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Abstract: There is evidence that PM2.5 could be obesogenic. Lima is one of the most polluted cities in
South America, with an increasing prevalence of childhood obesity. This study aimed to determine
the association between PM2.5 exposure of children aged 6 to 59 months and being overweight or
obese (O/O) in a significant dataset survey. Cases were defined when weight for height Z-score
(WHZ) was >2 standard deviations (SD) from the mean, for each sex. A control was defined when
WHZ was between ±2 SD. We used a conditional logistic regression model to calculate the odds ratio
(OR) between extrauterine and intrauterine PM2.5 exposure and O/O. Extrauterine PM2.5 exposure
was evaluated as a 6-month PM2.5 mean prior to the survey. We found a significant association
between O/O and extrauterine (OR: 1.57, 1.51–1.63) and intrauterine (OR: 1.99, 1.88–2.12) PM2.5

exposure for an increment of 10 µg/m3. The ORs increased as the quartile increased in both exposures.
We observed a higher association in children aged 6–11 months (OR: 3.07, 2.84–3.31). In conclusion,
higher levels of PM2.5 in Lima and Callao were associated with cases of O/O in children from 6 to
59 months, with the association higher for prenatal exposure.

Keywords: air pollution; obesity; overweight; PM2.5; childhood health; intrauterine exposure;
extrauterine exposure

1. Introduction

Environmental pollution is a public health concern affecting the population world-
wide. The World Health Organization (WHO) estimated that 4.2 million premature deaths
worldwide are associated with atmospheric air pollution. In addition, 91% of the global
population resides in areas where pollution levels exceed WHO guidelines of ten µg/m3 [1].

Ambient PM2.5, defined as particulate material less than 2.5 microns, is one of the
main atmospheric contaminants and is of anthropogenic origin in urban areas. The size
of PM2.5 is small enough to penetrate deeply to reach the lungs, consequently impairing
their functions. Moreover, high levels of PM2.5 in ambient air have been associated with
cardiovascular, reproductive, and neurologic morbidities [2] and have also been associated
with higher susceptibility to infection with SARS-CoV-2 (COVID-19) [3].

Another emerging public health problem reported globally is being overweight (Body
mass index, BMI > 25, ≤30) or obese (BMI > 30) (O/O) [4]. Childhood obesity is one of
the most serious public health challenges of the 21st century, and it is considered also a
pandemic [5].

The evidence regarding the association between PM2.5 and obesity is mixed and sparse.
A recent systematic review found seven studies on PM2.5 and obesity (three cohorts and
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four cross-sectional). Only two studies showed positive associations between PM2.5 and
obesity [6]. Since that review, a prospective cohort study that analyzed polygenic risk
scores for BMI found a significant positive association between particulate matter (PM10
and PM2.5) and obesity [7].

A recent cross-sectional study in children and adolescents in China concluded that
for an increment of 10 µg/m3 of PM2.5, the odds ratio for obesity was 1.10 (1.03, 1.16),
and the relationship was stronger in males and low economic level regions [8]. Finally,
another recent study on Chinese older adults found that prolonged exposure to air pollution
(PM2.5 and PM10) was positively associated with an increased risk of general obesity and
abdominal obesity [9].

Air pollutants, such as PM2.5, can potentially act as “obesogenic” agents, as they
alter the methylation of receptors and expression of genes that regulate adipogenesis [10].
Similarly, PM2.5 like other air pollutants acts as an endocrine disruptor, encouraging
alterations in metabolism [11]. It has also been shown that prenatal exposure to PM2.5
is associated with an accumulation of fat in adult male mice related to an increase in
food intake and an increase of neuropeptide Y (NPY), an appetite-stimulating orexigenic
neuropeptide [12].

A common pathway between air pollution and overweight/obesity (O/O) is that air
pollution produces an inflammatory state in the organism [13] and O/O is also associated
with an inflammatory state [14]. Furthermore, this obesogenic effect may be associated with
other endocrine problems. In a Chinese adult population, investigators observed a higher
prevalence of cardiovascular risk factors like hypertension, type 2 diabetes, dyslipidemia,
and overweight/obesity associated with long-term exposure to air pollution [15].

Lima, the capital of Peru, is a mega-city with about eleven million inhabitants and is
considered one of the more polluted cities in Latin America. By 2021, Peru was ranked
26st in the world with the highest concentrations of PM2.5, with an average value of
29.6 µg/m3 [16].

According to the Demographic and Family Health Survey (DHS) in Peru, the preva-
lence of overweight/obesity among children aged 0–5 years old was 4.5% [17]. In Lima,
Peru the co-occurrence of overweight and anemia in children is commonly found [18]. Sim-
ilarly, in Lima, increased outdoor PM2.5 levels were significantly associated with decreased
hemoglobin values and an increase in prevalence of moderate/severe anemia in children
under 5 years old [19].

For these reasons, intrauterine and extrauterine exposure to increased values of PM2.5
may be associated with overweight/obesity in children from Lima, Peru. The present
study was conducted to determine this association in children aged 6–59 months using a
case-control design.

2. Materials and Methods
2.1. Study Area

Lima city is the capital of Peru on the central coast of the country near the Pacific
Ocean. It comprises forty-three districts with almost ten million inhabitants, and the
metropolitan area includes the neighboring constitutional province of “Callao”, with almost
one million inhabitants in seven districts. For this research, we included only five districts
in this province.

2.2. PM2.5 Exposure

PM2.5 was estimated daily by city district in Lima during 2010–2016 using a model
that combined ground monitor data, satellite data, and a chemical-transport model [20].
The model was at a 1 km2 resolution. We calculated a population-weighted average
across the 1-km grid for each district (n = 40). The model was shown to have good accu-
racy in relation to the ground monitors (mean difference between ground and predicted
measurements = −0.09 µg/m3) [21]. The overall cross-validation R2 (and root mean square
prediction error) was 0.70 (5.97 µg/m3) comparing predicted with observed ground-level
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data. The Vu et al. model [20] excluded the high-altitude districts of Cieneguilla, Chacla-
cayo, Lurigancho, and Carabayllo (east of Lima) because the estimates of PM2.5 in these
districts were viewed as unreliable [20]. These districts represent just 4% of the total pop-
ulation. As a result, our study analyzed forty-four districts, including those from Callao
(Figure 1).
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2.3. Study Population

We conducted a case-control study using a dataset that included 441,903 children
between 6 to 59 months living in Lima and Callao and attending different public health
centers whose data were registered in the Nutritional Status Information System (SIEN
in Spanish) by the National Center of Feeding and Nutrition (CENAN in Spanish) of the
National Institute of Health (NIH) from Peru between 2012 and 2016. For this study, we
studied the incidence of obesity, i.e., data from the first visit of each child under 5 years
when they were found to be obese. This dataset includes information on sex, age (months),
weight (kg), height (cm), district of residence, and day of the visit to the facility care center.

2.4. Definition of Cases and Controls

O/O in children is measured differently than in adults as children are growing
and body mass index (BMI) changes by age (https://www.cdc.gov/obesity/childhood/
defining.html; accessed on 22 June 2022) and gender. We defined children as O/O when
weight for height Z-score (WHZ) was higher than 2 standard deviations (SD) from the
mean, for each sex. A control was defined when WHZ was between minus 2 to plus
2 standard deviations [22]. O/O cases were matched on age, sex, and day of visit to the
health center. WHZ is defined as below [22].

WHZ =
(observed weight − WHO reference average value for height and sex)

WHO reference standard deviation for height and sex specific values
(1)

https://www.cdc.gov/obesity/childhood/defining.html
https://www.cdc.gov/obesity/childhood/defining.html
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Cases and controls were not matched on the health center because that would in most
cases be matching on residential PM2.5 level, which was assigned based on the Lima district
of residence (n = 39) or Callao (n = 5). After restricting to the first instance of O/O, the final
case-control database included a total of 32,616 O/O cases and 32,616 matched controls (1:1).

2.5. Variable Definitions

We obtained data for daily temperature (◦C) and relative humidity (%) from the Na-
tional Service of Meteorology and Hydrology (SENAMHI). An average daily temperature,
relative humidity and PM2.5 level were calculated for each district (n = 44, including those
from Callao). Then, for each case and control, an average for temperature, humidity, and
PM2.5 was calculated during the 6 months before the survey visit based on their district of
residence at the time of their visits. Finally, we calculated quartiles for the three environ-
mental variables. We used data during part of 2011 to calculate exposure windows for the
first health visits in 2012.

Age expressed in months was used for matching cases to controls and for the analysis.
We analyzed the population as a whole and stratified analyses into age groups: 6 to
11 months, 12 to 35 months, and 36 to 59 months.

We used the poverty rate for each district in Lima and Callao, generated by the
National Institute of Statistics and Informatics (INEI in Spanish) [23]. This rate considers
household characteristics, household members, education, health, employment and income,
pension system, ethnicity, financial inclusion, displacement, household expenses, citizen
participation, and social programs per district. Data are presented as the percent of people
living in poverty in a determined district. For our regression, we categorized poverty into
quartiles with the first quartile being the least poor.

Finally, to calculate intrauterine exposure, we estimated the date of birth by subtracting
the age (in months and days) from the date on which the child was evaluated. Subsequently,
we averaged the exposure for 9 months before the birth of each child for the different
districts. The Spearman correlation between intra and extra-uterine PM2.5 exposure was
Rho = 0.90.

2.6. Statistical Analysis

The statistical package used for the analyses was Stata version 15 (College Station, TX,
USA: Stata Press). Differences between mean values were tested with the T-student test or with
the Mann–Whitney U test for normally and non-normally distributed variables, respectively.

Conditional logistic regression was used to analyze the association of PM2.5 with case
status due to the matching of age and sex. Log ORs were estimated as a linear function
of PM2.5 levels using as a contrast a 10 µg/m3 increase. Furthermore, we evaluated PM2.5
levels in quartiles for extra- and intrauterine exposure. The logistic model was adjusted for
the quartiles of the moving average of relative humidity (%), temperature (◦C) and poverty.
We used the Akaike criterion (AIC) to assess model fit. Statistical significance was defined
as a p-value < 0.05. The research was approved by the Institutional Review Board at the
Universidad Peruana Cayetano Heredia.

3. Results

The present study included 65,232 children between 6 to 59 months, of whom 52.91%
were boys. The largest population was aged 12–35 months (44.67%) at time of visit and the
smallest was aged 36–59 months (21.73%). The quartiles for PM2.5, temperature, relative
humidity, and poverty were the essentially the same in all age groups (Table 1).



Toxics 2022, 10, 487 5 of 12

Table 1. Quartiles of poverty and environmental variables for a 6-month exposure window per
age group.

O/O Aged 6 to 11 O/O Aged 12 to 35 O/O Aged 36 to 59

PM2.5 (µg/m3) Quartiles PM2.5 Quartiles PM2.5 Quartiles
Q1 (14.36–18.63) Q1 (14.38–18.77) Q1 (14.91–18.35)
Q2 (18.64–20.40) Q2 (18.78–20.76) Q2 (18.36–20.19)
Q3 (20.41–26.85) Q3 (20.77–27.64) Q3 (20.20–27.53)
Q4 (26.86–46.05) Q4 (27.65–46.07) Q4 (27.54–46.05)

Relative Humidity (%)
Q1 (54.37–66.90) Q1 (54.20–66.44) Q1 (54.46–66.79)
Q2 (66.91–73.16) Q2 (66.45–71.88) Q2 (66.80–73.37)
Q3 (73.17–80.67) Q3 (71.89–79.61) Q3 (73.38–80.04)
Q4 (80.68–89.90) Q4 (79.62–89.70) Q4 (80.05–89.69)

Temperature (◦C)
Q1 (17.09–21.55) Q1 (17.10–21.57) Q1 (17.11–21.63)
Q2 (21.56–23.29) Q2 (21.58–23.16) Q2 (21.64–23.41)
Q3 (23.30–25.56) Q3 (23.17–25.41) Q3 (23.42–25.52)
Q4 (25.57–30.35) Q4 (25.42–30.35) Q4 (25.53–30.36)

Poverty (%)
Q1 (0.17–10.48) Q1 (0.17–10.48) Q1 (0.17–10.04)

Q2 (10.49–16.84) Q2 (10.49–16.84) Q2 (10.05–15.99)
Q3 (16.85–22.80) Q3 (16.85–22.04) Q3 (16.00–22.04)
Q4 (22.81–29.09) Q4 (22.05–29.09) Q4 (22.05–29.09)

Environmental PM2.5 6 months prior to the diagnosis was higher for the cases than for
the controls across all age groups. Temperature and relative humidity (both in the 6 months
before the visit), and poverty were not different between groups (p > 0.05) (Table 2).

Table 2. Population characteristics.

Exposure Extrauterine Intrauterine

Variables
Cases

n = 32,616
Control

n = 32,616
Cases

n = 20,433
Control

n = 20,433

(Mean ± SD) (Mean ± SD) (Mean ± SD) (Mean ± SD)

Weight (kg) 14.23 ± 4.36 a 11.45 ± 3.23 12.29 ± 2.71 10.04 ± 2.09 a

Height (cm) 82.52 ± 12.98 a 81.59 ± 12.37 76.62 ± 8.86 75.89 ± 8.33 a

WHZ * 2.67 ± 0.66 a 0.51 ± 0.89 2.62 ± 0.61 0.54 ± 0.87 a

PM2.5 (µg/m3) 23.67 ± 6.05 b 22.68 ± 5.27 23.24 ± 5.40 21.80 ± 4.61 b

Temperature (◦C) 23.53 ± 2.49 23.43 ± 2.52 23.80 ± 2.13 23.46 ± 1.88
Relative Humidity (%) 73.10 ± 8.08 73.18 ± 8.07 72.89 ± 4.60 72.97 ± 4.65

Poverty (%) 16.10 ± 7.06 16.20 ± 6.83 16.50 ± 6.96 16.35 ± 6.67

* WHZ is the weight for height z-score value. a T-student: p < 0.001, cases vs. controls. b Mann-Whitney U test:
p < 0.001, cases vs. control.

Subsequently, we evaluated intrauterine and extrauterine exposure exposition with
O/O cases (n = 40,866; 20,433 cases and 20,433 controls) in a logistic model with controlling
for temperature, humidity, and poverty (Table 3).

Table 3 reports the odds ratio for a 10 µg/m3 increment of PM2.5 as well as reporting
odds ratios by quartile of exposure (separate models) with O/O for intra- and extra-uterine
exposures (Table 3).

We found positive associations between both exposures and childhood overweight/obesity
(p < 0.001). This association was stronger for intrauterine than that observed for extrauterine
exposure when the ORs were compared for the highest quartile.

Increased relative humidity, temperature, and poverty were all protective against obesity.
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Table 3. Conditional regression analysis between a ten µg/m3 increase in intrauterine and extrauter-
ine exposure PM2.5 and O/O cases in Lima and Callao.

Exposure Overweight/Obesity
n = 65,232 or (95% CI) Exposure Overweight/Obesity

n = 40,866 or (95% CI)

Extrauterine PM2.5 1.57 (1.51–1.63) Intrauterine PM2.5 1.99 (1.88–2.12)
Relative Humidity (%) Relative Humidity (%)

Q1 (54.20–66.67) 1.0 Q1 (61.18–69.54) 1.0
Q2 (66.68–72.63) 0.89 (0.83–0.95) Q2 (69.55–73.13) 0.967 (0.89–1.05)
Q3 (72.64–80.06) 0.79 (0.71–0.89) Q3 (73.14–75.71) 0.90 (0.81–0.99)
Q4 (80.07–89.90) 0.82 (0.70–0.96) Q4 (75.72–86.38) 0.86 (0.77–0.97)

Temperature (◦C) Temperature (◦C)
Q1 (17.09–21.58) 1.0 Q1 (18.53–22.35) 1.0
Q2 (21.59–23.26) 0.95 (0.90–1.00) Q2 (22.36–23.59) 0.79 (0.75–0.85)
Q3 (23.27–25.49) 0.85 (0.79–0.91) Q3 (23.60–24.80) 0.83 (0.77–0.89)
Q4 (25.50–30.36) 0.77 (0.71–0.84) Q4 (24.81–29.41) 0.93 (0.85–1.01)

Poverty (%) Poverty (%)
Q1 (0.17–10.48) 1.0 Q1 (0.17–10.48) 1.0

Q2 (10.49–16.84) 0.80 (0.77–0.84) Q2 (10.49–16.84) 0.81 (0.76–0.86)
Q3 (16.85–22.04) 0.74 (0.70–0.77) Q3 (16.85–22.80) 0.68 (0.64–0.72)
Q4 (22.05–29.09) 0.75 (0.71–0.79) Q4 (22.81–29.09) 0.73 (0.69–0.78)
PM2.5 Quartiles PM2.5 Quartiles
Q1 (14.36–18.63) 1.0 Q1 (15.73–18.61) 1.0
Q2 (18.64–20.49) 0.83 (0.79–0.87) Q2 (18.62–19.82) 0.86 (0.81–0.92)
Q3 (20.50–27.37) 0.97 (0.92–1.03) Q3 (19.83–26.88) 1.24 (1.15–1.33)
Q4 (27.38–46.07) 1.52 (1.43–1.62) Q4 (26.89–40.44) 1.99 (1.84–2.16)

CI: Confidence Interval. PM2.5 quartiles models are separately different from the linear PM2.5 exposure model
reported in the first row.

We also analyzed the data separately by sex for extrauterine exposure (Table 4). The
results did not differ by sex.

Table 4. Conditional regression analysis for a 10 µg/m3 increase in extrauterine PM2.5 using a
6-month exposure window and O/O cases in Lima and Callao by sex.

Exposure Male
n = 34,514 or (95% CI) Exposure Female

n = 30,718 or (95% CI)

PM2.5 1.58 (1.50–1.67) PM2.5 1.56 (1.47–1.64)
Relative Humidity (%) Relative Humidity (%)

Q1 (54.37–66.67) 1.0 Q1 (54.20–66.66) 1.0
Q2 (66.68–72.64) 0.86 (0.78–0.94) Q2 (66.67–72.60) 0.92 (0.84–1.02)
Q3 (72.65–80.07) 0.79 (0.68–0.92) Q3 (72.61–80.06) 0.79 (0.67–0.93)
Q4 (80.08–89.70) 0.84 (0.68–1.04) Q4 (80.07–89.90) 0.79 (0.63–0.99)

Temperature (◦C) Temperature (◦C)
Q1 (17.10–21.58) 1.0 Q1 (17.09–21.59) 1.0
Q2 (21.59–23.26) 0.94 (0.87–1.01) Q2 (21.60–23.25) 0.96 (0.88–1.04)
Q3 (23.27–25.49) 0.83 (0.753–0.92) Q3 (23.26–25.47) 0.87 (0.79–0.97)
Q4 (25.50–30.35) 0.76 (0.67–0.86) Q4 (25.48–30.36) 0.79 (0.69–0.90)

Poverty (%) Poverty (%)
Q1 (0.17–10.48) 1.0 Q1 (0.17–10.48) 1.0

Q2 (10.49–16.84) 0.83 (0.78–0.88) Q2 (10.49–16.84) 0.78 (0.72–0.83)
Q3 (16.85–22.04) 0.76 (0.71–0.82) Q3 (16.85–22.04) 0.71 (0.66–0.76)
Q4 (22.05–29.09) 0.77 (0.72–0.83) Q4 (22.05–29.09) 0.72 (0.67–0.78)

CI indicates, confidence interval at 95%.

Age-specific analyses showed that the highest association of increased PM2.5 with
O/O was observed at 6–11 months; it was moderate at 12–35 months and not apparent at
36–59 months (Table 5).

Figure 2A,B presents high ORs for O/O for intra- and extrauterine exposure with the
highest quartile of PM2.5. In addition, higher ORs for O/O were observed at 31 to 39 weeks
of age for intra-uterine exposure (Figure 2A) than with extra-uterine exposure (Figure 2B).
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Table 5. Odds ratios for O/O for a 10 µg/m3 increase in PM2.5 for extrauterine exposure using a
6-month exposure window by age group.

Exposure
O/O Aged 6 to 11 O/O Aged 12 to 35 O/O Aged 36 to 59

n = 21,918 or (95% CI) n = 29,146 or (95% CI) n = 14,174 or (95% CI)

Extrauterine PM2.5 3.07 (2.84–3.31) 1.31 (1.24–1.38) 0.98 (0.91–1.01)
Relative Humidity (%)

Q1 1.0 1.0 1.0
Q2 0.87 (0.77–0.99) 0.81 (0.73–0.89) 1.07 (0.91–1.25)
Q3 0.72 (0.59–0.89) 0.71 (0.60–0.84) 1.00 (0.79–1.27)
Q4 0.75 (0.56–1.00) 0.79 (0.63–1.00) 0.89 (0.65–1.23)

Temperature (◦C)
Q1 1.0 1.0 1.0
Q2 0.97 (0.88–1.07) 0.94 (0.87–1.02) 0.94 (0.84–1.07)
Q3 0.83 (0.73–0.94) 0.81 (0.73–0.90) 0.94 (0.81–1.09)
Q4 0.71 (0.60–0.83) 0.72 (0.63–0.82) 0.94 (0.78–1.14)

Poverty (%)
Q1 1.0 1.0 1.0
Q2 0.72 (0.66–0.78) 0.84 (0.79–0.91) 0.88 (0.80–0.98)
Q3 0.58 (0.53–0.64) 0.76 (0.70–0.81) 0.96 (0.86–1.07)
Q4 0.70 (0.64–0.77) 0.74 (0.69–0.80) 0.95 (0.85 -1.06)

PM2.5 Quartiles
Q1 1.0 1.0 1.0
Q2 0.79 (0.72–0.86) 0.78 (0.73–0.84) 1.03 (0.92–1.14)
Q3 1.27 (1.16–1.40) 0.78 (0.72–0.85) 0.98 (0.87–1.11)
Q4 3.33 (2.98–3.72) 1.11 (1.01–1.21) 0.99 (0.87–1.12)
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4. Discussion

Our study found that high exposure to PM2.5 was associated with O/O. These results
suggest a potential increase in childhood obesity risk in children prenatally and postnatally
exposed to environmental pollutants. Our results suggest that exposure to higher concen-
trations of PM2.5 in the prior 6 months including prenatally is associated with O/O cases
in the child population aged between 6 to 59 months, with the strongest associations at
earlier ages.

In addition, our results showed a stronger association with intrauterine exposure vs.
extrauterine exposure. It has been shown previously that prenatal exposure to vehicular
traffic pollution is related to accelerated weight gain in childhood [24], and it has also been
associated with energy imbalance and glucose tolerance in male offspring [25]. We did not
observe in our data differences between males and females.

In southern California, prenatal ambient air pollutant exposure was associated with
increased weight gain and anthropometric measures from 1 to 6 months of life among
Hispanic infants [26]. Our result agrees with those in that we found stronger effects at
earlier ages of exposure.

The Colorado-based Healthy Start study found limited evidence of associations of
prenatal exposure to ambient PM2.5 and O3 with indicators of adiposity at age 4–6 years
(27). Our study results are again concordant with those, as they showed that the strongest
association occurred in the youngest children, between 6 and 11 months of age, and no
difference was observed in the group aged 36–59 months as reported in the study by
Bloemsma et al. [27].

In another study, in Boston, USA, Fleisch et al. found no evidence for a persistent
effect of prenatal exposure to traffic pollution (PM2.5 in the third trimester was 11.4 (1.7)
µg/m3 on BMI trajectory from birth through mid-childhood in a population exposed to
modest levels of air pollution [28]. In our study, the mean for PM2.5 was more than double
that observed by Fleisch et al. [28], and the associations we found were driven by the higher
quartile of exposure.

Regarding postnatal exposure to PM2.5, one study found that PM2.5 significantly
modified the association between age and weight in males, with a positive association in
children younger than 3 years and a negative association afterwards [29]. Again, the same
pattern was observed in our study, with a stronger direct association at 6–11 months but no
association at 36–59 months.

The evolution of adiposity with age shows that during the first year of life, fat mass
increases and then decreases as age increases. Subsequently, a new ascent called “adiposity
rebound” (AR) is observed [30,31]. This is a biological pattern that is displayed in different
populations independent of geographic region, socioeconomic status, or sex [32]. The
onset of this stage is an indicator of the future development of obesity. That is, the earlier
the adiposity rebound in the child, the greater the risk of increasing fat tissue in adult
life [31,33].

Normally, the average BMI rebound indicating AR was found before the age of 5 years
(54–59 months) [34]. Our data suggest that high PM2.5 values as observed in Lima, Peru,
may be a factor associated with early adiposity. Early adiposity is predictive of adult
obesity [35].

We found a strong negative association of the poverty indicator on cases of O/O,
where the greater the poverty, the lower the probability of overweight or obesity. The
literature on this point is inconclusive. One study found that higher economic development
was associated with less obese and more underweight children [36]. However, Gamboa-
Gamboa et al. found a bigger prevalence of childhood obesity and overweight in children
of higher socioeconomic status [37].

We also found a significant inverse association between environmental temperature
and obesity when there was extrauterine exposure. These results suggest that the higher
the ambient temperature, the less energy the body requires to maintain body temperature.
However, Wallwork et al. demonstrated that living in warmer temperature areas increases
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the risk of metabolic dysfunctions like elevated fasting blood glucose, which is associated
with insulin resistance [38].

It is known that obesity in the first years of life increases the probability of adult obesity,
and of diseases linked to obesity such as diabetes mellitus, cancer, and cardiovascular
diseases in adult life [39]. Consequently, this means a significant health risk, suggesting
that Peruvian air quality environmental regulations should be revised.

The prevalence of abdominal obesity among Peruvian adults was 73.8%, being higher
among women than men (85.1% and 61.1% respectively, p < 0.001) [40]. It is possible
that exposure to air pollution prenatally and postnatally during the first years of life may
contribute to this high prevalence of obesity during adulthood.

Daily physical activity has been recommended for children and adolescents to prevent
overweight and obesity [41], since it has been shown that regardless of the type of exercise,
physical activity maintains cellular and cardiovascular homeostasis by improving the lipid
and inflammatory profiles in obese children [42]. Moreover, the probability of being obese
as an adult when born to an obese father is three times higher than that born of non-obese
parents [43]. Therefore, it would be best to consider parental obesity when analyzing child
obesity. Not having information on child’s physical activity, parent’s obesity, and nutrition
are important limitations of our study.

Another limitation of the study was that we could not evaluate other sociodemo-
graphic and health indicators that may cause childhood overweightness and obesity or that
affect the association, such as type of feeding (breastfeeding, mixed feeding, solid food),
diversity and composition of the diet, daily caloric intake, physical activity, sanitation,
supplementation, use of medications, weight, diet and education of the mother, other dis-
eases (metabolic, infectious and inflammatory) of the child, etc. This is because we did not
have information on these variables in the dataset. However, many environmental factors
affecting childhood obesity (activity levels, diet, etc.) are unlikely to be associated with air
pollution and hence cannot function as confounders. Also, given the strong associations
observed, we do not think they are likely to be due entirely to uncontrolled confounding.

A third limitation is that we assumed that all children were born at the end of the
mother’s pregnancy. Since the exact date of birth was not recorded in the database, the
calculation of intrauterine exposure was not accurate for preterm children. Furthermore,
because the unit of analysis of this study is the child, another limitation is not having data
on the mother’s activity during pregnancy.

We did not have data on pregnancy outcomes, which could be a limitation. PM2.5 is
associated with lower birthweight (LBW), and therefore, we might expect that with more
PM2.5 and more LBW babies, there would be less obesity in childhood. However, there
are two reasons why these were less of a concern. First, studies linking LBW with later
risk of obesity have had mixed results [44]. Second, if in fact LBW is associated with lower
risk of childhood obesity, then LBW would be a mediator or intermediate variable on the
pathway between PM2.5 and childhood obesity; one would typically not want to control
for an intermediate variable in estimating the total effect of PM2.5 on childhood obesity.

Finally, overweight/obesity may result from catch-up growth in infants with LBW
from air pollution exposure [45].

The strength of our investigation is the analysis of data obtained in a population
with high environmental pollution since Lima is considered one of the most contaminated
cities in Latin America [46], and we analyzed the probability of O/O attributable to PM2.5
exposition in a large data set as different life stages. This research is the first study that
associates PM2.5 and overweight/obesity in Lima and Callao and shows the association of
a new investigated obesogenic factor, PM2.5, which is a modifiable risk factor.

5. Conclusions

In conclusion, there are associations between elevated levels of intrauterine and
extrauterine PM2.5 exposure with cases of O/O in children from 6 to 59 months in Lima
and Callao, with the association being stronger for prenatal exposure. Furthermore, the
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association was stronger for children between 6 to 11 months. Potential interventions in the
development of overweight and obesity at an early age is extremely important since obesity
is a risk factor for developing diseases attributed to inflammation and other pathologies
related to hormonal and metabolic imbalance in the future. Likewise, good control of air
pollutants—with special emphasis on PM2.5—is important to avoid other future chronic
adverse health effects in adulthood and youth ages. This information could be useful for
improving public policies and strategies to control diseases.
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