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Abstract: (1) Introduction: Epigenetic changes have been proposed as a biologic link between in-utero
exposure to maternal smoking and health outcomes. Therefore, we examined if in-utero exposure
to maternal smoking was associated with infant DNA methylation (DNAm) of cytosine-phosphate-
guanine dinucleotides (CpG sites) in the arginine vasopressin receptor 1A AVPR1a gene. The AVPR1a
gene encodes a receptor that interacts with the arginine vasopressin hormone and may influence
physiological stress regulation, blood pressure, and child development. (2) Methods: Fifty-two
infants were included in this cohort study. Multivariable linear models were used to examine the
effect of in-utero exposure to maternal smoking on the mean DNAm of CpG sites located at AVPR1a.
(3) Results: After adjusting the model for substance use, infants with in-utero exposure to maternal
smoking had a reduction in DNAm at AVPR1a CpG sites by −0.02 (95% CI −0.03, −0.01) at one
month of age. In conclusion, in-utero exposure to tobacco smoke can lead to differential patterns
of DNAm of AVPR1a among infants. Conclusions: Future studies are needed to identify how gene
expression in response to early environmental exposures contributes to health outcomes.

Keywords: maternal smoking; epigenetics; AVPR1a; DNA methylation

1. Introduction

Increased morbidity and mortality related to cigarette smoking is well documented in
the extant literature. Despite being the number one preventable cause of death and disease
in the United States (US), an estimated 47.1 million adults were currently smoking in 2020
and in 2019, and rates of smoking during pregnancy ranged from 1.1% in California to 23.0%
in West Virginia [1–5]. The effects of in-utero exposure to nicotine, one of the thousands
of chemicals contained in tobacco smoke, have been extensively studied due to its ability
to cross the placental barrier [6,7]. Studies have demonstrated that poor fetal and infant
growth, low birth weight, and preterm birth are associated with in-utero exposure to tobacco
smoke [8–11]. A recent study observed in-utero exposure to tobacco smoke is associated with a
blunted stress response [12]. Additionally, individuals with in-utero exposure are more likely
to have high blood pressure than their unexposed peers [13–17]. Despite this evidence, the
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mechanisms of risk are not well understood. As a result, studies have begun to examine the
epigenetic effects of in-utero exposure to nicotine, using an epigenome-wide approach. These
studies have identified unique DNA methylation (DNAm) patterns among individuals with
in-utero exposure to nicotine [18]. Prior epigenome-wide association studies (EWAS) have
been successful in identifying cytosine-phosphate-guanine dinucleotides (CpG sites) and genes
of interest [18]. Candidate gene studies can complement the use of epigenome-wide studies by
providing a concentrated analysis of regulatory sites within potentially relevant genes. These
analyses can help explicate potential epigenetic mechanisms that link environmental exposures
to health and developmental outcomes.

Exposure to nicotine is associated with the release of arginine vasopressin (AVP), a
neuroendocrine hormone that causes contraction of peripheral blood vessels by interacting
with its receptor and arginine vasopressin receptor 1A (AVPR1a) [19,20]. Few candidate gene
studies have examined if in-utero exposure to tobacco smoke influences DNAm of the AVPR1a
gene. This gene is located on chromosome 12q14.2 and encodes the receptors for AVP [21,22].

Nicotine and cotinine easily cross the placental barrier and have been shown to
maintain higher fetal concentrations than maternal concentrations [23]. Nicotine binds
to and activates nicotinic acetylcholine receptors (nACHRs) [24], which are present in
individuals as early as four weeks of gestation [25]. As a result, maternal smoking can have
physiological effects in the fetus. Generally, AVP functions to maintain homeostasis of the
hypothalamic–pituitary (HPA) axis by releasing adrenocorticotropic hormones (ACTH), in
turn leading to the stimulation of corticotropin-releasing hormones (CRH), which stimulate
the release of cortisol [20,26]. Animal studies have demonstrated that exposure to nicotine
can activate the HPA axis by increasing levels of corticosterone and ACTH [27]. In human
studies, nicotine is associated with increased cortisol levels [28]. In a recent observational
study, it was demonstrated that in-utero exposure to maternal smoking was associated with
a blunted stress response, which suggests that in-utero exposure can lead to infant HPA
dysregulation [12]. Additionally, studies have posited that in-utero exposure is related to
fetal programming of an infant’s HPA axis, potentially leading to increased risk of metabolic
health conditions, such as high blood pressure and diabetes mellitus [12,29,30].

Epigenetic changes have been proposed as a biologic link between maternal exposures
and offspring outcomes [31,32]. Maternal and infant physiologic changes in response to
nicotine exposure have motivated several studies to examine if exposure to tobacco smoking
induces epigenetic changes in offspring, specifically DNAm levels. Numerous studies have
identified epigenetic changes among individuals who were exposed to maternal smoking
during fetal development [33–35]. It is postulated that these epigenetic effects are related to
an increased risk of poor birth outcomes and long-term health effects [36]. Epigenome-wide
studies of DNA methylation in offspring have identified multiple CpG sites associated
with maternal smoking [18]. Examination of the epigenetic effects of in-utero exposure to
maternal smoking can help elucidate how exposure leads to poor health outcomes observed
in previous studies. Expression of AVPR1a may function as a mediator in the relationship
of maternal smoking and child health due to its important role in maintaining homeostasis
in the HPA axis, blood pressure regulation, and child development [20,26,37]. However,
AVPR1a has not reached genome-wide significance in prior EWAS studies. The objective
of this study was to take a targeted gene approach and examine if in-utero exposure to
maternal smoking was associated with infant DNAm patterns of CpG sites in AVPR1a.
Prior work demonstrates that tobacco smoke exposure is associated with hypertension in
adults [38] and other work indicates that prenatal tobacco smoke exposure is associated
with dysregulation of the HPA axis [30], risk of metabolic syndrome, and [36] overall
differential DNAm patterns compared to unexposed infants [39]. Thus, we hypothesized
that we would observe differential DNAm patterns between groups.

2. Methods

Children born from December 2015 to October 2016, along with their mothers, partic-
ipating in the Pregnancy and Infant Development (PRIDE) study [40], were included in
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this longitudinal cohort study. Briefly, this cohort included 53 mother–child dyads who
were recruited from Every Child Succeeds, a home visiting program serving women in
greater Cincinnati, Ohio. Participants for this pilot wave of the PRIDE study were selected
exclusively from Hamilton County, Ohio. Home visitors referred an estimated 30% of
eligible mothers (n = 75) to the PRIDE study, where 91% (n = 68) expressed interest in
enrolling in the study. After screening for eligibility, 56 mothers were enrolled and a total of
53 mothers completed both the prenatal and postnatal study visits. Mothers were eligible
for the PRIDE study if they were at least 18 years old, spoke English, and were between 12-
and 35-weeks of gestation at the time of enrollment.

Maternal demographics were collected in-person on a demographic form and included
age, race, education, and income. Smoking, illicit substance use, and pregnancy complica-
tions were also obtained via self-report. These items were collected at the postnatal visit,
and the question used for the current study was as follows: “At any time during your
pregnancy did you smoke cigarettes?” The amount and frequency of cigarette smoking
was not collected. This study was reviewed and approved by the Cincinnati Children’s
Hospital Medical Center Institutional Review board (IRB#2015-5583) and was performed
in accordance with the Declaration of Helsinki. All participants gave informed consent
following IRB guidelines.

2.1. DNA Methylation

Buccal sample collection and DNAm measurements for this study have been pre-
viously described [40]. Briefly, buccal samples from infants at one month of age were
collected by trained study staff. A total of 10 samples were collected by swabbing the inner
cheek of each infant with a sponge from the DNAGenotek OGR-250 kits (Ottawa, ON,
Canada), with five swabs for DNA collection and five to estimate cell type heterogeneity.
The Genomics, Epigenomics, and Sequencing Core at the University of Cincinnati assayed
each sample for DNA methylation at over 850,000 CpG sites using the Illumina Infinium
Methylation Epic Bead Chip (San Diego, CA, USA).

2.2. Array Processing and Quality Control

The Methylation Epic Bead Chip microarray was used to measure DNA methylation
intensity at approximately 850 000 CpG sites. The raw DNAm data were processed and
analyzed with the R package minfi version 1.26.2 [41,42]. Sample-level quality control
methods included Illumina controls, kernel density plots of beta values, and predicted sex
checks. The array quality was examined using ewastools package version 1.5. At the CpG
probe level, sites were excluded if they had a detection p value > 0.01, small bead count (<3)
in at least 5% of the samples, or located at SNPs with a minor allele frequency ≥5%. Probes
that were known to have non-specific cross-hybridization with other regions or were on
sex chromosomes were also excluded.

The normal–exponential with out-of-band probes (noob) within-array approach was
used to normalize the intensity data and to perform dye bias adjustment [41,43]. The
Enmix package was used for probe type I and type II adjustment [44]. The β values
(0 = unmethylated, 1 = fully methylated) and M values (logit transformation of methylation
percentage) were derived using normalized intensities. The processed methylation data
were filtered to include only CpG sites on the microarray that were within the AVPR1a
gene. Two of the 10 CpG sites associated with the AVPR1a gene were excluded during the
quality control process, leaving 8 sites for analysis in this study.

2.3. Statistical Analysis

We examined maternal and infant characteristics of our study sample using descriptive
analyses. Bivariate associations between smoking and maternal and infant characteristics
were examined using Pearson and Fisher’s exact and Chi-square tests where appropriate.
Using simple and multivariable linear models, we examined the effect of in-utero exposure
to maternal smoking on infant DNAm at one month of age. To reduce the multiple testing
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burden, we averaged the percent of methylation (beta values) of all eight sites included
in this study. Next, we transformed the DNAm beta value to an M-Value (log2 ratio of
methylation percentage), as the statistical properties of M-values are preferred to beta
values [45], to use as the main outcome in the statistical models for p values. Maternal and
infant characteristics potentially associated with smoking (preterm birth, race/ethnicity,
breastfed at least one time during delivery hospitalization, and drug use during pregnancy)
were explored as potential confounders to include in the adjusted model. Covariates with p
values of 0.05 or less were retained and not in the potential causal pathway.

In a secondary analysis, the association between maternal smoking and the infant
DNA methylation level of each individual CpG site was examined, using the M-values
to determine statistical significance and percent methylation (beta values) to aid in the
interpretation. The p values were corrected for multiple testing using the false discovery
rate controlled at 5%. All statistical analyses were completed in SAS 9.4.

3. Results

A total of 53 mother–infant dyads were included in this study, with approximately 19%
who reported smoking during pregnancy. One dyad was excluded due to sex mismatch.
In total, ~100% of the cell types from saliva samples were epithelial cells; therefore, we
did not need to correct for cell types in statistical models. Maternal age in our sample
ranged from 18 to 34 years old, with a mean maternal age of 22 years old. Almost 98% of
the mothers in our study were low income (defined as 200% below federal poverty level)
and 96% were insured by Medicaid at the time of delivery. Approximately 33% reported
their race as white and 65% black. When examining the association of maternal and infant
characteristics with smoking, we observed mothers who smoked during pregnancy were
more likely to use illicit substances and give birth preterm and less likely to breastfeed their
infants at least one time (Table 1).

Table 1. Study Population Characteristics.

Non-Smoker
(N = 42)

Smoker
(N = 10)

p
Value

N (%) N (%)

Age 0.3
18–20 20 (47.6) 2 (20.0)
21–24 17 (40.5) 6 (60.0)
25–34 5 (11.9) 2 (20.0)

Substance Use 0.04
No 40 (95.2) 7 (70.0)
Yes 2 (4.8) 3 (30.0)

Race
Non-White 30 (71.4) 5 (50.0) 0.26

White 12 (28.6) 5 (50.0)
Low Income

No 1 (2.6) 0 (0.0) 1
Yes 38 (97.4) 10 (100.0)

Education 0.5
Bachelor’s Degree 1(2.4) 0 (0)

GED 2 (4.8) 2 (20.0)
High School Diploma 27 (64.3) 6 (60.0)

Some College or
2 yr. degree 8 (19.1) 1 (10.0)

Some High School 2 (4.8) 1 (10.0)
Technical or Trade School 2 (4.8) 0 (0.0)

Breastfed 0.05
No 3 (7.3) 3 (37.5)
Yes 38 (92.7) 5 (62.5)
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Table 1. Cont.

Non-Smoker
(N = 42)

Smoker
(N = 10)

p
Value

N (%) N (%)

Infant Sex
Female 22 (52.4) 6 (60.0) 0.74
Male 20 (47.6) 4 (40.0)

Preterm Birth 0.02
No 39 (92.9) 6 (60.0)
Yes 3 (7.1) 4 (40.0)

Medicaid 1
No 2 (5.0) 0 (0.0)
Yes 38 (95.0) 10 (100.0)

Abbreviations: GED—General Educational Diploma.

The average percent methylation of the eight AVPR1a CpG sites included in this study
of infants born to mothers who did not smoke was 0.15, and the mean DNAm among
infants born to mothers who smoked during pregnancy was slightly lower at 0.13. In
a linear model adjusted for maternal substance use, at one month of age, infants with
in-utero exposure to maternal smoking had a significant reduction in DNAm at AVPR1a
CpG sites by −0.02 ((95% CI −0.03, −0.01) p < 0.0001). While preterm birth and the lack of
breastfeeding were significantly associated with maternal smoking, we did not adjust for
these as they are potential mediators.

Individual CpG Sites DNAm

In the secondary analysis, we examined the association of exposure to maternal
smoking in-utero and the DNAm of each CpG site included in this study. Maternal smoking
was associated with lower DNAm at CpG12807275, CpG04827692, and CpG09208611. After
correcting for multiple testing, all three sites remained significant (FDR < 0.05, Table 2).
Using the UCSC Genome Browser, we determined two of these CpG sites are located
within the 1st exon (CpG04827692, CpG09208611) and one site is located within the body
of AVPR1a (CpG12807275) [46].

Table 2. DNAm (beta-value) of CpG sites within AVPR1a and Association with Maternal Smoking.

Maternal
Smoking DNAm

by CpG Site

Adjusted Model
Coefficient *

(95% CI)
p Value ** Bonferroni FDR Location CPG Enhancer

cpg12807275 −0.12
(−0.19, −0.05) 0.00 0.01 0.01 Body N_Shore No

cpg04827692 −0.04
(−0.06, −0.01) 0.01 0.03 0.01 1stExon Island No

cpg16668728 −0.00
(−0.01, 0.01) 0.72 1.00 0.81 1stExon Island Yes

cpg16352140 −0.00
(−0.01, 0.01) 0.40 1.00 0.53 1stExon Island Yes

cpg24501701 −0.00
(−0.02, 0.01) 0.81 1.00 0.81 1stExon Island Yes

cpg26727693 −0.01
(−0.02, 0.01) 0.29 1.00 0.47 1stExon Island Yes

cpg09208611 −0.01
(−0.02, −0.00) 0.00 0.03 0.01 1stExon Island Yes

cpg10906284 −0.00
(−0.01, 0.00) 0.13 0.65 0.26 1stExon Island Yes

Abbreviations: DNAm–DNA methylation; CpG-cytosine-phosphate-guanine dinucleotides: FDR—false discovery
rate. Model adjusted for substance use, * DNAm beta-value as the outcome, ** from model with DNAm m-value
as the outcome.
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4. Conclusions

The epigenome is remodeled numerous times during developmental events, such as
germ cell specification and differentiation. During remodeling events, the epigenome is
particularly vulnerable to environmental insults, such as exposure to chemicals like nicotine.
Exposures during this critical period of development and remodeling can lead to changes
in the epigenome which could potentially result in long-term health consequences. For
example, studies have demonstrated that in-utero maternal smoking exposure exerts effects
on infant DNAm at birth and can be observed throughout an individual’s lifespan [47,48].
In this study, we examined the relationship between in-utero exposure to maternal smoking
and the DNAm of CpG sites within the AVPR1a gene. At one month of age, infants with in-
utero exposure to maternal smoking had lower mean DNAm of the CpG sites in this study
when compared to unexposed infants. This suggests that in-utero exposure to chemicals
contained in tobacco cigarettes, such as nicotine, can lead to changes to the epigenome
which may manifest as changes in DNAm. Understanding epigenetic changes in response
to early life exposures will help elucidate disease processes and extend our understanding
of how maternal health and behavior can transmit health risk in their offspring. AVPR1a
codes for AVP receptor proteins and has been associated with blood pressure regulation
in prior studies [49]. Prior studies have demonstrated that in-utero exposure to maternal
smoking is associated with higher blood pressure and an increased risk of hypertension
from early childhood through adulthood [13–16]. Furthermore, mouse models have shown
exposure to nicotine during fetal development has been found to affect cardiovascular
and renal development [50]. In our study, we observed differential DNAm by exposure to
in-utero maternal smoking in the average DNAm of CpG sites. When examining individual
CpG sites, three remained significant after adjustment for multiple testing (CpG12807275,
CpG04827692, and CpG09208611).

Strengths of this study include using a candidate gene approach and longitudinal
assessments to examine the effect of in-utero exposure on the DNAm of CpG sites of the
AVPR1a gene. Our cohort included an at-risk population of low-income women enrolled
in a regional home visiting program. Methods used to examine array quality and the
transformation of the DNAm beta value to an M-Value are also strengths. However, results
should be interpreted with acknowledgement of important limitations, such as self-reported
smoking status and lack of data on number of cigarettes smoked or the timing of when
smoking occurred during pregnancy. A prior EWAS study of infant DNAm reported
smoking intensity and duration influence DNAm [51]; however, due to limitations of the
data we collected, we were not able to examine how these factors would contribute to our
study’s findings. This study was also limited by a small sample size, and we did not have
adequate power to examine the effect of child sex and other factors that may influence our
results. Furthermore, prenatal medication use may affect DNAm patterns [52], but we did
not obtain information on medications that mothers may have been taking during their
pregnancies. Therefore, future studies are needed to replicate the findings from our study
using larger cohorts, more detailed maternal assessments, and biochemical verification of
prenatal smoke exposure.

In conclusion, results from this study provide further support that early life exposures
are associated with changes in the epigenome. Early life exposure to smoking is a complex
and persistent public health problem in the United States and globally. Due to the mounting
evidence that prenatal tobacco smoke exposure leads to global poor health outcomes,
prevention efforts are urgently needed. Future studies are needed to identify how gene
expression in response to early environmental exposures contributes to health outcomes,
including how gene expression of AVPR1a contributes to cardiovascular outcomes, such as
high blood pressure. Results from such studies have the potential to lead to screening and
prevention services among high-risk populations, such as mother–child dyads enrolled in
home visiting with the goal of improving maternal and child health outcomes.
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