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Abstract: Exposure to opioids can lead to the alteration of several neurotransmitters. Among these
neurotransmitters, glutamate is thought to be involved in opioid dependence. Glutamate neuro-
transmission is mainly regulated by astrocytic glutamate transporters such as glutamate transporter
1 (GLT-1) and cystine/glutamate antiporter (xCT). Our laboratory has shown that exposure to lower
doses of hydrocodone reduced the expression of xCT in the nucleus accumbens (NAc) and the
hippocampus. In the present study, we investigated the effects of chronic exposure to hydrocodone,
and tested ceftriaxone as a GLT-1 upregulator in mesocorticolimbic brain regions such as the NAc,
the amygdala (AMY), and the dorsomedial prefrontal cortex (dmPFC). Eight-week-old male mice
were divided into three groups: (1) the saline vehicle control group; (2) the hydrocodone group; and
(3) the hydrocodone + ceftriaxone group. Mice were injected with hydrocodone (10 mg/kg, i.p.) or
saline for 14 days. On day seven, the hydrocodone/ceftriaxone group was injected with ceftriaxone
(200 mg/kg, i.p.) for last seven days. Chronic exposure to hydrocodone reduced the expression
of GLT-1, xCT, protein kinase B (AKT), extracellular signal-regulated kinases (ERK), and c-Jun N-
terminal Kinase (JNK) in NAc, AMY, and dmPFC. However, hydrocodone exposure increased the
expression of G-protein-coupled metabotropic glutamate receptors (mGluR5) in the NAc, AMY, and
dmPFC. Importantly, ceftriaxone treatment normalized the expression of mGluR5, GLT-1, and xCT
in all these brain regions, except for xCT in the AMY. Importantly, ceftriaxone treatment attenuated
hydrocodone-induced downregulation of signaling pathways such as AKT, ERK, and JNK expression
in the NAc, AMY, and dmPFC. These findings demonstrate that ceftriaxone has potential therapeutic
effects in reversing hydrocodone-induced downregulation of GLT-1 and xCT in selected reward brain
regions, and this might be mediated through the downstream kinase signaling pathways such as
AKT, ERK, and JNK.
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1. Introduction

Opioid use disorder (OUD) has been considered as a major health issue in the United
States [1]. Opioids are commonly used to treat chronic pain; however, their misuses are
associated with the development of dependence, and overdose leading to deaths. There are
several classes of opioids, and hydrocodone is considered a semi-synthetic opioid, which is
widely used in the management of chronic pain associated with surgery procedures and
musculoskeletal injuries [2]. Hydrocodone exerts its analgesic effect by activating the mu-
opioid receptor, a G-protein coupled receptors (GPCR), which can inhibit the production of
cyclic adenosine monophosphate (cAMP) leading to the activation of a G-protein-gated
inwardly rectifying potassium channel (GIRK) [3]. Furthermore, opioids dysregulate sev-
eral neurotransmitters, including glutamate [4]. Indeed, the activation of opioid receptors
(mainly mu receptor) induced release of glutamate in the nucleus accumbens (NAc) core,
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and this effect was mainly observed in astrocytes [5], which highly express the major
glutamate transporter type 1 (GLT-1) and the cystine/glutamate antiporter (xCT) [6–9].

Glutamate homeostasis is dysregulated by exposure to substances of abuse, including
alcohol, nicotine, cocaine, and methamphetamine, and this effect has been associated with
the downregulation of GLT-1 expression in several reward brain regions such as the NAc,
dorsomedial prefrontal cortex (dmPFC), amygdala (AMY), and hippocampus [10–15]. In
addition, xCT was also found to be downregulated during NAc exposure to substances
of abuse such as cocaine, alcohol, and nicotine [16–19]. Importantly, chronic exposure to
opioids alters glutamate transport and glutamate clearance. For example, chronic exposure
to morphine downregulated several glutamate transporters, including GLT-1 [20,21]; this
might be associated with an increase in extracellular glutamate concentrations in the
brain [20,22]. Regarding xCT, a study from our laboratory showed that hydrocodone
administered at a lower dose decreased the expression of this protein in the NAc and
hippocampus in an animal model of conditioned place preference (CPP) [23]. Importantly,
ceftriaxone, a beta-lactam antibiotic known to upregulate GLT-1 and xCT [9,24], was shown
to attenuate the effect of hydrocodone-induced downregulation in xCT in these brain
regions [23]. These studies and others clearly demonstrate that chronic exposure to drugs
of abuse downregulated the expression of GLT-1 and xCT and increased extracellular
glutamate concentrations in the central reward brain regions, and CEF and other beta-
lactams have the potential to attenuate these effects.

In this study, we investigated the effects of chronic exposure to a higher dose of
hydrocodone (10 mg/kg) on the expression of GLT-1 and xCT in certain central reward
brain regions such as the NAc, AMY, and dmPFC. Importantly, we determined whether
ceftriaxone treatment would normalize the expression of these glutamate transporters.
We further investigated whether chronic exposure to hydrocodone affects the expression
of mGluR5, and determined whether ceftriaxone would attenuate this effect. Finally, we
aimed to investigate the signaling pathways involved in hydrocodone-induced changes
in GLT-1 and xCT expression. We focused on the expression of signaling pathways such
as ERK, JNK, and Akt since some of these kinases are suggested to be involved in the
regulatory effect of ceftriaxone in GLT-1 expression in the brain [25–27].

2. Materials and Methods
2.1. Animal

Male C57BL/6 mice (Jackson Laboratory, 25–30 g, 8 weeks of age, n = 7) were used
in this study. This study tested a total of 21 male mice. Mice were housed in a room that
was maintained at 21 ◦C on a 12/12 h light/dark cycle. Mice had free access to water and
food. All experimental procedures were approved by the Institutional Animal Care and
Use Committee (IACUC), University of Toledo. This is in accordance with the guidelines
set by the National Institutes of Health for the use of animals in research as described in
the Guide for the Care and Use of Laboratory Animals under approved protocol number
400155 (2 August 2022), The University of Toledo.

2.2. Drugs and Dosing

Male mice were handled three days before starting the experiment for acclimation.
Mice were then divided into three groups: (1) saline group, mice were intraperitoneal
(i.p.) injected with saline vehicle from day 1–14 (n = 7); (2) hydrocodone group, mice were
i.p. injected hydrocodone (10 mg/kg) from day 1–14 (n = 7); and (3) hydrocodone + cef-
triaxone group, mice were i.p. injected hydrocodone (10 mg/kg) from day 1–14, and
ceftriaxone (200 mg/kg) was i.p. injected from day 7–14 (n = 7) (Figure 1). Hydrocodone
(Sigma-Aldrich, St. Louis, MO, USA) was dissolved in saline at 10 mg/kg. Ceftriaxone was
purchased from (Pfizer, Lake Forest, IL, USA) and was dissolved in saline at 200 mg/kg.
Note that equal volumes of saline (control group) and hydrocodone (10 mg/kg, i.p., hy-
drocodone group) were injected from day 1 through 14; ceftriaxone (200 mg/kg, i.p.) was
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administered from day 7 through 14 for the ceftriaxone/hydrocodone group. Mice were
euthanized on day 15 by CO2 inhalation as approved by UT-IACUC (Figure 1).
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2.3. Brain Tissue Extraction

Animals were euthanized by CO2 inhalation after 7 h of fasting on day 15. Fasting
was applied for further study, which aims to investigate potential changes in liver tissues.
For the present study, brains were isolated and frozen immediately on dry ice and stored at
−80 ◦C. NAc (core and shell), dmPFC (cingulate cortex and prelimbic cortex), HIP (cornu
ammonis, CA, subfield: CA1, CA2, and CA3), and AMY (central amygdala, basomedial
amygdala and basolateral amygdala) were extracted using a cryostat machine (Leica
CM1950). All brain regions were selected using the Brain Mice Atlas [28]. Brain samples
were stored at −80 ◦C for subsequent Western blot analyses.

2.4. Western Blot Analysis

Western blot was used to determine protein expression of phospho-ERK, ERK, phospho-
Akt, Akt, phospho-JNK, JNK, xCT, GLT-1, mGluR5, and β-tubulin in the NAc (core and
shell), AMY, and dmPFC. Samples were lysed using a lysis buffer (50 mM Tris–HCl, 150 mM
NaCl, 1 mM EDTA, 0.5% NP-40, 1% Triton, 0.1% SDS) with phosphatase and protease
inhibitors. The amount of protein in each tissue sample was quantified using a detergent
compatible protein assay (Bio-Rad, Hercules, CA, USA). An equal amount of protein from
each sample was mixed with laemmili dye, and the mixtures were loaded onto 10% Tris-
glycerine gel to separate the protein using electrophoresis. Then, proteins were transferred
from gels to a polyvinylidene difluoride (PVDF) membrane. Subsequently, the PVDF mem-
branes were blocked with 5% fat-free milk in Tris-buffered saline with Tween 20 (TBST) at
room temperature for 30 min. Membranes were incubated overnight at 4 ◦C with primary
antibodies: rabbit anti-p-ERK (1:1000, Abcam, Cambridge, UK, ab201015), rabbit anti-ERK
(1:1000, Abcam, ab17942), rabbit anti-p-JNK (1:1000, Cell Signaling, Danvers, MA, USA,
9251), rabbit anti-JNK (1:1000, Cell Signaling, 9252), rabbit anti-p-Akt (1:1000, Cell Signal-
ing, 4060), rabbit anti-Akt (1:1000, Cell Signaling, 4691), rabbit anti-GLT-1 (1:5000, Abcam
ab205248), rabbit anti-xCT (1:1000, Abcam ab125186), and rabbit anti-mGluR5 (1:1000,
Abcam ab76316). Mouse anti-β-tubulin (1:1000, BioLeagend, San Diego, CA, USA) was
used as a control loading protein. On the following day, membranes were washed five
times with TBST and incubated with the match secondary antibody (1:4000) for 60 min.
The membranes were then washed with TBST and dried for further analysis. The dried
membranes were incubated with chemiluminescent reagents (Super Signal West Pico, Perce
Inc., Appleton, WI, USA) for 1–2 min. Digitized blot images were developed using the
GeneSys imaging system. Quantification and analysis of the expression of p-ERK, ERK,
p-JNK, JNK, p-Akt, Akt, GLT-1, xCT, mGluR5, and β-tubulin blots were performed using
ImageJ software (Version 1.53t 24). The control group was reported as 100% to measure
the changes in the expression of proteins of interest in the NAc (core and shell), AMY, and
dmPFC as described in our previous studies [23,29].
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2.5. Statistical Analysis

All statistical analyses were performed using GraphPad Prism software (Version 10).
One-way ANOVA with Newman–Keuls as a post-hoc multiple comparison test was used
to analyze the Western blot data as a percentage (relative to control values) ratio to the
loading protein, β-tubulin. The data are reported for a p < 0.05 level of significance.

3. Results
3.1. Effect of Chronic Hydrocodone Exposure and Ceftriaxone on GLT-1 Protein Expression in the
NAC, AMY, and dmPFC

Data analyses revealed a significant difference in the expression of GLT-1 in NAc
among all tested groups (F2,13 = 11.16, p < 0.01, Figure 2). Newman–Keuls post-hoc analy-
ses showed a significant decrease in GLT-1 expression in the NAc in the hydrocodone group
compared to the control group (p < 0.05), and ceftriaxone (p < 0.01) significantly increased
GLT-1 expression in the NAc as compared to the hydrocodone group (Figure 2A). In addi-
tion, statistical analysis revealed a significant difference in the expression of GLT-1 in the
AMY (F2,13 = 11.16, p < 0.01, Figure 2B) and the dmPFC (F2,15 = 29.24, p < 0.0001, Figure 2C)
among all tested groups. Newman–Keuls post-hoc analyses showed a significant decrease
in GLT-1 expression in the AMY (p < 0.05, Figure 2B) and the dmPFC (p < 0.01, Figure 2C)
of the hydrocodone group compared to the control group. Importantly, ceftriaxone signifi-
cantly increased GLT-1 expression in the AMY (p < 0.01, Figure 2B) and dmPFC (p < 0.0001,
Figure 2C) as compared to the hydrocodone group. The hydrocodone–ceftriaxone groups
showed significantly increased GLT-1 expression compared to the control group in the
AMY (p < 0.05, Figure 2B) and the dmPFC (p < 0.05, Figure 2C). However, no significant
changes were observed between the control and hydrocodone-ceftriaxone groups in the
NAc (Figure 2).
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Figure 2. Effect of chronic hydrocodone exposure on the expression of GLT-1 in the NAc, AMY,
and dmPFC. (A) Immunoblots for GLT-1 and β-tubulin in the NAc. Quantitative analysis using
one-way ANOVA followed by Newman–Keuls post-hoc test indicated that GLT-1 was significantly
downregulated in the hydrocodone group compared to the control group, while post-treatment
with ceftriaxone (200 mg/kg) upregulated GLT-1 expression compared to the hydrocodone group
in the NAc. (B) Immunoblots for GLT-1 and β-tubulin in the AMY. Quantitative analysis using
one-way ANOVA followed by Newman–Keuls post-hoc test showed that GLT-1 was significantly
downregulated in the hydrocodone group compared to the control group, while post-treatment with
ceftriaxone (200 mg/kg) upregulated GLT-1 expression compared to the hydrocodone group in the
AMY. (C) Immunoblots for GLT-1 and β-tubulin in the dmPFC. Quantitative analysis using one-way
ANOVA followed by Newman–Keuls post-hoc test indicated that GLT-1 expression was significantly
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downregulated in the hydrocodone group compared to the control group, while ceftriaxone
(200 mg/kg) upregulated GLT-1 expression compared to the hydrocodone group in the dmPFC. Con-
trol group data were represented as 100%. Each column is expressed as mean ± S.E.M (n = 7/group),
(* p < 0.05, ** p < 0.01, and **** p < 0.0001).

3.2. Effect of Chronic Hydrocodone Exposure and Ceftriaxone on xCT Protein Expression in the
NAc, AMY, and dmPFC

We further investigated the effects of chronic hydrocodone exposure and ceftriaxone
treatment on the expression of xCT in mesocorticolimbic brain regions. There were signifi-
cant differences in xCT expression in the NAc (F2,12 = 8.364, p < 0.01, Figure 3A) and dmPFC
(F2,15 = 15.07, p < 0.001, Figure 3C) among all tested groups. However, there were no sig-
nificant changes in xCT expression between all tested groups in the AMY (F2,18 = 0.03247,
p > 0.05, Figure 3B). Newman–Keuls post-hoc analyses revealed significant decreases in
xCT expression in the NAc (p < 0.05, Figure 3A) and the dmPFC (p < 0.001, Figure 3C)
in the hydrocodone group as compared to the control group. Importantly, ceftriaxone
attenuated hydrocodone-induced downregulation in the NAc (p < 0.01, Figure 3A) and
dmPFC (p < 0.001, Figure 3C). Quantitative analysis revealed non-significant differences
in xCT expression among control and hydrocodone–ceftriaxone groups in the NAc, AMY,
and dmPFC (Figure 3).
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Figure 3. Effect of chronic hydrocodone exposure on xCT expression in the NAc, AMY, and dmPFC.
(A) Immunoblots for xCT and β-tubulin in the NAc. Quantitative analysis using one-way ANOVA
followed by Newman–Keuls post-hoc test indicated that xCT expression was significantly decreased
in the hydrocodone group compared to the control group, while ceftriaxone (200 mg/kg) normalized
GLT-1 expression compared to the hydrocodone group in the NAc. (B) Immunoblots for xCT and
β-tubulin in the AMY. Quantitative analysis using one-way ANOVA followed by Newman–Keuls
post-hoc test indicated that there were no significant differences in xCT expression among all tested
groups in the AMY. (C) Immunoblots for xCT and β-tubulin in dmPFC. Quantitative analysis using
one-way ANOVA followed by Newman–Keuls post-hoc test showed that xCT was significantly
decreased in the hydrocodone group compared to the control group, while post-treatment with
ceftriaxone (200 mg/kg) normalized xCT expression compared to the hydrocodone group in the
dmPFC. Control group data were represented as 100%. Each column is expressed as mean ± S.E.M
(n = 7/group), (* p < 0.05, ** p < 0.01 and *** p < 0.001).

3.3. Effects of Chronic Hydrocodone Exposure and Ceftriaxone on p-ERK Protein Expression in the
NAc, AMY, and dmPFC

We also investigated the effects of ceftriaxone on kinase signaling pathways such as
p-ERK in mesocorticolimbic brain regions. Western blot data analyses revealed significant
differences in p-ERK expression in the NAc (F2,14 = 19.73, p < 0.0001, Figure 4A), AMY
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(F2,13 = 7.141, p < 0.01, Figure 4B), and dmPFC (F2,14 = 12.44, p < 0.001, Figure 4C) among
all groups. Newman–Keuls post hoc analyses revealed that chronic hydrocodone exposure
decreased p-ERK expression in the NAc (p < 0.0001, Figure 4A), AMY (p < 0.05, Figure 4B),
and dmPFC (p < 0.001, Figure 4C) compared to the control group. Importantly, ceftriax-
one attenuated hydrocodone-induced downregulation of p-ERK in the NAc (p < 0.001,
Figure 4A), AMY (p < 0.01, Figure 4B) and the dmPFC (p < 0.01, Figure 4C). No significant
changes were detected between the hydrocodone and hydrocodone–ceftriaxone groups.
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Figure 4. Effect of chronic hydrocodone exposure on p-ERK expression in the NAc, AMY, and
dmPFC. (A) Immunoblots for p-ERK and ERK in the NAc. Quantitative analysis using one-way
ANOVA followed by Newman–Keuls post hoc test revealed that chronic hydrocodone exposure
downregulated p-ERK expression in the NAc compared to the control group, while ceftriaxone
(200 mg/kg) upregulated p-ERK expression compared to the hydrocodone group. (B) Immunoblots
for p-ERK and ERK in the AMY. Quantitative analysis using one-way ANOVA followed by Newman–
Keuls post hoc test showed that p-ERK was significantly downregulated in the hydrocodone group
compared to the control group, while post-treatment with ceftriaxone (200 mg/kg) upregulated
p-ERK expression in the AMY compared to the hydrocodone group. (C) Immunoblots for p-ERK
and ERK in the dmPFC. Quantitative analysis using one-way ANOVA followed by Newman–Keuls
post hoc test showed that p-ERK expression was significantly downregulated in the hydrocodone
group compared to the control group, while ceftriaxone (200 mg/kg) upregulated p-ERK expression
in the dmPFC compared to the hydrocodone group. Control group data were represented as 100%.
Each column is expressed as mean ± S.E.M (n = 7/group), (* p < 0.05, ** p < 0.01, *** p < 0.001 and
**** p < 0.0001).

3.4. Effect of Chronic Hydrocodone Exposure and Ceftriaxone on p-AKT Protein Expression in the
NAc, AMY, and dmPFC

The effect of chronic hydrocodone exposure on p-AKT expression was also mea-
sured in mesocorticolimbic brain regions. Data analyses revealed significant differences
in p-Akt expression in the NAc (F2,13 = 5.970, p < 0.05, Figure 5A), AMY (F2,13 = 18.37,
p < 0.001, Figure 5B), and dmPFC (F2,18 = 27.26, p < 0.0001, Figure 5C) among all groups.
Chronic hydrocodone exposure decreased p-Akt expression in the NAc (p < 0.05, Figure 5A),
AMY (p < 0.01, Figure 5B), and dmPFC (p < 0.0001, Figure 5C) compared to the con-
trol group. Importantly, ceftriaxone attenuated hydrocodone-induced downregulation
of p-Akt expression (p < 0.05, Figure 5A) in the NAc, AMY (p < 0.001, Figure 5B), and
dmPFC (p < 0.0001, Figure 5C). Significant differences were observed between control and
hydrocodone-ceftriaxone groups in the AMY (p < 0.05, Figure 5B) and dmPFC (p < 0.05,
Figure 5C); no significant difference was detected in the NAc (Figure 5A).
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Figure 5. Effect of chronic hydrocodone exposure on p-AKT expression in the NAc, AMY, and
dmPFC. (A) Immunoblots for p-AKT and AKT in the NAc. Quantitative analysis using one-way
ANOVA followed by Newman–Keuls post hoc test indicated that p-AKT expression was significantly
decreased in the hydrocodone group as compared to the control group, while ceftriaxone (200 mg/kg)
normalized p-AKT expression in the NAc compared to the hydrocodone group. (B) Immunoblots for p-
AKT and AKT in the AMY. Quantitative analysis using one-way ANOVA followed by Newman–Keuls
post hoc test showed that p-AKT was significantly decreased in the hydrocodone group compared to
the control group, while post-treatment with ceftriaxone (200 mg/kg) normalized the expression of
p-AKT expression in the AMY compared to the hydrocodone group. (C) Immunoblots for p-AKT
and AKT in the dmPFC. Quantitative analysis using one-way ANOVA followed by Newman–Keuls
post hoc test showed that p-AKT expression was significantly reduced in the hydrocodone group
compared to the control group, while ceftriaxone (200 mg/kg) normalized p-AKT expression in
the dmPFC compared to the hydrocodone group. Control group data were represented as 100%.
Each column is expressed as mean ± S.E.M (n = 7/group), (* p < 0.05, ** p < 0.01, *** p < 0.001 and
**** p < 0.0001).

3.5. Effect of Chronic Hydrocodone Exposure and Ceftriaxone on p-JNK Protein Expression in the
NAc, AMY, and dmPFC

We further investigated the effect of chronic exposure to hydrocodone on p-JNK expres-
sion in mesocorticolimbic brain regions. Data analyses revealed a significant difference in p-
JNK expression in the NAc (F2,14 = 7.577, p < 0.01, Figure 6A), AMY (F2,15 = 11.82, p < 0.001,
Figure 6B), and dmPFC (F2,18 = 18.36, p < 0.0001, Figure 6C) among all tested groups.
Hydrocodone exposure decreased p-JNK expression in the NAc (p < 0.05, Figure 6A), AMY
(p < 0.01, Figure 6B), and dmPFC (p < 0.001, Figure 6C) compared to the control group.
Importantly, ceftriaxone attenuated hydrocodone-induced downregulation in p-JNK expres-
sion in the NAc (p < 0.01, Figure 6A), AMY (p < 0.001, Figure 6B), and dmPFC (p < 0.0001,
Figure 6C). No significant difference was found in p-JNK expression between the control
and hydrocodone–ceftriaxone groups in all three brain regions (Figure 6).
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upregulated p-JNK expression in the AMY compared to the hydrocodone group. (C) Immunoblots 
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Figure 6. Effect of chronic hydrocodone exposure on p-JNK expression in the NAc, AMY, and dmPFC.
(A) Immunoblots for p-JNK and JNK in the NAc. Quantitative analysis using one-way ANOVA
followed by Newman–Keuls post hoc test revealed that p-JNK expression in the NAc was signifi-
cantly downregulated in the hydrocodone group compared to the control group, while ceftriaxone
(200 mg/kg) upregulated p-AKT expression compared to the hydrocodone group. (B) Immunoblots
for p-JNK and JNK in the AMY. Quantitative analysis using one-way ANOVA followed by Newman–
Keuls post hoc test showed that p-JNK was significantly downregulated in the hydrocodone group
compared to the control group, while post-treatment with ceftriaxone (200 mg/kg) upregulated
p-JNK expression in the AMY compared to the hydrocodone group. (C) Immunoblots for p-JNK
and JNK in the dmPFC. Quantitative analysis using one-way ANOVA followed by Newman–Keuls
post hoc test indicated that p-JNK expression was significantly downregulated in the hydrocodone
group compared to the control group, while ceftriaxone (200 mg/kg) upregulated p-JNK expression
in the dmPFC compared to the hydrocodone group. Each column is expressed as mean ± S.E.M
(n = 7/group), (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001).

3.6. Effect of Chronic Hydrocodone Exposure and Ceftriaxone on mGluR5 Protein Expression in the
NAc, AMY, and dmPFC

We finally determined the effect of hydrocodone exposure on mGluR5 expression in
mesocorticolimbic brain regions. Statistical analyses revealed a significance difference in
mGluR5 expression in the NAc (F2,15 = 17.81, p < 0.001, Figure 7A), AMY (F2,12 = 8.018,
p < 0.01, Figure 7B), and dmPFC (F2,12 = 18.59, p < 0.001, Figure 7C). Furthermore, chronic
hydrocodone exposure increased mGluR5 expression in the NAc (p < 0.05, Figure 7A),
AMY (p < 0.01, Figure 7B), and dmPFC (p < 0.01, Figure 7C). Importantly, ceftriaxone atten-
uated hydrocodone-induced upregulation in mGluR5 expression in the NAc (p < 0.0001,
Figure 7A), AMY (p < 0.01, Figure 7B), and dmPFC (p < 0.001, Figure 7C) compared to the
control and hydrocodone groups. No significant differences were observed between the
control and hydrocodone–ceftriaxone groups in the AMY (Figure 7B). However, there were
significant differences between the control and hydrocodone–ceftriaxone groups in the
NAc (p < 0.01, Figure 7A) and the dmPFC (p < 0.05, Figure 7C).
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Figure 7. Effect of chronic hydrocodone exposure on mGluR5 expression in the NAc, AMY, and
dmPFC. (A) Immunoblots for mGluR5 and β-tubulin in the NAc. Quantitative analysis using one-way
ANOVA followed by Newman–Keuls post hoc test showed that mGluR5 expression was significantly
upregulated in the hydrocodone group compared to the control group, while ceftriaxone (200 mg/kg)
normalized mGluR5 expression in the NAc compared to the hydrocodone group. (B) Immunoblots
for mGluR5 and β-tubulin in the AMY. Quantitative analysis using one-way ANOVA followed by
Newman–Keuls post hoc test showed that mGluR5 was significantly upregulated in the hydrocodone
group compared to the control group, while post-treatment with ceftriaxone (200 mg/kg) normalized
mGluR5 expression in the AMY compared to the hydrocodone group. (C) Immunoblots for mGluR5
and β-tubulin in the dmPFC. Quantitative analysis using one-way ANOVA followed by Newman–
Keuls post hoc test showed that mGluR5 expression was significantly upregulated in the hydrocodone
group compared to the control group, while ceftriaxone (200 mg/kg) normalized mGluR5 expression
in the dmPFC compared to hydrocodone group. Control group data were represented as 100%.
Each column is expressed as mean ± S.E.M (n = 7/group), (* p < 0.05, ** p < 0.01, *** p < 0.001 and
**** p < 0.0001).

4. Discussion

The hyperglutamatergic state is a major neurochemical unbalance that might be the
cause of many neurological diseases and psychiatric disorders, including drug addic-
tion [30,31]. GLT-1 plays an important role in regulating the majority of extracellular
glutamate concentrations in the brain, and a reduction in GLT-1 expression is often asso-
ciated with relapse to drugs of abuse. Therefore, restoring glutamate homeostasis may
have a therapeutic, beneficial effect against neuroexcitotoxicity caused by chronic exposure
to drugs of abuse. The present study demonstrated that chronic hydrocodone exposure
alters the expression of GLT-1, xCT, mGluR5, p-ERK/ERK, p-Akt/Akt, and p-JNK/JNK
in mesocorticolimibic brain regions. Ceftriaxone, known to upregulate GLT-1, attenuated
hydrocodone-induced alteration of the expression of these target proteins. This study
focused on three brain regions: the dmPFC, AMY, and NAc. These brain regions are
reciprocally connecting glutamatergic projections, which are involved in drug seeking and
drug dependence [6,9]. GLT-1 is a major glutamate transporter that regulates most of the
extracellular glutamate concentrations in these key reward brain regions and others [8].
Previous studies from our laboratory demonstrated that chronic exposure to ethanol in-
duced downregulation of GLT-1, as well xCT expression in central reward brain regions,
including the NAc and ceftriaxone, attenuated this effect [6,16,32]. It is important to note
that xCT is colocalized with GLT-1 in astrocytes to regulate basal extracellular glutamate
concentrations [7]. Thus, both GLT-1 and xCT are critical in regulating the excess of extra-
cellular glutamate that is mediated through astrocytes. In this study, we focused on the
effect of chronic exposure of hydrocodone in the mesocorticolimbic brain regions involved
drug dependence.
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Exposure to hydrocodone (10 mg/kg, i.p.) for 14 days downregulated GLT-1 expres-
sion in the dmPFC, AMY, and NAc. In contrast to our current findings, previous studies
from our laboratory reported no change in GLT-1 expression with hydrocodone exposure
(5 mg/kg, i.p.) in the NAc, dmPFC, hippocampus, and AMY [23]. However, this study
showed that hydrocodone exposure downregulated xCT expression in the NAc and the
hippocampus, and ceftriaxone attenuated this effect. This difference may be attributable
to the duration of hydrocodone exposure and the dose of hydrocodone tested. In addi-
tion, it has been suggested that a reduction in GLT-1 expression in the NAc is associated
with chronic exposure to drugs of abuse, including alcohol, nicotine, heroin, and am-
phetamine [12,16,33,34]. Hence, our study showed that chronic exposure to higher doses
of hydrocodone resulted in a decrease in GLT-1 expression in the dmPFC, AMY, and NAc.
Furthermore, we found that xCT expression was downregulated in the dmPFC and NAc,
but not in the AMY. The result from this current study is in accordance with our previous
study which showed that exposure to a lower dose of hydrocodone (5 mg/kg, i.p.) in
alcohol-preferring (P) rats reduced xCT expression in the NAc in a CPP model [23]. In
the present study, ceftriaxone restored GLT-1 expression in the brains of mice exposed to
hydrocodone. We suggest that the upregulatory effect of ceftriaxone in GLT-1 expression
may decrease extracellular glutamate concentrations and increase glutamate uptake in
models of drugs abuse, including ethanol and opioids [6,24]. Treatment with ceftriaxone
reversed the effects of hydrocodone-induced downregulation of GLT-1 and xCT expression
in the dmPFC and NAc. This is consistent with previous findings indicating the down-
regulation of GLT-1 and xCT expression in the NAc of animals exposed to drugs of abuse,
including hydrocodone, ethanol, cocaine, nicotine, and methamphetamine, and these
involved different behavioral paradigms such as drug seeking, self-administration, and
reinstatement [11,15,23,35–37]. Our present findings demonstrated clearly that β-lactams
(e.g., ceftriaxone and other β-lactams) have the potential to attenuate the effects of chronic
exposure to opioids and normalize glutamate transporters to prevent neuroexcitotoxicity
that might be mediated through excess of extracellular glutamate concentrations at the
synaptic cleft.

Furthermore, this study explored the signaling pathways involved in GLT-1 and xCT
upregulation. Thus, we focused on investigating the effect of hydrocodone exposure in
Akt expression and its phosphorylated form. The Akt pathway is involved in synaptic and
structural neuroadaptations, and p-Akt expression was decreased in the NAc after exposure
to drug abuse, including morphine, heroin, and nicotine [38–40]. These findings are in
accordance with our present findings showing that p-Akt is downregulated in the dmPFC,
AMY, and NAc after chronic exposure to hydrocodone. Several studies reported that the
Akt signaling pathway, which functions downstream of phosphatidylinositol 3-kinase
(PI-3K) and the nuclear transcription factor-κB (NF-κB), is involved in the upregulation
of GLT-1 expression [41]. Additionally, our studies and others confirmed the association
between the Akt pathway and the upregulation of GLT-1 expression [41–44]. Our results
showed that p-Akt expression was upregulated after ceftriaxone treatment, suggesting
that the Akt signaling pathway is involved in a ceftriaxone-mediated increase in GLT-1
(Figure 8).

We further investigated the ERK signaling pathway as it is involved in neuroplasticity,
and signal transduction [45]. Our study showed that exposure to hydrocodone for 14 days
downregulated p-ERK expression in the dmPFC, AMY, and NAc, and this effect was
attenuated with ceftriaxone treatment. Downregulation of ERK in the NAc is in accordance
with previous studies showing that chronic morphine exposure reduced both ERK and
Akt in the NAc of male Sprague-Dawley rats and CD-1 mice [38,46,47]. In addition, p-
ERK is also known to initiate the transcription factors such as NF-kB and CREB, which
in turn regulate GLT-1 transcription [48]. Therefore, our current study further showed
that ceftriaxone activated the ERK signaling pathway, and consequently modulated GLT-1
expression (Figure 8).
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Figure 8. Schematic representation summarizing the effects of chronic hydrocodone exposure on 
GLT-1 expression in mesocorticolimbic brain regions. (A) Chronic exposure to hydrocodone re-
duced ERK, AKT, and JNK signaling kinases leading to GLT-1 downregulation. (B) Ceftriaxone 
treatment attenuated hydrocodone-induced GLT-1 downregulation by upregulating signaling ki-
nases such as ERK, AKT, and JNK. 

We further investigated the ERK signaling pathway as it is involved in neuroplastic-
ity, and signal transduction [45]. Our study showed that exposure to hydrocodone for 14 
days downregulated p-ERK expression in the dmPFC, AMY, and NAc, and this effect was 
attenuated with ceftriaxone treatment. Downregulation of ERK in the NAc is in accord-
ance with previous studies showing that chronic morphine exposure reduced both ERK 
and Akt in the NAc of male Sprague-Dawley rats and CD-1 mice [38,46,47]. In addition, 
p-ERK is also known to initiate the transcription factors such as NF-kB and CREB, which 
in turn regulate GLT-1 transcription [48]. Therefore, our current study further showed that 
ceftriaxone activated the ERK signaling pathway, and consequently modulated GLT-1 ex-
pression (Figure 8). 

Furthermore, we investigated the JNK pathway as an important signaling pathway 
in the mitogen-activated protein kinases (MAPK) family. A study has reported that CREB 
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Figure 8. Schematic representation summarizing the effects of chronic hydrocodone exposure on
GLT-1 expression in mesocorticolimbic brain regions. (A) Chronic exposure to hydrocodone reduced
ERK, AKT, and JNK signaling kinases leading to GLT-1 downregulation. (B) Ceftriaxone treatment
attenuated hydrocodone-induced GLT-1 downregulation by upregulating signaling kinases such as
ERK, AKT, and JNK.

Furthermore, we investigated the JNK pathway as an important signaling pathway
in the mitogen-activated protein kinases (MAPK) family. A study has reported that CREB
activation is dependent on JNK [49]. Additionally, CREB phosphorylation is required
for synaptic plasticity and memory consolidation [50–52]. In this study, we showed that
chronic exposure to hydrocodone reduced p-JNK expression in the dmPFC, AMY, and NAC.
Hydrocodone-induced downregulation of p-JNK expression was attenuated after ceftriax-
one treatment. Here, we suggest that upregulation of GLT-1 expression in the dmPFC, AMY,
and NAc might be associated with activation of CREB through JNK phosphorylation [53]
(Figure 8). However, studies are warranted to validate this assumption.

In addition to signaling pathways, mGluRs have also been implicated in opioid reward.
mGluR5 is known to play a facilitative role in mediating the potentiating effects of opioids
and is highly expressed in reward-related brain regions, including the NAc and dmPFC [54].
It is important to note that mGluR5 is selectively increased in the NAc under a morphine-
CPP paradigm and repeated exposure to cocaine [55,56]. This is in accordance with our
present study demonstrating that chronic exposure to hydrocodone increased mGluR5
expression in the dmPFC, AMY, and NAc. Hydrocodone-induced upregulation in mGluR5
expression was attenuated with ceftriaxone treatment.

5. Conclusions

This study revealed that chronic exposure to hydrocodone induced dysregulation of
glutamatergic system in the NAc, AMY, and dmPFC. Treatment with ceftriaxone success-
fully attenuated hydrocodone-induced dysfunction in this glutamatergic system. This was
associated with the reversal of hydrocodone-induced changes in mGluR5, GLT-1, xCT, ERK,
AKT, and JNK expression in the NAc, AMY, and dmPFC. We revealed that the upregulatory
or normalizing effect of ceftriaxone in GLT-1 expression was mediated in part through the
kinase signaling pathways such as the ERK, AKT, and JNK.

This study was proof of a concept to determine the effects of exposure to hydrocodone
for 14 days on the expression of astrocytic glutamate transporters (GLT-1 and xCT). The
study was limited to determine the signaling pathways involved in the upregulatory effects
of ceftriaxone on GLT-1 and xCT expression. Further studies are warranted to investigate
the beneficial preclinical effects of ceftriaxone and other beta-lactams in a model of self-
administration or CPP of hydrocodone and other highly potent opioids (e.g., fentanyl). In
addition, further studies are warranted to investigate the beneficial preclinical effects of
ceftriaxone-induced upregulation of GLT-1 and xCT on a model of opioid overdose.
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