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Abstract: Strontium is a common radionuclide in radioactive waste, and its release into the envi-
ronment can cause enormous damage to the ecosystem environment. In this study, the natural
mineral allophane was selected as the substrate to prepare solidified ceramic products by cold press-
ing/sintering to solve the problem of the final disposal of radioactive strontium. Ceramic solidified
products with various crystal structures were successfully prepared, and the microscopic morphology
and energy-dispersive spectroscopy images of the samples showed a uniform distribution of Sr in the
solidified products. Sr2Al2SiO7 and SrAl2Si2O8, which can stably solidify strontium, were formed
in the solidified products, and the structural characteristics and stability of the above-mentioned
substances were analyzed from the perspective of quantum chemical calculations using density func-
tional theory. The calculation results showed that the overall deformation resistance of Sr2Al2SiO7

was higher than that of SrAl2Si2O8. Considering the isomorphic substitution effect of CaO im-
purities, we inferred that a mixed-crystalline structure of Ca2−xSrxAl2SiO7 may be present in the
solidified products.

Keywords: solidification; DFT calculation; Sr; allophane

1. Introduction

Nuclear energy is a crucial high-quality energy source, and its development provides
a new impetus for the progress of human society. However, nuclear energy production
inevitably generates hazardous radioactive waste, posing substantial environmental and
biological risks. Thus, it must be treated safely and effectively [1]. The radionuclide 90Sr,
characterized by radiotoxicity, high heat generation, and a long half-life of 28.8 years, is a β-
emitter generated by uranium and plutonium fission reactions in nuclear reactors [2–4]. As
an alkaline-earth cation with chemical properties similar to calcium, 90Sr easily accumulates
in human bones [5,6]. 90Y, a daughter nuclide of 90Sr, produces high-energy β particles that
can damage the bone marrow. Therefore, considering environmental protection and human
health, the safe disposal of 90Sr from radioactive waste is valuable to a great extent [7].

Stabilization and solidification are considered the most promising technologies for ra-
dionuclide management [8,9]. In addition to traditional glass and cement solidification, 90Sr
solidification primarily focuses on geopolymer and ceramic solidifications. Geopolymers
are amorphous inorganic binder materials that are usually composed of SiO4 and AlO4
tetrahedra and can be prepared from solid wastes, such as fly ash, metakaolin, and slags
via alkali activation at ambient temperature [10–12]. These materials can be considered
precursors to zeolites with different affinities toward various ions. Notably, the Si/Al ratio
is the controlling factor affecting the adsorption ability of geopolymers [13–16]. In the
field of radioactive waste immobilization, geopolymers that outperform Portland cement
can be prepared by changing the precursor materials and activators [15]. The absorbed
waste elements can be further converted into stable ceramic-phase components, thereby
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increasing the difficulty of ion leaching by strengthening chemical bonds. The ceramic so-
lidification approach has received extensive research attention due to its excellent chemical
stability, radiation stability, and leaching resistance [17]. At the atomic scale, radioactive
elements can enter the lattice structure of ceramic matrix materials, thereby forming a
safer immobilization barrier than in glass [18]. At present, various ceramic materials, such
as phosphates, aluminosilicates, titanates, zirconates, and vanadates [7,17–20], have been
extensively studied as matrices for immobilizing radioactive wastes through methods, such
as cold pressing/sintering, microwave sintering, and spark plasma sintering [21–24].

As inorganic polymers, aluminosilicates have layered and skeletal crystal structures
that endow them with high specific surface areas. These materials can achieve the selective
adsorption of multiple ions through a molecular sieve mechanism; that is, certain ion
sizes can enter the cavities, pores, and channels formed by the aluminosilicate framework.
Allophane is a short-range order aluminosilicate and an affordable material for obtaining
solid-state matrices based on aluminosilicate ceramics. It is primarily found in volcanic
ash soil, and the basic structure of its skeleton comprises Al(OH)3 and SiO4 [25]. The
special frame structure of allophane confers good radiation resistance stability and the
ability to capture gases [26]. Owing to these advantages, it is one of the most promising
materials for metal-ion removal and immobilization. Our group previously treated a
mixture of allophane and cesium secondary waste at high temperatures, resulting in the
breakdown of the allophane framework and the formation of stable crystalline phases that
encapsulate cesium [27,28]. Excellent leaching resistance and mechanical properties are
the main characteristics of the prepared solidified ceramic bodies. However, systematic
studies on the application of allophane for the immobilization of highly radioactive 90Sr
have rarely been reported.

The use of density functional theory (DFT) to study the binding behavior of metal
ions in lattice-defect structures and lattices can enable a deeper understanding of the
solidification structures and bonding mechanisms at the molecular level. The lattice param-
eters, structural stability, mechanical properties, thermo-physical properties, and electronic
structure of different materials have been extensively studied through DFT experiments
to evaluate their comprehensive properties [29–34]. However, few studies have been con-
ducted on the immobilization mechanism of Sr in high-temperature ceramics. Considering
the stability and advantages of capturing Sr in ceramic matrices, it is important to explore
the immobilization mechanism of solidified ceramic products at the molecular level.

In this study, the natural mineral allophane was used to synthesize solidified Sr
ceramic products through cold pressing/sintering. The performance and mechanism of
the allophane on Sr were explored, and the structural characteristics and stability of the
sintered products were analyzed from the perspective of quantum chemical calculations
using DFT.

2. Materials and Methods
2.1. Materials

Nonradioactive 87Sr was used in all samples instead of radioactive 90Sr. Analytical-
reagent-grade strontium nitrate (Sr(NO3)2) was purchased from Sinopharm Chemical
Reagent Co. Ltd., China. Allophane (1–2SiO2·Al2O3·5–6H2O), with an average particle
size of 5.9 µm, was obtained from Hattori Company, Ltd., Japan. The smaller particle size
ensured a larger specific surface area, which was conducive to improving the adsorption
capacity of metal ions. The surface morphology and main components of the allophane
used as matrices are shown in Figure 1.

2.2. Preparation of Solidified Products

The solidified product was prepared as follows: Allophane and Sr(NO3)2 were uni-
formly mixed in various mass ratios. Then, the uniform mixture was ground into a fine
powder and molded into a disk via the cold pressing method using hydraulic pressure
tablets under 4 kN with a holding time of 6 min. The resulting 10 mm diameter molded
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discs were placed in a muffle furnace for sintering at specific temperatures and a heating
rate of 10 ◦C/min for 1 h.
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Figure 1. SEM images (left) and principal compositions of natural allophanes (right).

2.3. Characterization

Scanning electron microscopy and energy-dispersive spectrometry (SEM and EDS,
Mira 3, TESCAN ORSAY HOLDING a.s., Brno, Czech Republic) were used to measure
the surface morphology and elemental distribution of the solidified products. The mass
fractions of each element in the samples before and after sintering were determined using
an X-ray fluorescence spectrometer (XRF-1800, Shimadzu Corporation, Kyoto, Japan). The
crystal structures of the samples were examined using powder X-ray diffraction (XRD)
spectroscopy (D8 ADVANCED DAVINCI, Bruker Corporation, Karlsruhe, Germany).

2.4. DFT Calculation

DFT is a classical quantum mechanical modeling method for calculating and predict-
ing the electronic properties of crystal structures with high precision. It has been used
extensively in computational research on ceramic materials. This method calculates the en-
ergy of the system as a function of electron density without solving the complex many-body
Schrodinger equation, thereby significantly simplifying the calculation. In this study, DFT
calculations were performed to analyze the crystal structure and mechanical properties of
the solidified ceramic products. The gain and loss of electrons and chemical bond types of
the Sr atoms were also studied to analyze the chemical stability of the solidified products.
All calculations in this study were carried out based on the DFT method using the Vienna
ab initio simulation package (VASP). Electron exchange and related energy were computed
using the projector augmented wave (PAW) method with the Perdew–Burke–Ernzerhof gen-
eralized gradient approximation (PBE-GGA) function [35,36]. The Brillouin zone sampling
was performed using a Gamma grid. The cut-off energy was set to 400 eV, as confirmed by
the convergence test, and the force convergence of the structural optimization was set to be
lower than 0.02 eV/Å.

3. Results and Discussion
3.1. Characterization and Self-Sintering Behavior of Allophane

Self-sintering experiments were performed on the allophanes at different tempera-
tures. The XRD patterns of allophanes with different sintering temperatures are shown
in Figure 2. No obvious diffraction peaks were observed in the XRD patterns of fresh
allophane, indicating that allophane was an amorphous substance. Two weak diffraction
peaks were observed at 26.6◦ and 28◦, which may be attributed to the spherical shell struc-
ture of allophane, comprising silica and alumina, characterized by short-range ordering.
When the sintering temperature was lower than 1000 ◦C, wide and diffuse peaks were
observed in the XRD pattern, suggesting no mineral-phase transformation or crystal-phase
substance formation under these experimental conditions. After sintering at 1200 ◦C, the
main crystal phases in the self-sintering products of allophane were primarily transformed
into two phases, namely, mullite (Al6Si2O13) and cristobalite (SiO2). The increase in the
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sintering temperature may have caused the Si–O–Si and Si–O–Al bonds to break and
the allophane framework to collapse. The decomposition products Al2O3 and SiO2 with
high chemical reaction activity also recrystallize at high temperatures to yield a mullite
crystal phase [26,37]. The content of the cristobalite crystal phase was relatively low, and
the cristobalite phase may be attributed to the high-temperature calcination of excessive
SiO2 [38]. Moreover, the volume reduction rate of the sintered solidified body increased
from 20.6% to 52.2% with increased sintering temperature from 700 ◦C to 1000 ◦C. This
phenomenon has benefited waste minimization and improved economic efficiency. Hence,
the formation of stable crystalline phases and good volume reduction rates indicate that
allophane has excellent self-sintering properties, making it a potential matrix material for
the solidification of radionuclide ceramics.
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Figure 2. XRD patterns of allophanes sintered at different temperatures.

3.2. Sr Immobilization Ratio and Solidification

Figure 3 shows the Sr immobilization ratios obtained via XRF for various mixtures of
Sr(NO3)2–allophane sintered at 600–1200 ◦C, with a gradual increase in Sr content from
10wt% to 20 wt%, the immobilization ratio of Sr remained at approximately 100% at all
sintering temperatures. This finding indicates that allophane can be effectively used for the
immobilization treatment of Sr.
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Figure 3. Sr immobilization ratios at different sintering temperatures.

XRD was used to study the crystal phases of the sintered products and to understand
the immobilization mechanism of Sr. Figure 4 shows the XRD patterns of various mixtures
of Sr(NO3)2–allophane sintered at 1200 ◦C. The crystal structure of the solidified products
changed after sintering. When the Sr content was 1 wt%, no obvious crystal phase of Sr
was detected in the solidified product; it had primarily mullite and cristobalite crystal
phases. Thus, the self-sintering behavior of allophane dominated the immobilization when
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the Sr content was low. When the Sr content ranged from 5 wt% to 30 wt%, in addition to
the mullite phase, strontium feldspar (SrAl2Si2O8) and strontium aluminum silicate oxide
(Sr2Al2SiO7) crystal phases that can stably solidify Sr also formed in the solidified product.
With increasing Sr content in the solidified product, the proportion of the mullite phase
gradually decreased and that of Sr2Al2SiO7 gradually increased; however, the proportion
of SrAl2Si2O8 initially increased and then decreased. This finding may be related to the
value of Si/Al in the solidified product. The deflection of the diffraction peaks can also be
observed in the solidified products with different compositions. According to the Scherrer
formula, the decreased interplanar spacing led to an increased diffraction angle, indicating
that the crystal-phase structure of the solidification products changed to a certain extent.
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Figure 4. XRD patterns of solidified products at 1200 ◦C.

The surface morphologies and main elemental compositions of the solidified products
after sintering at 1200 ◦C are shown in Figure 5. The surface of the solidified product
appeared to melt and transform into a ceramic phase, and a non-uniform porous surface
was formed. Si, Al, and Sr were detected and uniformly distributed on the surface of the
solidified product, indicating that well-crystallized phases containing Sr were produced,
which is consistent with the XRD results.

Toxics 2023, 11, x  6 of 15 
 

 

 
Figure 5. (A) SEM images and (B) EDS mapping of solidified product. 

3.3. Calculation of Elastic Properties of Solidified Product 
Sr was primarily immobilized in the solidified product in the form of SrAl2Si2O8 and 

Sr2Al2SiO7. Therefore, the Young’s modulus, shear modulus, and other parameters of the 
two phases were simulated and calculated using DFT to analyze the change in mechanical 
properties of the solidified product with increased Sr content. The crystal-structure pa-
rameters of SrAl2Si2O8 and Sr2Al2SiO7 after optimization are listed in Table 1, and the struc-
tures of SrAl2Si2O8 and Sr2Al2SiO7 are shown in Figure 6. The calculated elastic-tensor pa-
rameters of the two crystals after optimizing the cell structure are listed in Table 2. 

Table 1. The cell parameters of SrAl2Si2O8 and Sr2Al2SiO7 after optimization. 

Crystal Crystal System Space Group 
Lattice Parameter 

a (Å) b (Å) c (Å) α β γ 
SrAl2Si2O8 Monoclinic C2/c 9.385 9.385 9.650 81.056° 81.056° 74.481° 
Sr2Al2SiO7 Triclinic P1 7.837 5.264 7.848 90.231° 90.000° 90.000° 

 
Figure 6. Structures of (A) SrAl2Si2O8 and (B) Sr2Al2SiO7 after optimization. 

  

Figure 5. (A) SEM images and (B) EDS mapping of solidified product.



Toxics 2023, 11, 850 6 of 13

3.3. Calculation of Elastic Properties of Solidified Product

Sr was primarily immobilized in the solidified product in the form of SrAl2Si2O8
and Sr2Al2SiO7. Therefore, the Young’s modulus, shear modulus, and other parameters
of the two phases were simulated and calculated using DFT to analyze the change in
mechanical properties of the solidified product with increased Sr content. The crystal-
structure parameters of SrAl2Si2O8 and Sr2Al2SiO7 after optimization are listed in Table 1,
and the structures of SrAl2Si2O8 and Sr2Al2SiO7 are shown in Figure 6. The calculated
elastic-tensor parameters of the two crystals after optimizing the cell structure are listed in
Table 2.

Table 1. The cell parameters of SrAl2Si2O8 and Sr2Al2SiO7 after optimization.

Crystal Crystal System Space Group
Lattice Parameter

a (Å) b (Å) c (Å) α β γ

SrAl2Si2O8 Monoclinic C2/c 9.385 9.385 9.650 81.056◦ 81.056◦ 74.481◦

Sr2Al2SiO7 Triclinic P1 7.837 5.264 7.848 90.231◦ 90.000◦ 90.000◦
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Table 2. The stiffness tensor parameters of SrAl2Si2O8 and Sr2Al2SiO7 after optimization.

Crystal Stiffness Tensor Cij/GPa

SrAl2Si2O8

C11 C12 C13 C15 C22 C23 C25
154.742 43.414 72.793 13.905 187.346 52.2 −16.89

C33 C35 C44 C46 C55 C66
129.94 −0.01 14.429 9.931 45.872 13.305

Sr2Al2SiO7

C11 C12 C13 C14 C15 C16 C22
193.271 63.599 78.3 1.878 0 0 160.477

C23 C24 C25 C26 C33 C34 C35
62.674 0.001 0 0 191.154 −1.141 0

C36 C44 C45 C46 C55 C56 C66
0 46.079 0 0 68.894 −0.546 45.721

In general, the hardness of a material increases with an increase in Young’s modulus
(E). Conversely, a smaller shear modulus (G) corresponds to more easily formed dislocation
slips, causing the material to become ductile [36]. The bulk modulus (B) of polycrystalline
crystals was used to measure the relationship between the bulk strain and the average
stress of the crystal. The bulk modulus decreased with an increase in the crystal volume.
The bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio ν were evaluated
using the Voigt–Reuss–Hill approximation (Equations (1)–(3)) [36].

BV = 1
9 (C11 + C22 + C33) +

2
9 (C12 + C13 + C23)

BR = 1
(S11+S22+S33)+2(S12+S13+S23)

(1)
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GV =
1

15
(C11 + C22 + C33 − C12 − C13 − C23) +

1
5
(C44 + C55 + C66)

GR =
15

4(S11 + S22 + S33)− 4(S12 + S13 + S23) + 3(S44 + S55 + S66)
(2)

B =
BV + BR

2
, G =

GV + GR
2

,

E =
9BG

3B + G
, ν =

3B − E
6B

(3)

where Cij and Sij represent the elastic constant and elastic compliance, respectively.
The anisotropy indices of the bulk and shear moduli can be expressed using the

following formula [39]:

AB =
BV − BR
BV + BR

, AG =
GV − GR
GV + GR

(4)

The calculated bulk, shear, and Young’s moduli of the SrAl2Si2O8 and Sr2Al2SiO7
polycrystals are shown in Figure 7. The results showed that the overall anti-deformation
ability of Sr2Al2SiO7 was better than that of SrAl2Si2O8. Moreover, a larger value of A
corresponds to greater anisotropy of the system, whereas when A is equal to zero, it is
completely isotropic [36]. The anisotropy percentages of the bulk and shear moduli of
Sr2Al2SiO7 are close to 0, further indicating that this crystalline phase is isotropic. By
contrast, SrAl2Si2O8 showed obvious anisotropy.
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Figure 7. Elastic modulus and the anisotropy of SrAl2Si2O8 and Sr2Al2SiO7.

To observe the anisotropy property more clearly, the three-dimensional distributions
of Young’s modulus and shear modulus were obtained through further calculation [40], and
the results are displayed in Figures 8 and 9, respectively. The closer the three-dimensional
figure was to a spherical shape, the more isotropic the system. Obviously, SrAl2Si2O8 was
more anisotropic than Sr2Al2SiO7 in terms of Young’s modulus and shear modulus.
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3.4. Simulation and Calculation of Sr/Ca Mixed-Crystal Structures

Given that allophane contains some CaO impurities, considering the isomorphism
substitution, a Sr-Ca mixed-crystal phase may have existed in the solidified product after
sintering. According to the doping levels of different Ca atoms, the XRD patterns of
Ca1−xSrxAl2Si2O8 and Ca2−xSrxAl2SiO7 after optimization are shown in Figure 10A,B. As
shown in Figure 10A, for the Sr/Ca mixed-crystal structure of SrAl2Si2O8 (simulated), an
obvious diffraction peak was observed at 2θ = 6.8◦ with a change in the Ca/Sr ratio. The
intensity of the diffraction peak increased as the Ca/Sr approached one. The XRD pattern
of the experimental test revealed no obvious diffraction peak at 2θ = 6.8◦. Therefore, we
speculated that no mixed-crystal formation of Ca1−xSrxAl2Si2O8 occurred.
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Figure 10. Comparison of experimental and simulated XRD patterns: (A) SrAl2Si2O8 and
Ca1−xSrxAl2Si2O8, and (B) Sr2Al2SiO7 and Ca2−xSrxAl2SiO7. (Green column: 2θ = 6.8◦; pink column:
2θ = 11.38◦; red column: 2θ = 16.12◦ and 17.38◦).

As shown in Figure 10B, unlike SrAl2Si2O8, obvious diffraction peaks were observed
at 2θ = 11.38◦, 16.12◦, and 17.38◦ in the XRD patterns of Sr2Al2SiO7 (experimental) and
Ca2−xSrxAl2SiO7 (simulated). This finding suggested that a mixed-crystal structure of
Ca2−xSrxAl2SiO7 formed in the sintered solidified product. The mechanical properties
of the Ca2−xSrxAl2SiO7 mixed crystals that appeared in the experiment were calculated,
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and the elastic moduli are shown in Figure 11A. With increased Sr content, the bulk
modulus, Young’s modulus, and shear modulus of the polycrystal showed a downward
trend, indicating that adding Sr caused a deterioration in mechanical properties. According
to the Pugh criterion, the ratio of B/G was generally 1.75 as the boundary ratio between
ductility and brittleness. These results confirmed that the brittle crystal transformed into a
ductile one with increased Sr content, as shown in Figure 11B.
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Figure 11. (A) Elastic modulus and (B) Pugh’s ratio of Ca2−xSrxAl2SiO7.

3.5. Analysis of Electron Localization Function (ELF)

The degree of electron localization at different locations in a three-dimensional real
space can be expressed by the ELF, with a value ranging from 0 to 1, which quantitatively
characterizes the degree of electron localization. A closer ELF value to 1 corresponds to a
stronger localization of electrons in this region and greater difficulty for electrons to escape.
Issues, such as charge-transfer bonds, metallic bonds, and hydrogen bonds, have been
extensively studied using ELF [41]. Figure 12 shows the three-dimensional ELF diagrams of
SrAl2Si2O8 obtained via VESTA as well as the two-dimensional ELF diagrams in sections of
3.24 and 9.72 Å away from the setting plane in the direction of the (0 1 0) crystal plane. The
ELF values near the Sr and O atoms were relatively high, indicating that the localization of
electrons near the two atoms was relatively strong.
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Moreover, the Sr atoms were contracted at the side that was neighboring the O atoms,
and the same contraction of ELF was also observed at the O atom in Figure 12B,C [42].
Thus, Sr and O were most likely to combine with each other in the form of ionic bonds.
Figure 13A shows the three-dimensional ELF diagrams of Sr2Al2SiO7, and the four Sr atoms
in the crystal lattice are marked in Figure 13B–E. Similar to SrAl2Si2O8, the localization of
electrons around the Sr and O atoms was relatively high. Therefore, we inferred that Sr
and O also combined with each other in the form of ionic bonds in the Sr2Al2SiO7 crystal.
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3.6. Comparison of Different Sr-Containing Ceramic Solidified Products

The selection of mineral substrates is currently the primary issue in the preparation
and research of Sr-containing solidified products. In this study, three typical Sr-containing
ceramic solidified products, Sr0.5Zr2(PO4)3, SrTiO3, and SrZrO3, were selected, and the
bond energy and mechanical properties of Sr in different mineral phases were calculated
using VASP and compared with those of SrAl2Si2O8 and Sr2Al2SiO7. Then, the chemical
stabilities and mechanical properties of the solidified products were evaluated. The Sr bond
energies in the different mineral phases are shown in Figure 14, and the elastic moduli of the
different mineral phases are shown in Figure 15A. The Sr bond energies of SrAl2Si2O8 and
Sr2Al2SiO7 were higher than those of the other three mineral phases, i.e., 11.6 and 12.1 eV,
respectively. This order of magnitude is higher than that of Sr0.5Zr2(PO4)3 with apatite
structures and SrZrO3 with zirconium-based perovskite structures. This finding indicates
good chemical stability in the solidified product containing Sr produced in this study.
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Figure 14. Bond energies of Sr in different mineral phases.
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The bulk modulus B, shear modulus G, and Young’s modulus E of several Sr-containing
mineral phases all exhibited the following trend: SrTiO3 > Sr0.5Zr2(PO4)3 > Sr2Al2SiO7 >
SrAl2Si2O8 > SrZrO3. Among these mineral phases, SrTiO3 exhibited the best mechanical
properties, whereas SrZrO3 exhibited the worst. The proportions of Sr2Al2SiO7, SrAl2Si2O8,
and mullite in the solidified product changed continuously with increased Sr content. The
formation of the mullite crystal phase can lead to enhanced hardness and modulus in the
solidified product [28]. Therefore, a decrease in the mullite proportion may be the main
reason for the decline in the mechanical properties of the solidified product. Therefore,
to increase the mechanical properties of the solidified product, the content of allophane
during the immobilization of Sr should be appropriately increased. The Pugh’s ratio
in Figure 15B also shows that only SrTiO3 had partial brittleness, and the other ceramic
solidified products had a certain ductility.

4. Conclusions

The immobilization performance of the natural mineral allophane on the heat-generated
nuclide strontium was investigated through ceramic solidification. Stable crystals called
Sr2Al2SiO7 and SrAl2Si2O8 were formed in the solidified products after sintering at 1200 ◦C.
These crystalline materials enabled the effective immobilization of strontium, and the
immobilization ratio reached 100%. DFT simulations further revealed the structural charac-
teristics and stabilities of the sintered products. The increased strontium content caused a
transition from brittle to ductile crystal. From the ELF diagrams, we inferred that Sr and
O are highly likely to be bonded to each other through ionic bonds in the two crystals
mentioned above. Moreover, the Sr bond energies of SrAl2Si2O8 and Sr2Al2SiO7 were 11.6
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and 12.1 eV, respectively, higher than those of the other three common mineral phases.
These results indicate that the natural mineral allophane is promising for the final disposal
of strontium.
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