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Abstract: Sex hormone disruptors (xenoestrogens) are a global concern due to their potential toxicity.
However, to date, there has been no study to investigate the presence of xenoestrogen pollutants
in the Jordanian water system. Samples in triplicates were collected from six locations in Jordan,
including dams, surface water, tap or faucet water, and filtered water (drinking water—local com-
pany). Xenoestrogens were then extracted and evaluated with a yeast estrogen screen utilizing
Saccharomyces cerevisiae. Later, possible pollutants were mined using ultrahigh-performance liquid
chromatography (UPLC) coupled with a Bruker impact II Q-TOF-MS. Possible hits were identified
using MetaboScape software (4000 compounds), which includes pesticide, pharmaceutical pollutant,
veterinary drug, and toxic compound databases and a special library of 75 possible xenoestrogens. The
presence of xenoestrogens in vegetable samples collected from two different locations was also inves-
tigated. The total estrogen equivalents according to the YES system were 2.9 ± 1.2, 9.5 ± 5, 2.5 ± 1.5,
1.4 ± 0.9 ng/L for King Talal Dam, As-Samra Wastewater Treatment Plant, King Abdullah Canal,
and tap water, respectively. In Almujeb Dam and drinking water, the estrogenic activity was below
the detection limit. Numbers of identified xenoestrogens were: As-Samra Wastewater Treatment
Plant 27 pollutants, King Talal Dam 20 pollutants, Almujeb Dam 10 pollutants, King Abdullah Canal
16 pollutants, Irbid tap water 32 pollutants, Amman tap water 30 pollutants, drinking water 3 pol-
lutants, and vegetables 7 pollutants. However, a large number of compounds remained unknown.
Xenoestrogen pollutants were detected in all tested samples, but the total estrogenic capacities were
within the acceptable range. The major source of xenoestrogen pollutants was agricultural resources.
Risk evaluations for low xenoestrogen activity should be taken into account, and thorough pesticide
monitoring systems and regular inspections should also be established.

Keywords: xenoestrogens; water pollution; UPLC-MS; estrogen receptors; surface water;
drinking water

1. Introduction

Water treatment and pollution are major concerns worldwide, i.e., heavy metals and
(recently appearing) estrogen and xenoestrogen pollutants. Xenoestrogens are estrogen
mimics [1]. Many xenoestrogens found in the waterways, both natural and synthetic, can
mimic or disrupt the natural estrogens found in humans and animals [2–4]. Estrogenic
chemicals of varying potency and persistence originate from agriculture, industry, humans,
household products, and pharmaceuticals [5].
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Xenoestrogens as well as estrogen pollutants are not completely removed during the
process of sewage treatment and are carried over into the general aquatic environment.
After ground passage, they can eventually be found in drinking water [6–9]. Although the
concentration of these compounds is very low in the water, it has been identified as the
main cause of hormonal disruption in wildlife [7,10,11].

Xenoestrogens are widely diffused in the environment, water, and in food, and thus a
large portion of the human population is exposed to them worldwide [12]. Xenoestrogens
have been linked to several human diseases, such as testicular dysgenesis syndrome [13],
hypospadias [14], testicular cancer [15,16], breast cancer [17], endometriosis [18], birth
defects [19], decreased sperm counts [20], and others [21–24].

The scarcity of water is the greatest challenge that Jordan faces. On a per capita
basis, Jordan has one of the lowest levels of water resources in the world. In addition, the
situation has been exacerbated by periodic massive influxes of refugees, worsening the
imbalance between population and water. Despite the presence of some surface water
supplies, collectible rain is the main source of water in Jordan via dams, rivers, lakes, and
groundwater [25]. To collect rain, the water should run off across long-distance interactions
and be exposed to various xenoestrogens.

The pollution of estrogen and xenoestrogen in Jordan should be taken seriously,
especially after it has been detected and determined in several places around Jordan,
including Mediterranean coastal water [26], Jordan Valley soil [27,28], and the Jordan
River [28]. In one study, estrogen was detected in 85% of the samples along the Jordan
River at risk concentrations [28]. However, to date, there has been no research to test the
presence of sex hormone disruptors (xenoestrogen and xenoandrogen) pollutants in the
Jordanian water system.

2. Materials and Methods
2.1. Chemicals

Chemicals were purchased from Sigma-Aldrich, and 17-β-estradiol stock solutions
were prepared in methanol (1 µg/µL) and stored at −20◦C.

2.2. Sample Locations

The water system in Jordan is complex and composed of surface water (rivers, streams,
dams) and groundwater basins (Figure 1). The Jordanian water system was discussed in
detail previously [29–32]. Due to the government constraints that restrict access to water
resources, the Ministry of Water and Irrigation determined the quantity and location of
collected samples. Samples were collected in triplicate according to the following Table 1
and map (Figure 2).
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Table 1. Sample collection sites.

Name Samples Collection by

King Talal Dam MWI 1

Almujeb Dam MWI
As-Samra Wastewater Treatment Plant MWI

King Abdullah Canal: Dair Alla MWI
Tap water Researchers

Drinking water Researchers
1 MWI: Ministry of Water and Irrigation.
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2.3. Sample Collection

Water sample collection was conducted as described previously [34]. All glassware
was washed twice with methanol, then distilled water, and baked at 180 ◦C for 4 h. Samples
were collected in 2 L precleaned amber glass bottles containing 0.5 g of copper (II) nitrate
and 6 mL of 3.6 M hydrochloric acid solution before being stored at 4 ◦C in the dark. To
enhance the solubility of the lipophilic pollutants, 5% methanol was added to the samples.
All samples were collected from the edge of the canal or dam from a deep point of around
1 m. Two other samples were also studied: tap water and drinking water. Tap water
was collected from Irbid and Amman. The term “drinking water” refers to water sold at
purifying stations that began with tap water. The vegetables were purchased from the local
market in Irbid.

2.4. Sample Preparation
2.4.1. Water

Samples were filtered through glass fiber or glass wool (pore sizes of 0.3–1.2 µm)
before solid-phase extraction was carried out. The filtered samples were loaded with a flow
rate of 5.5–6 mL/min into reactivated reversed-phase C-18 cartridges (8 mL methanol, and
then 8 mL of water:methanol solution (95:5). Later, the cartridges were washed with 10 mL
of methanol in water (1:1), followed by 10 mL of acetone in water (1:2).

There were two methods: one for the analysis using yeast estrogen assay (YES) and
the other for liquid chromatography–mass spectrometry (LC-MS) analysis.
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Samples for YES: 100 µL DMSO was added, and the acetone and methanol were
evaporated under a gentle stream of nitrogen.

Samples for LC-MS screening: samples were dried under nitrogen gas (99.99%),
reconstituted in 100 µL methanol, completed to 50 mL by acetonitrile, and then centrifuged
at 4000 rpm for 2.0 min. Finally, 1.0 mL of the sample was transferred to the autosampler.

2.4.2. Vegetables

The sample preparation was conducted via salting-out assisted liquid–liquid extraction
(SALLE) as described previously [35]. Five milliliters of the sample solution was spiked with
a standard solution containing the target analytes and transferred to a 15 mL screw-capped
test tube. The pH of the solution was adjusted to 7.4 by adding 0.1 M NaOH, followed by
2.40 mL acetonitrile and 1.6 g NaCl. Following that, the solution was gently shaken for
2 min before being centrifuged at 4000 rpm for 5 min to cause phase separation. The upper
organic phase was then carefully withdrawn with a 1 mL microsyringe. This volume was
approximately 100 ± 25 µL, which was poured into a vial to avoid an anomalous peak
in the HPLC chromatogram. A nitrogen stream was blown at this stage to dry it at room
temperature. The final residue was reconstituted to a volume of 100 µL using a mobile
phase, shaken for 2 min, and filtered through a 0.2 µm nylon filter before being injected
into the HPLC system.

2.5. Yeast Screening Assays

Assays were conducted as described previously [36–39] using yeast-based microplate
assay (XenoScreen YES/YAS, Xenometrix, Switzerland). Briefly, minimal medium and
medium components were prepared according to the manual. Cells were incubated with
serially diluted substances and positive control (17-β estradiol for YES assay) for 48 h
at 32 ◦C in the presence of a substrate for β-galactosidase synthesis. All tested samples
and the color change and growth of yeast were quantitatively measured using a BioTek
Synergy HTX microplate reader at 570 and 690 nm wavelength, respectively. The results
were evaluated in terms of the agonistic and antagonistic effects of estrogen. In addition,
the cytotoxic effect was evaluated for the test compound by testing the optical density of
each well (λ = 690 nm). Assessment of estrogen–androgen activity was performed for the
samples at eight dilution levels. Each assay was repeated three times.

2.6. Data Analysis

Data analysis was conducted as described previously [40]. Dose–response curves
were graphed, and then EC50 and IC50 values were calculated for those compounds that
exhibited a complete dose–response curve. The agonistic endocrine activity was considered
if the tested sample had an induction of at least 10% of the difference between the maximum
E2 response and solvent control in agonist assay. The E2 equivalents corresponding to the
measured concentrations were calculated as follows: 5 ng/L of E2 is equal to 1 relative
activity in the YES assay. One-way ANOVA was performed for the analysis of the variance
first, followed by Dunn’s test (if a significant difference was found). Statistical analysis was
conducted using GraphPad Prism 5.00 (GraphPad Software, San Diego, CA, USA.

2.7. LC-MS/MS Analysis

All samples were analyzed using LC-MS/MS. Assays were conducted as described
previously [36]. For analysis, Elute UHPLC coupled with a Bruker impact II QTOFMS
(Bremen, Germany) was used. Chromatographic separation was performed using Bruker
solo 2.0C-18 UHPLC column (100 mm × 2.1 mm × 2.0 µm) at a flow rate of 0.5 mL/min
and a column temperature of 40 C. The solvents were (A) water with 0.05% formic acid
and (B) acetonitrile. A linear gradient from 5% to 80% B over 27 min, followed by two min
95% B. The total analysis time was 35 min in positive and 35 min in negative mode and the
injection volume was 3 µL.
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The instrument was operated using the Ion Source Apollo II Ion Funnel electrospray
source. The capillary voltage was 2500 V, the nebulizer gas was 2.0 bar, the dry gas (nitrogen)
flow was 8 L/min and the dry temperature was 200 ◦C. The mass accuracy was <1 ppm,
the mass resolution was 50,000 FSR (full-sensitivity resolution) and the TOF repetition rate
was up to 20 kHz.

Standards for identification of ms/z with high-resolution Bruker TOF MS and the
exact retention time of each analyst after chromatographic separation was used. Later, all
possible hits were identified using MetaboScape software (more than 4000 compounds)
which includes a list of potential pharmaceutical pollutants, a list of potential veterinary
drug pollutants, a list of potential insecticides, pesticides, and herbicides pollutants, and an
additional special library (constructed from chemicals reported in the literature) of possible
xenoestrogens. All pollutants are listed in Supplementary Material S1–S4. The detection of
xenoestrogens in tap water were used as a model for the LC-MS experiment.

3. Results and Discussion
3.1. Study Area

Due to the governmental restriction from the Ministry of Water and Irrigation, the
research was restricted to designated sites: two dams (King Talal Dam and Almujeb Dam),
one wastewater treatment plant (As-Samra), and one canal (King Abdullah canal). King
Talal Dam’s (the largest dam in Jordan) main purpose is to retain winter rainfall and
treated wastewater processed at the As-Samra Wastewater Treatment Plant and is used for
domestic, agricultural, and industrial uses and to control floods, improve drainage, and
collect water from rivers and streams [41,42], while Almujeb Dam only collects rainwater
and is used for domestic, industrial supply and irrigation [43]. As-Samra Wastewater
Treatment Plant was built to improve the quality of water in Jordan. It treats wastewater
released from the Zarqa River Basin. Moreover, the facility treats an average flow of
267,000 m3 of wastewater, serving a population of 2.2 million living in the Amman and
Zarqa areas [44]. King Abdullah Canal is Jordan’s most important source of drinking and
agricultural water. The canal is approximately 110 km long, with a head discharge capacity
of 20 m3/s and a tail discharge capacity of 6 m3/s. [45]. Dair Alla Station is responsible for
pumping water from the canal to Amman [45].

3.2. Estrogenicity in Water Samples

The estrogenic activity via yeast screening assay of each water sample measured
as 17β-estradiol relative estrogenicity is summarized in Table 2. The relative estrogenic
activities of all samples were comparable to those of other yeast assays [28,46–48].

Table 2. The estrogenic activity using the YES assay.

Name Total 17β-Estradiol Equivalents (ng/L)

King Talal Dam 2.9 ± 1.2
Almujeb Dam ND

As-Samra Wastewater Treatment Plant 9.5 ± 5
King Abdullah Canal: Dair Alla 2.5 ±1.5

Tap water 1.4 ± 0.9
Drinking water ND

3.2.1. Tap Samples

Jordan’s primary sources of tap water are surface water and groundwater wells [49].
For example, 45% of tap water in Amman comes from the Disi aquifer, 29% from the Zay
treatment plant, which uses water from the King Abdullah Canal, 16% from the Zara
treatment plant, which uses water from the Almoujib Dam, and 10% from a network of
subterranean wells [50].

The relative estrogenicity of tap water (1.4 ± 0.9 ng/L) is lower than that reported
in other countries [51–54]. According to reports, such concentrations do not constitute an
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immediate, acute health risk to the community [51,55]. However, the potential long-term
impact of xenoestrogens on human health and the environment at low concentrations is
yet to be elucidated [56]. Hence, xenoestrogens have been categorized as an “unquantified
risk” [55]. The World Health Organization (WHO) has reported that xenoestrogens in
such low concentrations are potentially less harmful to human health, but emphasized the
necessity to limit the existence of such compounds in the water [56,57].

In the LC-MS experiment, a high-resolution database included exact mass data for
parent ions, adducts, fragment ions as well as isotopic pattern and retention time. Figure S1
represents the base peak chromatogram (all MS and bbCID) for samples from both Irbid
and Amman. The complete spectrum list of (Dissect and bbCID) for both Amman and Irbid
are shown in Tables S1 and S2, respectively. However, only 34 compounds were identified
as potential xenoestrogen or estrogen disturbances (Table 3). It is worth mentioning that
around 100 compounds are still unknown in each sample.

Table 3. Detected xenoestrogens in tap water.

Expected Compound Irbid Amman Origin 3 Ref. 2 Chemical Structure 1

3-Methylcholanthrene Yes Yes Pesticide/fungicide [58]
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Table 3. Cont.

Expected Compound Irbid Amman Origin 3 Ref. 2 Chemical Structure 1

Betamethasone valerate Yes Yes Corticosteroid [64]
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Table 3. Cont.

Expected Compound Irbid Amman Origin 3 Ref. 2 Chemical Structure 1
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Table 3. Cont.

Expected Compound Irbid Amman Origin 3 Ref. 2 Chemical Structure 1
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The presence of xenoestrogens might result from either direct contact with water at
the source, pipeline, or reservoir, or from by-products of water treatment. Jordan’s water
supply network is plagued by issues such as seepage inside distribution pipe systems and
intrusions (illegal use). In both circumstances, an interaction between xenoestrogens and
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tap water is feasible [31]. It appears that the majority of the purposeful sabotage of the water
network occurred in agricultural areas, which may explain the prevalence of pesticides and
fungicides. Furthermore, water losses in the Jordanian system were estimated at 50% [31].

In Jordan, water is disinfected using various disinfectants (such as chlorine), which
may cause interactions with organic matter to produce disinfection by-products (halocarbon
compounds) [92]. Natural organic matter (NOM) is an enormously complicated mixture of
organic molecules with widely varying physical and chemical properties. NOM is both a
natural occurrence in the environment and a by-product of human activity. NOM is present
in particle, colloidal, and dissolved states in all ground and surface waters, including
rainwater [93]. Furthermore, the infrequent usage of pipelines facilitates such reactions,
particularly at the periphery networks (6 h per week). Seven halocarbon xenoestrogens
were identified in the tap water samples (Table 3).

3.2.2. Surface Water

The data show that open-source water has estrogenic activity of 2.5–9.5 ng/L and
is not far from most countries in the world, including bordered countries [28,46–48]. It
has been reported that the estrogenic activity of surface water typically should be below
25 ng/L, including the effluent of the water treatment plant [94,95].

Raw wastewater has different characteristics in Jordan from most other countries.
According to reports, Jordan’s wastewater is very strong, highly salinized, contains heavy
metals, and contains toxic organic compounds. Furthermore, Jordan’s raw wastewater
contains large organic contents resulting from low home water consumption and indus-
trial waste [96].

The estrogenic activity of the effluent of As-Samra treatment plant was 9.5 ± 5 ng/L.
This value is not far from recorded around the world. For instance, the estrogenic ac-
tivity was 0.4–6.6 ng/L in England, 5–10.6 ng/L in the USA, 5.6–11 ng/L in Germany,
2.9–7.5 ng/L in Italy, 17.9 ng/L in Switzerland and 29–65 ng/L in Brazil [95,97,98]. Accord-
ing to reports, estrogenic activity in treatment plant effluent is deemed high enough to
cause issues with public health if it exceeds 15 ng/L [99]. Hence, there are no xenoestrogen
threats from the water treatment plant. However, it has been reported that As-Samra treat-
ment plant needs further improvements [100]. More about the concentration of estrogenic
activity in the surface water is found in a review [101].

The distribution of detected xenoestrogens sources in the open-source water is shown
in Figure 3. Still, agricultural resources are the main source of xenoestrogens with 58%.
The potential xenoestrogens in each site are summarized in Table 4; nonetheless, more
than 100 compounds remained unidentified in each sample. The number of detected
xenoestrogens was 12, 18, 23, and 30 for Almujeb, King Abdullah Canal, King Talal Dam,
and As-Samra treatment plant, respectively. According to the chemical structures of
xenoestrogens, 97% of them are aromatic with low water solubility. Only pregabalin is
the exception. Moreover, no xenoestrogens containing steroid rings were detected in the
samples, which implies there is no direct pollution from pharmaceutical drugs.

It is clear that Almujeb water has the least detected compounds and that may be
explained by the location, where the dam and collected water are far from human pollution,
such as heavy traffic and industrial areas [102]. Therefore, the estrogenic activity was below
the detection limit.

On the other hand, King Talal Dam has easy access to people and is located in a
crowded place surrounded by farms and agricultural areas. Furthermore, the dam retained
the treated wastewater processed in the As-Samra Wastewater Treatment Plant. Hence,
the pollutants from residents around the dam, the farms, and the treated wastewater
augment the pollution in King Talal Dam. This may explain the presence of herbicides,
pharmaceutical compounds, and natural products.

It has previously been claimed that some chemicals, such as phenolic compounds,
may be released from the pharmaceutical sector or other companies engaged and located
in King Talal Dam’s catchment area [103]. Moreover, it has been reported that more than
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100 organic compounds were detected using GC-MS at various concentrations in King Talal
Dam. The reported compounds fit well with our findings [103]. Furthermore, it has been
reported that King Talal Dam has alarming biological pollution [103].

In case of King Abdullah Canal, residents toss waste and trash into and around it, and
the presence of intermittent gatherings of migrant workers who live in the neighborhood
exacerbates the problem. The continuous dumping of waste and its accumulation may
explain the presence of such pollutants in the canal. Moreover, previous incidents of
contamination have been reported [29]. It has been reported that the water canal is not safe
for domestic use and needs further treatment, especially in the lower part of the canal [45].

A possible explanation for the low level of xenoestrogens in all samples is that the sam-
ple collections were conducted during the winter, which may dilute the xenoestrogens. In
addition, degradation, evaporation, and adsorption are potential mechanisms contributing
to lowering the activity of xenoestrogens [44].

Table 4. Detected xenoestrogens in open surface water.

Expected
Compound

As-
Samra

King Talal
Dam

Almujeb
Dam

King
Abdullah

Canal
Origin 3 Ref. 2 Chemical Structure 1

3 5 6-Trichloro-
2-pyridinol

(TCPy)
Yes Yes Yes Yes Pesticide [104]
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3.2.3. Drinking Water

Regarding drinking water, private stations have more purification systems with addi-
tional filters: sand filter, carbon filter, iron removal filter, and microfilter. In addition, the
stations perform sterilization using ultraviolet radiation. Hence, the potential estrogenicity
was low, below the detection limit of the YES assay (1 ng/L). However, several compounds
(potential xenoestrogens) were detected by LC-MS and identified by the MetaboScape
database (Table 5).

Despite estrogenic activity not being detected in drinking water using YES, the exis-
tence of xenoestrogen cannot be ruled out, because its concentration was below the YES
detection limit. More sensitive screening methods have recently been developed, which
can detect levels as low as 14.7 pg/L of estrogen equivalents [129]. Estrogenic-disrupting
substances have been found in drinking water all around the world [99], including the
USA [130], Germany [131,132], India [133,134], Italy [132], Sweden [54,135], France [132]



Toxics 2023, 11, 63 16 of 27

and Spain [136]. According to the Environmental Protection Agency (US-EPA), the estro-
genic risk is significant when the estrogenic activity is greater than 1 ng/L [137].

Detected xenoestrogens are listed in Table 5. It is anticipated that xenoestrogens will
originate from the several sources depicted in Figure 3. Agriculture was responsible for the
production of 67% of all xenoestrogens.

Table 5. Detected xenoestrogens in drinking water.

Expected Compound Origin 3 Ref. 2 Chemical Structure 1

Carvone Insect repellent [68]
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Carvone is a monoterpene compound that is widely used as an insecticide, fungicide,
antioxidant, and plant growth regulator [138]. For instance, it is currently used as a potato
germination inhibitor [139]. Carvone is easily volatilized, so it is not a persistent component
in soil or water. Furthermore, when exposed to light, the volatilized carvone will undergo
photochemical reactions [138]. This finding may question the source of untreated water
that is used in private stations.

Mercaptobenzothiazole, in addition to being utilized in pesticide manufacturing, is
also employed as a sulfur vulcanization accelerator in the synthesis of rubber plumbing
items such as gaskets and O-rings, which are essential parts of water networks [140]. Mer-
captobenzothiazole could therefore have reached drinking water through private station
pipelines during filtration or bottle packaging. Both (carvone and mercaptobenzothiazole)
have been detected in drinking water around the world [80,140,141].

The existence of pregabalin, which is used to treat neuropathic pain and convulsions,
remains unknown. Pregabalin was detected in all water samples; however, its half-life has
been reported to be 8 to 10 days in the aerobic environment [142], implying a potential
error in the detection experiment. The detection system employs four different identifi-
cation methods: mass accuracy, retention duration, diagnostic ions, and isotopic pattern.
Pregabalin only satisfied the retention time and mass accuracy detection requirements.
DL-2-aminooctanoic acid, also known as alpha-aminocaprylic acid, has the same molecular
weight (159.229) and chemical formula (C8H17NO2) as pregabalin (Figure 4). Hence, it has
identical MS data. According to FooDB (www.foodb.ca, accessed on 25 October 2022.),
DL-2-aminooctanoic acid has been identified in various foods, including chicken and cow
milk, and has been used as a potential biomarker for the consumption of these foods. As
a result, it is more likely that the pollutant came from food metabolites rather than the
anticonvulsant medicine, especially as DL-2-aminooctanoic acid is not found in the Meta-
boScape library. Although it is unlikely to have pregabalin in drinking water as explained
previously, it has been detected in several rivers around the world [143].
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The identification of xenoestrogen contaminants in the water does not always imply
direct estrogenic activity, because the mass spectrometry detects traces of xenoestrogens
and the estrogenic activity is concentration-dependent [144]. Although more than 700 xe-
noestrogens have been identified in drinking water [8], only 11 xenoestrogen are regulated
by the United States Environmental Protection Agency (USEPA) [8]. As such, scientists pay
attention to the fact that xenoestrogens are often found in the raw water that is used to make
drinking water, and calls are made for more government control and regulations [55,145].

3.2.4. Vegetables

The presence of xenoestrogens in vegetables has been previously reported [146]. Con-
sequently, vegetable samples were utilized to investigate the potential transfer of xenoe-
strogens from irrigation water to vegetables. Vegetable samples were not used in the
YES experiment because plants contain phytoestrogens, which are known to interact with
estrogen receptors [147]. Detected xenoestrogen in vegetables (tomato and cucumber) is
summarized in Table 6, which was also detected in open surface water. The majority of
vegetables are cultivated in the Jordan Valley, and farmers use the King Abdullah Canal
and King Talal Dam water for irrigation, so either the xenoestrogen in the canal water
contaminated the crops or the pesticides used by farmers contaminated both the crops and
the King Abdullah Canal. Agricultural resources are responsible for 67% of the xenoestro-
gens in vegetables, as illustrated in Figure 3. The other 23% may come from industrial
pollution during cultivation and shipping processes, as dibutyl phthalate was identified
in the samples. All detected xenoestrogens in vegetables samples were aromatic with low
water solubility Table 6.

The Ferula genus (Umbelliferae) contains the phytoestrogen ferutinin, which has a
modest estrogenic activity [148] and is native to Jordan [149]. Therefore, it was probably
the surrounding plants that allowed it to reach the crops. Moreover, ferutinin was detected
in all water samples (except drinking water).

Butylparaben—a preservative used in cosmetic products—is not prone to photodegra-
dation and is highly stable against sunlight; however, it is suitable for biodegradation and
sorption [150]. The expected source is direct contamination from the surrounding area, not
from water, as it was not detected in any water samples. Moreover, butylparaben has weak
estrogenic activity [150].

Dibutyl phthalate (DBP) is a plasticizer used to improve the flexibility of plastic prod-
ucts, specifically polyvinyl chloride, which is used in the synthesis of packaging/greenhouse
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films, wires, pipes, and all flooring materials [151]. Moreover, phthalate plasticizers are not
chemically bound to the polymer structure and have a high probability of being released
into the environment [152]. Hence, DBP may contaminate the crops directly during farming
(plastic greenhouse), cultivation (plastic pipelines), and shipping (plastic packaging). In
addition, there is another possible source that DBP came from water, as DBP was detected
in all surface samples from water used for irrigation. Dibutyl phthalate has moderate
estrogenic activity [153].

Alpha-zearalenol (α-ZEA) is a metabolite of mycotoxin zearalenone that is widespread,
particularly in pathogens (Fusarium species) of small grain cereals and corn, and might be
developed under poor storage conditions [154]. Furthermore, zearalenone is thermostable
and is not degraded by processing, such as milling, extrusion, storage, or heating [155].
Alpha-zearalenol is mainly formed in the liver and the small intestines of humans and ani-
mals. Therefore, it has been detected in animal body fluids such as milk and urine [155], and
has also been identified in foods worldwide, such as cow’s milk-based infant formula [156],
chicken heart [157], and fish meat [158]. Hence, the source of α-ZEA in vegetables mainly
came from animals such as cows and chickens. This theory is supported by the fact that
α-ZEA was detected in all open surface water samples. Alpha-zearalenol possesses 60 times
the estrogenic activity of zearalenone [159].

Ferimzone is a systemic pyrimidine fungicide and it has been detected in surface
water [160] and groundwater [161] worldwide, so the presence of ferimzone in samples
was due to the direct use on the vegetables. Ferimzone has weak estrogenic activity [117],
and it was detected in all surface waters.

Tebuconazole is an azole fungicide used in vegetables, citrus, and field crops [162].
Moreover, it has high photochemical stability, very slow photodegradation, and slow
microbial-mediated degradation in soil [163,164]. Tebuconazole was detected in drinking
water and groundwater [162,165]. Tebuconazole exhibits moderate estrogenic activity [166].
Direct application on the plant may the source of contamination in vegetables rather than
the irrigation water.

3,5,6-Trichloro-2-pyridinol (TCP) is a metabolite of chlorpyrifos [104], which is an
organophosphate insecticide. It has been reported that TCP can reach groundwater and
surface water, and its half-life in the soil can reach 120 days [167]. Therefore, the direct
application of TCP might be the source of contamination [142–144,153–167]. Moreover, it
has weak estrogenic activity, being 2500 times less estrogenic than 17β-estradiol [104].

Table 6. Detected xenoestrogens in vegetables.

Expected Compound Origin 3 Ref. 2 Chemical Structure 1

Ferutinin Natural product [75]
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1 Marvin Sketch was used to draw the chemical structures. 2 Citation describing the estrogenic activity of the
identified xenoestrogen. 3 Potential source of the xenoestrogen.

The source of xenoestrogens in the vegetable samples was predominantly from direct
interaction throughout the farming process (cultivation, irrigation, packing), and the source
of xenoestrogens discovered in water was most likely from agricultural resources rather
than the other way around. Traces of pesticides have previously been detected in Jordanian
fruit and vegetables [169,170]. Furthermore, some of these pesticides were also found in
water and soil. As a result, the necessity for proper training and enforcement of good
agricultural practices in the region was advised. Comprehensive pesticide monitoring
systems and frequent inspections were also highlighted [170].

4. Conclusions

Xenoestrogens are persistent, prevalent substances in the environment that accumulate
and may even be further activated by biotransformation, making them hazardous to animal
and human health. Xenoestrogens were detected in all water and vegetable samples,
including drinking water. However, the estrogenic activity was low and does not constitute
an immediate, acute health risk to the community, though there is a necessity to limit
the existence of such compounds in the water. The main source of xenoestrogens was
agricultural resources (pesticides, insecticides, fungicides). Therefore, proper training and
implementation of good agricultural practices should be established, and comprehensive
pesticide monitoring systems and frequent inspections should also be enforced. This
research may serve as a whistleblower on the estrogenic contamination in the Jordanian
water system.
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5. Limitations and Future Work

Six locations are insufficient to provide adequate data regarding xenoestrogen pollu-
tion in the Jordanian water system. The Ministry of Water and Irrigation restricted access
to water resources and barred the collection of samples freely. As a result, the number of
samples from each location was limited and restricted to certain sites. Furthermore, surface
water samples were collected and prepared at the ministry labs, and the samples were
subsequently analyzed in the university labs.

Future studies must be more comprehensive and include more samples from various
locations at each site. Even though there were more than 4000 compounds in the Meta-
boScape database, still there were many unidentified compounds in the samples. Hence,
future work might focus on specific families of xenoestrogens, where the xenoestrogens
could be quantified.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/toxics11010063/s1. Figure S1: The base peak chromatogram
for tap water samples from Irbid and Amman; Table S1: The complete spectrum list of (Dissect and
bbCID) for Irbid’s tap water sample; Table S2: The complete spectrum list of (Dissect and bbCID)
for Amman’s tap water. Supplementary Material S1: List of potential pharmaceutical pollutants
(including psychoactive substances) and their metabolites—a total of 1659 compounds. The list
includes the name and CAS number of each compound. Supplementary Material S2: List of potential
veterinary drug pollutants—a total of 206 compounds. The list includes the name and CAS number
of each compound. Supplementary Material S3: List of potential insecticides, pesticides, and herbi-
cides pollutants—a total of 1060 compounds. The list includes the name and CAS number of each
compound. Supplementary Material S4: List of potential xenoestrogens according to the literature—a
total of 75 compounds. The list includes the name, chemical formula, molecular weight, and CAS
number of each compound, as well as occurrence and use.
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