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Abstract: Constructed wetlands (CWs) are considered as low-cost and energy-efficient wastewater
treatment systems. Media selection is one of the essential technical keys for their implementation.
The purpose of this work was essentially to evaluate the removal efficiency of organic pollution
and nitrogen from municipal wastewater (MWW) using different selected media (gravel/gravel
amended with granulated cork) in mesocosm horizontal flow constructed wetlands (HFCWs). The
results showed that the highest chemical oxygen demand (COD) and ammonium nitrogen removal of
80.53% and 42%, respectively, were recorded in the units filled with gravel amended with cork. The
influence of macrophytes (Phragmites australis and Typha angustifolia) was studied and both species
showed steeper efficiencies. The system was operated under different hydraulic retention times
(HRTs) i.e., 6 h, 24 h, 30 h, and 48 h. The obtained results revealed that the COD removal efficiency
was significantly enhanced by up to 38% counter to the ammonium rates when HRT was increased
from 6 h to 48 h. Moreover, the removal efficiency of two endocrine-disrupting compounds (EDCs)
namely, bisphenol A (BPA) and diclofenac (DCF) was investigated in two selected HFCWs, at 48 h
HRT. The achieved results proved the high capacity of cork for BPA and DCF removal with the
removal rates of 90.95% and 89.66%, respectively. The results confirmed the role of these engineered
systems, especially for EDC removal, which should be further explored.

Keywords: wastewater treatment; constructed wetlands; endocrine-disrupting compounds; emerged
substrates; granulated cork

1. Introduction

Water pollution has always been among the foremost environmental concerns since it
directly affects human health. The World Health Organization (WHO) has declared the
existence of inadequate sanitation systems in many parts of the world, mainly in several
low- and middle-income countries [1]. In addition, wastewater treatment plant (WWTP) im-
plementation and maintenance are costly worldwide and are usually challenging due to the
footprint, facilities, energy consumption, personnel skills, and competences required [2,3].
In this sense, constructed wetland (CW) technologies are considered as an effective tool and
cost-effective nature-based solution that can effectively improve the water quality and pol-
lution treatment [4,5]. These systems possess a great potential for application in developing
countries, mainly in rural areas, as they are designed to operate with low investment and
maintenance costs with an ultimate fate in agricultural reuse [6,7]. Wastewater contains
a large amount of inorganic and organic pollutants. Nevertheless, endocrine-disrupting
compounds (EDCs) have recently raised scientific attention, revealing serious environmen-
tal issues worldwide [8]. These micropollutants caused a consequential environmental
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pollution affecting wildlife and public health due to their hormone-like behaviors and
critical carcinogenic properties [9,10]. More particularly, bisphenol A (BPA) and diclofenac
(DCF) have been widely detected in municipal secondary effluents [11–13]. According to
the U.S. Environmental Protection Agency (USEPA), more than one million pounds of BPA
are released annually in the environment [14] through industrial and municipal wastew-
aters contaminating surface water (0.001–92 mg/m3), groundwater (0.001–20 mg/m3),
and even more potable water [15,16]. Furthermore, DCF, a well-known anti-inflammatory
drug (NSAIDs), is one of the pharmaceuticals included in the commission implementing
decision (EU) on March 2015 watch list as it is highly detected in water matrices [17–19].
These micropollutants, if discharged directly without treatment, cause a potential safety
hazard to water sources, thus deepening the crisis of freshwater resources [20,21]. Con-
sidering the various harmful effects of EDCs, wastewater remediation systems involve
various treatment methods such as biological, physical, and chemical treatments. Some
of the reported methods for EDC removal from water include adsorption [22,23], nano-
materials [24], ozonation [25], biodegradation [26], and advanced oxidation processes
(AOPs) [27,28]. However, the biological persistence and physico-chemical characteristics of
these compounds have presented a few limitations for these technologies as the degradation
process fails to eliminate the non-organic EDC molecules and can potentially form different
by-product residuals. CWs appear as one of the most promising eco-tech treatment meth-
ods that encompass different removal processes (biological, chemical, and physical) [29,30].
The design of the CWs in either vertical flow (VFCW) or horizontal (HFCW) could play a
major role in wastewater treatment. VFCWs mostly rank next to HFCWs in performance,
except for the total nitrogen removal [31]. Studies evaluating and comparing different
types of the efficiency of CW systems on the removal of EDCs are still scarce. Nonetheless,
HFCW systems are a better option for EDC removal because the wastewater passage in
the system activates several mechanisms that promote their removal without the need
for effluent recirculation or system maintenance [32]. For example, studies about BPA
removal have achieved approximately 70–90% rates in pilot-scale HFCW systems based
on two parallel units. This system, when followed by a larger unit, presented an overall
removal of 85–99% [33]. DCF was classified as a fast-photodegradable compound that
could be removed under both anaerobic and aerobic conditions [33]. Ilyas [34] studied the
DCF removal efficiency in both HFCWs and VFCWs and the removal rates were around
56 ± 32% and 50 ± 17%, respectively. Substrate media selection is one of the essential
technical keys for the achievable process of CWs as it controls the environmental conditions
inside the porous spaces. Nevertheless, systems based on conventional substrates such
as gravel and sand may be confronted with several problems that negatively affect the re-
moval performance [35]. These issues present a real challenge to traditional substrates and
inspire the investigation and development of alternative emerged substrates in CWs [36].
Recent studies have reported the use of biochar and light expanded clay aggregates (LECA)
as emerged substrates with high removal efficiencies [37,38]. However, these materials
require high energy consumption for pyrolysis and manufacturing, and thus cannot be
used in large-scale environmental remediation due to their excessive cost and poor stabil-
ity [39]. On the other hand, cork presents an immense potential to be valued and applied
in wastewater treatment considering its chemical composition, cellular structure, and high
adsorption capacity. The world area of cork oak forests is about 2,306,000 ha, of which
37.5% is in North Africa and 90,423 ha in Tunisia, which makes granulated cork a low-cost
locally available material [40]. It is noteworthy to mention that few studies have shed light
on the remarkable characteristics of cork, and therefore data about the mode of action in
CW technologies is still scarce. Within this context, the current work aims to evaluate the
wastewater treatment in mesocosm-scale HFCWs and two representative EDCs removal
(i.e., BPA, DCF) with an emphasis on the effect of granulated cork as an emerged substrate.
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2. Materials and Methods
2.1. Influent Characteristics Used in This Study

The constructed wetland (CW) system was fed with urban domestic wastewater
arriving at EL MENZAH Wastewater Treatment Plant (WWTP) with GPS coordinates:
36◦49′59′′N, 10◦10′55′′E. Table 1 shows the main quality characteristics of the influent
wastewater compared to the reuse standards. To assess the removal of endocrine-disrupting
compounds (EDCs), bisphenol A (BPA) and diclofenac (DCF) were spiked into the wastew-
ater at a concentration of 20 µg L−1 to ensure their detection [41].

Table 1. Influent characteristics and water quality standards for wastewater reuse in agriculture. [42–44].

Influent

Standards for Agricultural Reuse

Tunisian Limits
(NT106.03)

European Union
Limits

WHO
(2006) Wastewater

Quality
for Agriculture

EPA (USA)

pH 7.8 ± 0.3 6.5–8.5 6–9.5 5.8–8.5 6–9

EC (µS /cm) 5600 ± 215 7000 n.r 4500 n.r

TSS (mg L−1) 269 ± 22.7 ≤30

A: ≤10
B: ≤35
C: ≤35
D: ≤35

Unrestricted <50
Restricted 50–100 ≤30

COD (mg L−1) 474.8 ± 29.48 ≤90 n.r n.r n.r

BOD5 (mg L−1) 230 ± 20 ≤30

A: ≤10
B: ≤25
C: ≤25
D: ≤25

n.r

For food crops:
≤10

Industrial crops:
≤30

NH4-N (mg L−1) 83.57 ± 2.95 n.r n.r n.r n.r

NO3-N (mg L−1) 0.95 ± 0.20 n.r n.r n.r n.r

Results of the influent characteristics are presented as the means ± standard deviations. Abbreviations: n.r: not
recorded—no data.

2.2. Mesocosm-Scale Constructed Wetlands Design

Six laboratory-scale HFCWs (i.e., H1FCW, H2FCW, H3FCW, H4FCW, H5FCW, H6FCW)
with the following dimensions (59 cm length × 39 cm width × 30 cm height), were de-
signed and constructed from polyethylene plastic and installed at EL MENZAH Wastewater
Treatment Plant (WWTP). Each HFCW system was evaluated in triplicate (Table 2). In
order to select the most appropriate substrate and plant species, the units were filled with
two types of substrate media (gravel and gravel amended with granulated cork) and were
planted with two species of macrophytes (Phragmites australis and Typha angustifolia), mostly
abundant in the valleys of Tunisia and commonly used in CW implementation as they
reduce wind speed, support sedimentation, and supply carbon for denitrification [45] using
six stems per wetland as follows: two units were planted with six plants of Phragmites
australis, two units with Typha angustifolia, and two unplanted used as the control units.
Details of the different configuration modes are reported in Table 2.

2.3. Experimental Scheme and Operation Mode

A schematic diagram of the laboratory scale of HFCWs is shown in Figure 1. The
different units of HFCWs (0.49 m) were filled with fine gravel (5–10 mm grain size) or
a mixture of fine gravel and granulated cork with grain sizes of 2.83 to 5 mm, in the
treatment zone, whereas 0.05 m in the inlet/outlet zones were filled with coarse gravel
(25–40 mm grain size). The inlet and outlet compartment design ensured water level control
and easy sampling. The inlet arrangement was comprised of a polyurethane pipe with a
10-mm diameter perforation, placed just above the substrate. The outlet arrangement was
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comprised of a 32-mm diameter perforated PVC pipe. The down applied saturation zone
was maintained by a siphon structure at the outlet.

Table 2. Main configurations of the horizontal flow constructed wetlands (HFCWs).

Unit Substrate Plant Volume (L)

H1FCW 100% Gravel Unplanted 21

H2FCW 75% Gravel + 25% Granulated Cork Unplanted 21

H3FCW 100% Gravel Phragmites australis 21

H4FCW 100% Gravel Typha angustifolia 21

H5FCW 75% Gravel + 25% Granulated Cork Phragmites australis 21

H6FCW 75% Gravel + 25% Granulated Cork Typha angustifolia 21
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Figure 1. Experimental scheme of the mesocosm horizontal flow constructed wetlands (HFCWs).

The experiments were carried out over a period of five months (150 days). Through
the adaptation period, the wetlands were fed with water for up to 30 days (50% of raw
wastewater and 50% of tap water) to establish the growth of plants and biofilm in the
media. After the adaptation period, the experimental systems were operated with 100%
raw wastewater by batch feeding mode at a hydraulic retention time (HRT) of 48 h for over
60 days. For experimental optimization, each HRT (i.e., 30 h, 24 h, 6 h) was also tested in all
configurations for 20 days.

2.4. Chemicals and Standards

All chemicals and reagents used were of analytical reagent grade. Diclofenac sodium
salt and bisphenol A of high purity grade (>99%) were purchased from Sigma-Aldrich
(Saint-Louis, MO, USA). Stock solutions of individual compounds were prepared in
methanol at 1 mg L−1 and kept at −18 ◦C. The silylation derivatization reagent N,O-bis
[trimethylsilyltrifluoroacetamide] with 1% trimethylchlorosilane (BSTFA 1% TMCS) was
obtained from Restek (Bellefonte, PA, USA). Supel-Select HLB SPE cartridges (200 mg/6 mL)
and 0.45 µm Whatman glass microfiber filters were purchased from Sigma-Aldrich
(Saint-Louis, MO, USA). HPLC grade ethyl acetate, methanol, and acetonitrile were pur-
chased from Sigma-Aldrich (Saint-Louis, MO, USA). Ultrapure water (Milli-Q) was pro-
duced by a Millipore apparatus (18.2 MΩ cm−1 resistivity).

2.5. Sampling and Conventional Parameters Analysis

Physico-chemical analyses were conducted weekly for the influent and effluent of the
different HFCWs. Chemical oxygen demand (COD), NH4-N, and NO3-N were measured
with Hach Lange test cells (LCK 400, 304, and 349, respectively, Düsseldorf, Germany) on a
spectrophotometer (DR 1900, Hach Lange/Dortmund, Germany). Electrolytic conductivity
(EC) and pH were determined by using a multi-parameter water quality meter (SensoDirect
150, Loviband/Dortmund, Germany).

2.6. Endocrine-Disrupting Compounds (EDCs) Analysis

BPA and DCF analyses were performed weekly using pre-cleaned amber bottles. To
separate the dissolved phase from the suspended solid matter (SSM), the water samples
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were directly filtered using 0.45 µm Whatman glass microfiber filters. Targeted EDC
residues in filtered water were extracted using solid phase extraction (SPE).

2.6.1. Solid Phase Extraction (SPE)

The analytical method, based on SPE extraction, was performed according to Ben
Sghaier [46] for the extraction/pre-concentration of EDCs in filtered water samples (500 mL)
using hydrophilic–lipophilic-balanced (HLB) copolymer SPE cartridges. Briefly, SPE car-
tridges were placed on a Vac Elut SPS 24 Manifold from Agilent Technologies and condi-
tioned sequentially with 3 mL of ethyl acetate/methanol (1/1, v/v), 3 mL of methanol, and
3 mL of ultrapure Millipore-Q water (pH = 2). The extraction of filtered water was achieved
at a flow rate of ~5 mL/min. Then, cartridges were washed with 3 mL of methanol–water
(2/3, v/v) and dried under vacuum for 1 h. Elution was proceeded with 9 mL of ethyl
acetate/acetone (1/1, v/v) at a flow rate of 1–2 mL/min. Extracts were evaporated until
dryness under a gentle stream of nitrogen and transferred into the GC injection vial by
solubilizing in 50 µL of acetonitrile. Finally, the derivatization reaction was performed at
65 ◦C for two hours by adding 50 µL of BSTFA + 1% TMCS and vortex-mixed for 1 min.
The derivatives were kept to room temperature for 15 min, prior to GC-MS analysis.

2.6.2. Chromatographic Analysis

The derivatized samples were analyzed in a GC-MS Shimadzu, model TQ8040 (Japan)
equipped with an automatic sampler Shimadzu AOC-20S (Japan). All injections in the GC
were performed in a volume of 1.0 µL. The injector was operated at 280 ◦C in splitless mode
and the chromatographic column was a Rxi-5MS (fused Silica) from Restek (Bellefonte,
USA), with 30 m long, 0.25 mm thick, and internally coated with a 0.25 µm thick film.
Carrier gas was helium with 99.999% purity with a flow rate of 1.0 mL/min. The GC
oven program started at 100 ◦C and was maintained for 2 min, then the temperature was
incremented at 5 ◦C per minute to reach 250 ◦C, then immediately incremented at 3 ◦C per
minute until it reached 300 ◦C where it was held for 2.33 min. Each targeted compound
was identified based on the retention time (RT) and the mass spectrum (m/z) from the
chromatogram of the standard solutions acquired in full scan (FS) mode. Finally, the quan-
titative analyses were conducted in selected ion monitoring mode (SIM). Peak integrations
were performed on the SIM chromatogram using Labsolutions software. The chemical for-
mula/structure, molecular weight, molecular mass of the derivative compounds, quantifier
ions (m/z), and correlation coefficient (R2) are given in Table 3.

Table 3. Chemical formula/structure, molecular weight, molecular mass of the derivative compounds,
quantifier ions (m/z), and correlation coefficient (R2) of the target EDCs.

Compounds Chemical Formula Chemical Structure Mw
(g mol−1)

Mw
-TMS Ions (m/z) R2

Bisphenol A (BPA) C15H16O2
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The endocrine disrupting compound (EDC) removal efficiencies were estimated as the
percentage change in concentration after treatment using the following equation:

EDC removal efficiency =
Ci−Ce

Ci
× 100 %

where Ci = EDC concentration in the influent and Ce = EDC concentration in the effluent.
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2.7. Microscopic Analysis of the Emerged Substrate

The granulated cork morphology was examined using a scanning electron microscope
(Thermoscientific Q 250) coupled with energy dispersive X-ray (SEM/EDX). The 3D images
of the observed surfaces are illustrated in the results.

2.8. Statistical Analysis

Statistical testing was performed using the STATISTICA 3 software (http://www.
statsoft.com, accessed on 10 September 2022) based on analysis of variance (ANOVA).
Means were compared by the Fishers least significant difference (LSD) test and differences
were considered statistically significant when p < 0.05. Three replicates per each pilot
were considered.

3. Results and Discussion
3.1. Cork Characterization

To better understand the cork’s morphological characteristics and their effect on
wastewater treatment, scanning electron microscope (SEM) and elemental analysis (EDX)
were conducted. Based on the SEM micrographs presented in Figure 2a, the cork showed
a unique microscopic feature compared to other lignocellulosic biomaterials with hollow
prismatic cells, presenting macropores with a diameter of about 30–40 µm (>50 nm accord-
ing to IUPAC). Additionally, no internal porosity was apparent. Dordio [47] showed that
the apparent porosity was fairly large through the inter-granule void space and the porous
cellular surface, which can absorb and remove considerable amounts of water. Pereira [48]
described the cork tissue as a compact foam with a regular honeycomb arrangement that
lacked intercellular voids. Regarding the cell type, this biological tissue is homogeneous,
with the cell rows parallel to each other with prism bases aligned in staggered positions.
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In terms of the elemental analysis, the EDX spectra depicted in Figure 2b showed the
predominance of carbon as the major component of granulated cork, representing different
hydrophobic biopolymers (suberin, lignin, and other extractives). Suberin is a polymeric
macromolecule of aliphatic nature that contains two types of monomers, glycerol and long
chain fatty acids and alcohols. These monomers present the structural component, and its
removal destroys the cell membrane integrity [48]. Unlike suberin, lignin is not specific to
cork, presenting the second most important structural cell component. On the other hand,
oxygen is the counterpart of carbon in the aliphatic chains of suberin and aromatic rings of
lignin. Impurities of Al Si, S, Cl, and Ca were also detected. These results agree with what
has been reported in previous studies by Dordio [47] and Pirozzi [49], which revealed the
cork potential based on its unique characteristics, allowing for “green”, sustainable, and
efficient procedures that are currently pertinent to the environmental concerns.

3.2. Chemical Oxygen Demand (COD) Removal Efficiency

During the study period, the COD average concentration recorded in the wastewater
influent was 474.8 ± 29.48 mg L−1. Its removal efficiency in the six constructed wetlands
(CWs) after 48 h is shown in Figure 3a. Significant differences (p < 0.05) were detected
between the six configurations for the COD removal. The highest COD removal was
attributed to the units filled with 75% gravel amended with 25% granulated cork (H5FCW
and H6FCW), with removal rates of 77.57 ± 5.09% and 80.53 ± 2.66%, respectively. These
rates were in harmony with several other publications reporting high COD removal in
CWs [50–52]. The lowest removal efficiency of 47.97 ± 3.24% was recorded in the un-
planted unit filled only with gravel (H1FCW). However, the COD removal efficiency of the
unplanted unit filled with gravel amended with cork (H2FCW) was significantly higher
than that of H1FCW with a removal rate of 54.87 ± 3.13%. These results indicate that the
removal capacity was remarkably promoted upon the utilization of cork as an emerged
substrate. Sanjrani [53] stated that the media matrix plays a major role in COD removal
efficiency as it can afford a good living condition for the development of microorganisms
on its surface area, so they can better achieve different processes such as the adsorption,
absorption, and degradation of water pollutants. Indeed, cork has a large specific sur-
face area and a good pore structure, which provides a suitable condition for microbial
growth [47]. On the other hand, the COD removal rate in the planted system (H3FCW)
exceeded 65%, while it was only 47.97 ± 3.24% in the unplanted unit (H1FCW). Several
studies comparing the COD removal efficiency of planted and unplanted systems have
revealed that planted CWs outperform unplanted CWs [54–56]. In addition, the study
carried out by Xu and Cui [57] showed that the substrate interception and adsorption of
organic compounds in planted systems were more extensive than those in the unplanted
systems. The successful COD removal can be attributed to the heterotrophic bacteria using
plant interposed dissolved oxygen to promote aerobic oxidation of organic matter [58].
However, the present study showed that H4FCW planted with Typha was slightly higher
(p > 0.05) than H3FCW planted with Phragmites, with removal rates of 69.07 ± 3.65% and
66.90 ± 3.94%, respectively. Similarly, Timotewos [59] showed a similar finding with three
macrophyte species and Typha angustifolia had a slightly better COD removal. Moreover,
other studies have reported small differences in the COD removal between ten beds planted
with five different macrophytes species. These authors showed that the average COD ef-
fluent concentration was 26 ± 18 mg L−1 in the Cyperus parirus CW, 27 mg L−1 ± 13 in
the Vetiveria zizanoides CW, and the lowest value of 25 mg L−1 ± 13 was detected in the
Phragmites australis CW [60].
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Figure 3. (a) COD efficiency removal in different mesocosm horizontal flow constructed wetlands
(HFCWs) after 48 h. (b) Hydraulic retention time effect on the COD removal.

As shown in Figure 3b, the COD removal rate in the system filled with granulated
cork (H5FCW) exceeded 60% at 24 h, while it was only 46.67% in H3FCW. An accretion
of approximately 38% was observed as the HRT increased from 6 h to 48 h in the H5FCW
unit. It was obvious that the HFCW performance depends on the contact period between
the system and the wastewater, particularly when HRT was lower than 24 h, especially
in the planted systems where the maximum COD removal rates were obtained earlier.
For example, the planted unit (H6FCW) with Typha angustifolia and filled with gravel
amended with cork displayed a COD removal accretion by only 10% upon the HRT
increase from 24 h to 48 h. A study conducted by Abed [61] stated that a HRT of 24 h
was sufficient for pollution removal from wastewater using the vegetation and media
activities. To reach higher COD removal rates (around 91.9%), the HRT must be increased
to above 8 days [62]. In contrast, Ballestros [63] showed that increasing the HRT higher
than 8 days did not considerably increase the efficiency anymore and would require large-
sized CWs. Furthermore, Vymazal [64] showed that excessive retention periods will have
adverse effects. In this study, in all the CWs systems, the higher HRT of 2 days reported a
higher COD removal and maintained the stability of the treatment efficiency during the
experimental period.

3.3. Nitrogen Removal Efficiency

Overall, as for the results of COD removal, the planted units filled with granulated
cork contributed to the best enhanced ammonium reduction by 42 ± 4% and 37 ± 3% for
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H5FCW and H6FCW, respectively. However, the results of units filled only with gravel
indicated lower removal efficiency percentages after 48 h (Figure 4a). The lowest removal
rate of 27 ± 0.95% attributed to the unit filled only with gravel (H1FCW) was greater
than previous studies by Xu [65], reaching 19% for gravel-based CWs. On the other hand,
these rates were lower than those reported by Nguyen [66], reaching 85% and using a
biochar amendment known for its high nitrogen removal rates. However, biochar presents
some disadvantages, principally its lower surface area aside from its loss of activity, which
makes it unsuitable for large-scale remediation [37]. The addition of granulated cork
significantly boosted the ammonium removal as it effectively improved the porosity within
the CWs [67]. Hence, a high rate of oxygen diffusion within the system was increased,
entailing an abundant aerobic zone for the growth and reproduction of nitrifying bacteria
and achieving an efficient nitrification process. Compared to the COD removal rates, the
ammonium removal efficiencies were lower. This particular result was observed in most of
the CW systems [66,68].
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Figure 4. (a) Ammonium removal rates in different mesocosm HFCWs after 48 h. (b) Hydraulic
retention time effect on ammonium removal.

HRT plays an important role as it affects the contact duration between pollutants and
microbes [69]. The removal rates of the different systems continued to increase significantly
with the HRT increase (from 6 h until 48 h). The average NH4-N removal in the unplanted
unit H1FCW filled only with gravel was linearly increased by 10% at 6 h, 13% at 24 h, and
26% at 48 h HRT. On the other hand, the NH4-N removal at H2FCW, H3FCW, H4FCW,
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H5FCW, and H6FCW outlet recorded an average between 32% and 42% at 48 h HRT
(Figure 4b).

Moreover, the ammonium nitrogen removal rate was not stable in all systems. Hence,
the ammonium removal required some time to become balanced. In the current study,
the ammonium removal in each system increased with the hydraulic retention time. The
average removal efficiency of ammonium in the planted units was always higher than
the unplanted ones. The results also showed significant differences (p < 0.05) between
systems in ammonium removal due to the macrophyte species. Carrasco-Acosta [70] and
Kraiem [52] reported the multiple effects that macrophytes may have on nutrient removal
as it improves the hydraulic conductivity, enhances the biofilm development, and then
influences the microbial activity by transferring the oxygen from the atmosphere to the
substrate and ensuring enhanced aeration of the bed. Otherwise, the roots can provide
adhesion and oxygenation to microbes [71]. Phragmites australis CWs provided the lowest
concentration and the highest removal rate. This can be attributed to the development of
the Phragmites australis root system in comparison with Typha angustifolia, which increased
the oxygenation rate in the media, favoring the activity of ammonia-oxidizing bacteria [72].
Kraiem [52] reported that the macrophyte species had a significant effect on NH4-N removal
efficiency, which was higher in CWs planted with Phragmites australis than in CWs planted
with Typha angustifolia. Indeed, these authors indicated that the dry weight of the Phragmites
australis roots was higher than that of Typha angustifolia.

In this study, the influent showed an average nitrate nitrogen (NO3-N) concentration
of 0.95 ± 0.20 mg L−1. The HFCW effluents were higher than the influent (Figure 5). The
NO3-N concentration was significantly lower (p < 0.05) in effluents of H6FCW amended
with gravel and cork than in H4FCW filled only with gravel. These results may be explained
by the effect of the addition of cork, offering a rich carbon source that can significantly
induce the full occurrence of the nitrification process. More specifically, it could have
played a role as a supplementary carbon source, promoting the reduction of NO3- and
producing N2 by denitrifying bacteria [58].
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Figure 5. Nitrogen concentration in different mesocosm HFCWs (HRT = 48 h).

3.4. Investigated Endocrine-Disrupting Chemicals Removal Efficiency

To assess the endocrine-disrupting compound (EDC) removal efficiency, bisphenol
A (BPA) and diclofenac (DCF) were selected as representative compounds. Among the
efficient CW systems for COD and nitrogen removal, H6FCW planted with Typha angustifolia
and filled with gravel amended with granulated cork was compared to the unit planted
with the same macrophyte species and filled only with gravel (H4FCW) for the media
effect evaluation. EDC removal performances of the selected CWs are shown in Table 4.
It is noteworthy to mention that several studies found higher removal efficiencies in
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planted CWs compared to unplanted filters, as the rhizosphere of these aquatic plants host
the bacteria involved in pollutant biodegradation [73,74]. Furthermore, Typha has been
promoted as it shows a strong capability of remediating pharmaceuticals and personal care
products (PPCPs) that has been proven, despite the fact that the effectiveness depends on
the physical and chemical properties of the contaminants concerned [75]. BPA and DCF
were selected for this investigation, as they are frequently detected in wastewaters with
influent concentrations detected at 54.47 ± 0.35 µg L−1 and 6.35± 0.57 µg L−1, respectively.
The H6FCW filled with gravel amended with cork significantly showed the highest BPA
removal rates (p < 0.05) of around 90.95 ± 0.37% versus 63.58 ± 0.62% for H4FCW. These
results suggest that the following new and valuable insights by using granulated cork
as a media substrate could lead to highly effective and stable long-term BPA removal by
CWs. The elimination achieved for BPA in this study is in accordance with that reported
by Avila [76] using gravel based-CWs under anaerobic conditions (85 and 99%). These
authors indicated that BPA removal could be associated with sorption onto organic matter
and biodegradation. Toro-Vélez [77] showed BPA removal rates around 73.3 ± 19% in the
horizontal subsurface flow CW filled with gravel and cultivated with different macrophyte
species Heliconia psittacorum, which was higher than H4FCW filled with the same media
but remained lower than the rates reached by H6FCW amended with granulated cork. On
the other hand, Papaevangelou [78] also investigated the BPA removal efficiency in pilot-
scale horizontal subsurface flow CWs filled with gravel and obtained average removals
of 49.6% in units planted with Phragmites australis and 50% in CWs planted with Typha
latifolia, which was lower than that found in this study. Furthermore, a study conducted by
Carranza-Diaz [79] showed the lowest removal rates in horizontal CWs, around 5–15%.

Table 4. Concentrations of the target EDCs recorded in the influent and effluent and their removal
efficiency in the selected constructed wetlands.

Target EDCs Concentration Average EDCs Removal Rates %

Spiked
Influent (µg L−1)

H4FCW Effluent
(µg L−1)

H6FCW Effluent
(µg L−1) H4FCW H6FCW

Bisphenol A (BPA) 74.47 ± 0.35 27.12 ± 0.43 6.74 ± 0.62 63.58 ± 0.62 90.95 ± 0.37

Diclofenac (DCF) 26.35 ± 0.57 9.35 ± 0.48 2.72 ± 0.53 64.52 ± 0.38 89.66 ± 0.16

On the other hand, the DCF removal efficiencies showed similar rates to the BPA
results with the highest and most significant removal rates (p < 0.05) dedicated to H6FCW
with 89.66 ± 0.16% versus 64.52 ± 0.38%. Ilyas and van Hullebusch [80] showed that
the DCF removal efficiency in HFCWs filled with gravel amended with sand was around
39 ± 24%, which was lower than that found in this study. Zhang [81] investigated the
ability of tropical horizontal subsurface CWs filled with gravel and planted with Typha
angustifolia to remove the pharmaceutical compounds. DCF removal efficiency in the
planted units ranged from 47.5 to 55.4% compared to that of the unplanted units that
ranged between 41.1 and 46.7%. Furthermore, Zhang [82] illustrated that photodegradation,
biodegradation, and plant uptake were the fundamental removal mechanisms for EDC
removal in CWs. Thus, DCF was classified by Mathon [83] as a fast-photodegradable
compound. Granulated cork is considered as an emerged substrate utilized in CWs. It has
been shown to be capable of significantly retaining even some organic pollutants such as
some pesticides [84]. Furthermore, granulated cork has been used to remove ibuprofen,
carbamazepine, and clofibric acid, showing a good sorption ability [85]. However, the cork
capacity of BPA and DCF removal in CWs have still not been widely investigated and
highlighted. Therefore, this part could be regarded as the main novelty of this work in
comparison with previous studies.



Toxics 2023, 11, 81 12 of 16

4. Conclusions

In the present work, wastewater treatment by six mesocosm horizontal flow con-
structed wetlands (HFCWs) filled only with gravel or gravel amended with granulated
cork was investigated. The results revealed that the planted HFCWs outperformed the
unplanted ones and both macrophyte species Phragmites australis and Typha angustifolia
showed steeper efficiencies. On the other hand, the systems amended with granulated cork
achieved a higher COD after 24 h. However, ammonium nitrogen and nitrate nitrogen
needed more contact time to be removed. Among the efficient CW systems for COD and
nitrogen removal, two systems planted with Typha chosen as the cattail species were tested
and confirmed for its potential EDC removal efficiency. Two systems were compared,
from one part (H6FCW) filled with gravel amended with granulated cork that showed
higher COD and nitrogen removal and from the second part (H4FCW) filled only with
gravel, in order to investigate the media effect on two representative endocrine-disrupting
compounds (EDCs), namely bisphenol A (BPA) and diclofenac (DCF). The results showed
a high removal efficiency for both pollutants with removal rates of 90.95 ± 0.37% and
89.66 ± 0.16%, for BPA and DCF, respectively. In summary, cork can be used as a novel
adsorbent of micropollutants, as it presents different advantages unlike other adsorbents,
with no pretreatment required. Further tests can be widened to evaluate the optimal dose
of amended granulated cork in a real full-scale.
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