using TRIzol
reagent, RNeasy Mini kit (QIAGEN, Hilden, Germany) and quantified using NanoDrop
ND-1000 (Thermo-Fisher Scientific, Wohlen, Switzerland) after smoke/aerosol exposure in
four different dilutions (1:2, 1:10, 1:50, 1:100). Next, cDNA was synthesized using an iScript
kit (Bio-Rad, Hercules, CA, USA). The qRT-PCR reactions were carried out on a CFX96
real-time PCR system (Bio-Rad, Hercules, CA, USA) by initial incubations of 2 min at 50 ◦C
and 10 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C and run in
a total reaction volume of 15 µL, containing 7.5 µL of TaqMan’s one-step Master Mix kit
(Applied Biosystems), 6 µL of sample (1 ng), and 1.5 µL of primer solution of 1µM (mixture
of forward and reverse primers). Primer sequences and specificity for genes encoding IL-1α,
IL-1β and IL-6 were designed from Primer3 (version 0.4.0) and online NCBI/Primer-BLAST
tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast (accessed on 8 May 2019) (Table 1).
Each sample contained pooled messenger ribonucleic acid from TRIzol extractions collected
from the cell cultures exposed with and without smoke/aerosol at different dilutions. All
samples were tested in triplicates and three independent experiments were performed.
The 2−∆∆ct method was used to calculate gene expression levels relative to glyceraldehyde
3-phosphate dehydrogenase (GAPDH) and normalized to the negative control cells.

Table 1. Primer sequences and properties.

Gene Orientation Sequence (5′→3′) Tm (◦C) Annealing
Temperature (◦C) Product Size (bp)

IL-1α Forward TGCCTATGTCTCAGCCTCTT 58.13 64.3 642
Reverse GAGGCCATTTGGGAACTTCT 57.78

IL-β1 Forward TAGAGCTGCTGGCCTTGTTA 58.72 64.8 210
Reverse ACCTGTAAAGGCTTCTCGGA 58.36

IL-6 Forward ATGAACTCCTTCTCCACAAGC 57.94 64.1 264
Reverse GTTTTCTGCCAGTGCCTCTTTG 60.54

GAPDH Forward GCTCTCTGCTCCTCCCTGTT 61.26 65.9 374
Reverse CACACCGACCTTCACCATCT 59.68

Tm, melting temperature.

http://www.ncbi.nlm.nih.gov/tools/primer-blast
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2.7. Statistical Analysis

Comparisons between groups were conducted by multiple comparison analysis of
variance (ANOVA) with Bonferroni adjustment with a global significance level of 5% using
the SPSS software (IBM SPSS Statistics for Windows, version 23.0; IBM Corp., Armonk, NY,
USA). The mean values and standard deviations were computed for the MTT test. Results
were expressed as means standard error of the mean. The differences were considered
statistically significant at p < 0.05. All experiments were performed in triplicate and
repeated at least three times under the same conditions.

3. Results
3.1. Cell Viability

Quantitative MTT analysis detected a decrease in cell viability and appearance of dead
cells immediately after 6.5 min exposure to one puff topography (ISO 3308:2015 protocol:
puff duration: 2 s, puff volume: 35 mL, puff frequency: one puff every 60 s) of the e-cig
aerosol compared to the t-cig smoke. There was a statistically significant (p < 0.05) increase
in cell toxicity upon exposure to the e-cig device aerosols compared to the t-cig smoke and
compared to the untreated air controls at 1:2, 1:10, 1:50, 1:100 (Figure 3). The HEGK cells
were not affected by exposure to fresh air (negative control) and MTT values were similar
to those of untreated cells. The results showed the adverse toxic effects of e-cig aerosols
on normal cells with observed apoptotic morphology. The results obtained indicated that
a single exposure to the e-cig aerosol increased cell death and was well correlated with
increasing concentration of the aerosol (Figure 3).
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3.2. Cell Death

When compared to the untreated negative controls, apoptotic morphology was de-
tected after 24 h of exposure to t-cig smoke and e-cig aerosol, including apoptotic cellular
bodies, nuclear condensation, DNA fragmentation, and perinuclear apoptotic features
(Figure 4). The untreated cells did not show apoptotic features. Both smoke (t-cig) and
aerosol (e-cig) exposure increased the TUNEL positive cells (stained in dark brown) 24 h
after treatment compared to the negative control cultures without exposure (Ctrl). Ad-
ditionally, apoptotic cellular bodies under phase-contrast microscopy and DAPI staining
revealed induced condensation of nuclei (Figure 4). However, no significant difference was
found for cell death or changes in cell morphology between t-cigs and e-cigs.
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Figure 4. Apoptotic cells and their morphology measured by TUNEL assay and DAPI staining.
(A) t-cig smoke and (B) aerosol e-cig. Phase-contrast microscopy (upper), DAPI staining nuclei
(middle), and TUNEL-positive cells stained as dark brown (lower). Scale bar = 100 µm.

3.3. Gene Expression

The RT-qPCR results showed that both e-cig aerosol and t-cig smoke treatments
comparatively increased the expression of IL-1α, IL-1β, and IL-6 in all used aerosol/smoke
dilutions (1:2, 1:10, 1:50, 1:100) compared with the untreated negative control cells (Figure 5).
The t-cig smoke treatment induced the highest and most significant levels of all pro-
inflammatory cytokine expressions tested in this study (upregulation up to 3 folds, p < 0.05)
compared to e-cig aerosol treatment (upregulation up to 2.5 folds, p < 0.05). Nevertheless,
e-cigs also presented high levels of inflammatory cytokines compared to the untreated
negative controls (p < 0.05). Lower dilutions of t-cig smoke and e-cig aerosol (1:10 and 1:2)
prompted significantly higher levels of IL-1α, IL-1β, and IL-6 compared to the untreated
control (p < 0.05). The observed effect on inflammatory expression was well correlated with
increasing concentration of t-cig smoke and e-cig aerosol.
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4. Discussion

In the present study, we established an interdisciplinary approach, where we could
combine experts in product development and cell biology, in order to create a simple but
reproducible procedure to assay the effects of different consumption methods of vaporized
nicotine on cell systems. The study’s key finding is that e-cigs have an effect on oral
epithelial cells by enhancing cell toxicity and inflammatory mediator release. Nonetheless,
compared to t-cig smoke exposure, the acute toxic effect of e-cig aerosol appears to be
smaller. According to cytokine expression analysis, the expression patterns of t-cig-exposed
cells were higher than those of e-cig-exposed cells.

The findings from the t-cig-exposed cells are consistent with prior findings that t-cig
smoking causes a deficiency in host defenses and epithelial barrier breakdown in vivo
and in vitro [29–33]. It has been suggested that vaping e-cigs stimulates cytokine release
and may elicit cell toxicity and inflammation in the nasal epithelial mucosa [34]. In fact,
e-cig usage has been linked to reduction in the expression of immune-related genes [34–36].
The administration of e-cig fluid, rather than vapor, to primary epithelial cells has been
demonstrated to increase inflammation and virus infection susceptibility [37]. Furthermore,
inhaling smoke or other noxious substances was frequently linked to inflammation, which
was linked to host resistance, systemic reaction, and repair [37]. There is substantial amount
of evidence that t-cig exposure induces airway epithelial cells to produce a combined
assortment of inflammatory mediators [36–39], but the molecule responsible has yet to
be identified. T-cig smoke and e-cig aerosol boosted the synthesis and expression of pro-
inflammatory mediators in the current investigation. Our findings are consistent with
previous research on human airway epithelial cells [36–39]. We investigated the gene
expression of the differentiated gingival epithelium following t-cig and e-cig exposure to
acquire a thorough perspective of the differentially regulated inflammatory genes. When
compared to t-cig-exposed cells, the changes in gene expression of the e-cig-exposed
cells were fewer, but they were always higher than the controls. Another notable pro-
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inflammatory mediator—IL-1, was detected among the genes with the largest variation in
gene expression and the highest upregulated genes in the t-cig group. E-cigs are known to
alter the metabolome of epithelial cells, causing major changes that partially overlap with
t-cigarette effects [40].

Smoking is considered one of the main causes of various oral diseases [41]. According
to studies, smokers have an increased risk of acquiring oral cancer (i.e., oral squamous cell
carcinoma), xerostomia, nicotinic stomatitis, melanosis, hairy tongue, leukoplakia, and oral
candidiasis [41,42]. In addition, many smoking-related complications consist of a large
range of periodontal problems, tooth lost, teeth decay, and wound healing impairment [43].
In fact, compared to non-smokers, smoking tobacco or vaping has increased the prevalence
and severity of periodontal disease, as well as the reduction rate of implant survival [43].
The periodontal ligament and oral gingival epithelium are crucial abundant cells in the
periodontal tissue, which are direct targets of vaping and e-cig use. It is known that upon
stimulatory stress, these cells are particularly able to produce and regulate inflammatory
response. However, most of the studies mainly focus on the toxic effects of e-cigs on
the respiratory airway epithelium. Few studies have established the harmful effects of
e-cigarette vaping, particularly in vitro, in response to inflammatory oral gingival epithelial
cells. Thus, our observed results depict a valuable representation on how the use of new
forms of tobacco products, such as e-cig, may have an intrinsic link to oral periodontal
diseases. Other previous data have shown that e-cigs can induce inflammatory cytokines,
wound healing arrest, and influence oxidative stress similar to t-cigs [44,45]. Similar to
our in vitro findings, other authors have demonstrated corresponding harmful effects of
e-cigs on gingival fibroblasts and periodontal ligament cells [44–46]. These outcomes in
critical cells of the oral cavity highlight the importance of increasing our knowledge of the
effects of e-cig aerosols. Nevertheless, a major knowledge gap still exists, including effects
of nicotine, tobacco smoke, or aerosol in systemic versus local effects of e-cigs in the oral
cavity, with variation on levels of other chemicals and flavorings on oral wound healing and
disease. To address these gaps, the approach outlined in this study should be undertaken
to compare t-cig and e-cig effects on histologic and immunohistochemical changes in bones
and soft tissues, as well as molecular effects after tobacco or vapor exposure. The future
development of different in vitro oral cell analysis should always attempt to simulate oral
smoke inhalation to ensure clinical relevance, which may have a public education impact
on e-cig product consumption.

The present and other studies have—as always—limitations. To begin with, in vitro
investigations only provide data on short-term results and do not enable for in vivo long-
term effects of e-cigarette usage to be predicted. As a result, no conclusions can be drawn
about the long-term safety of e-cigs or the potential for harm reduction. In addition, this
study only focused on a specific cell line, i.e., oral gingival keratinocytes, while other studies
focused on other specific cellular systems. Notably, our group put the main focus on an oral
surrogate cell model. The availability of flavors as additives for e-cig vapor and various
forms of vaporizing devices is rising and it is unregulated; flavors were not addressed in
the current study. Flavors, particularly cinnamon-containing beverages, have been proven
to cause toxicity in vitro and in animals [12]. Comparing two physically dissimilar agents
as e-cig aerosol and t-cig smoke and attempting to normalize is, however, a difficult task.
Nicotine is one of the few chemicals in both traditional and electronic cigarettes that is
associated to toxicity or addiction. Additionally, standardizing on nicotine consumption
seems sensible because the user will require specific amounts of nicotine, making the total
uptake of t-cigs and e-cigs comparable [47].

5. Conclusions

To summarize, the current study tested for the first time an innovative smoke/aerosol
generation system specifically developed for e-cigs and t-cigs, which allowed the generation
of representative vapor produced under real simulation conditions from e-cig devices,
making it particularly well suited for realistic inhalation toxicology studies in vitro. We
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were able to confirm the adverse toxic effects of e-cig aerosols on human epithelial gingival
cells leading to apoptotic morphology. In addition, an increase in toxicity and upregulation
of inflammatory interleukin genes were detected. The results indicate that even a short-term
single exposure to e-cig aerosols may affect epithelial morphology resulting in increased
cell death. While the overall impact of e-cigs on epithelial cells appears to be less hazardous,
in general, than those of t-cigs, in vitro data do not allow for judgments on long-term safety.
On the other hand, e-cigs should not be regarded as “harmless” at this time.
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