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Abstract: Toxicokinetics plays a crucial role in the health risk assessments of xenobiotics. Classical
compartmental models are limited in their ability to determine chemical concentrations in specific
organs or tissues, particularly target organs or tissues, and their limited interspecific and exposure
route extrapolation hinders satisfactory health risk assessment. In contrast, physiologically based
toxicokinetic (PBTK) models quantitatively describe the absorption, distribution, metabolism, and
excretion of chemicals across various exposure routes and doses in organisms, establishing corre-
lations with toxic effects. Consequently, PBTK models serve as potent tools for extrapolation and
provide a theoretical foundation for health risk assessment and management. This review outlines
the construction and application of PBTK models in health risk assessment while analyzing their
limitations and future perspectives.

Keywords: compartmental model; exposure routes; PBTK model; health risk assessment

1. Introduction

Toxicokinetics (TK) is an interdisciplinary field that integrates the principles and
methodologies of pharmacokinetics and toxicology. It plays a crucial role in understanding
the absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics
of xenobiotics in both human and animal models, considering various exposure routes,
doses, and frequencies. TK data enables the calculation of kinetic parameters and facilitates
adjustments to experimental designs. By establishing the relationship between dose-
exposure and exposure-toxicity, TK allows for the assessment of toxicity effects, mechanisms
in target organs and tissues, and the associated risks to human health.

Traditional TK studies often involve doses higher than those used in clinical pharma-
cokinetic research, resulting in saturation of dissolution, absorption, and metabolism pro-
cesses and leading to nonlinear kinetics models [1,2]. Therefore, the bioavailability, half-life,
apparent volume of distribution, clearance, and other parameters calculated from low-dose
pharmacokinetic studies may not be applicable to high-dose toxicokinetic investigations.
To enable reliable interspecific extrapolation, dose extrapolation, and in vivo-in vitro corre-
lation, it is essential to systematically consider dose-response and dose-effect relationships
in TK studies. After a satisfactory evaluation, the PBTK model is utilized to extrapolate
and compute internal doses, thereby enhancing the dose-response relationship in toxicity
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testing and risk assessment [3]. The European Human Biomonitoring Initiative effectively
employed the PBTK model to evaluate the association between chemical exposure and
observed HBM data [4]. In the drug review process conducted by the United States Food
and Drug Administration (FDA), submitted PBTK models from drug developers were
assessed for adequacy at different stages of drug development to achieve desired objectives.
Previous studies had solely focused on developing rat-based PBTK models to assess risks
associated with oral exposure to diethyl phthalate (DEP), and Hu et al. [5] developed a hu-
man dermal pathway-specific model for assessing health risks when exposed to DEP, which
suggested that dermal exposure to DEP posed a greater risk to human health compared
with oral exposure.

In general, four conventional methods are employed for the calculation of pharmacoki-
netic or toxicokinetic parameters, including the compartmental model, statistical moment
analysis of the noncompartmental model, population pharmacokinetics or toxicokinetic
analysis, and the physiologically based pharmacokinetics or toxicokinetic (PBPK/PBTK)
model. However, the first three methods do not consider physiological characteristics and,
thus, can only reflect concentration changes over time in specific tissues or organs, lacking
the ability to analyze the distribution and metabolism of xenobiotics simultaneously. As a
result, these methods fail to extrapolate prediction results across different species, exposure
routes, and doses [1,6,7]. In contrast, PBTK models represent a more complex form of
compartmental models, where tissue and organ entities act as interconnected compart-
ments through blood circulation. The parameters in PBTK models possess physiological
significance, such as blood flow volume and tissue volume, enabling the simulation of
xenobiotic absorption, distribution, metabolism, and excretion in various tissues or organs,
thereby facilitating extrapolation. This review primarily focuses on constructing and apply-
ing the PBTK model in health risk assessments while analyzing its limitations and future
perspectives.

2. The Construction of the PBTK Model

The construction of a PBTK model typically involves five steps, as illustrated in
Figure 1: (1) model characterization, (2) definition of the model parameters, (3) model
simulation, (4) model evaluation, and (5) model optimization [1,7–9].

1 
 

 
Figure 1. The diagram for the construction of the PBTK model.
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2.1. Model Characterization
2.1.1. Determination of the Model Structure

The structure of the PBTK model is based on physiological and anatomical considera-
tions; it can be either a whole-body PBTK model or a semi-PBTK model, depending on the
complexity required. In the whole-body PBTK model (Figure 2A), each organ or tissue is
considered as an independent compartment, connected through blood flow to others [10].
In the semi-PBTK model (Figure 2B), major organs like blood, liver (the main metabolic
organ), and kidneys (the main excretory organ) are separate compartments. Other organs
not relevant to the study are grouped into one compartment, simplifying the structure and
reducing the number of parameters for improved parameter fitting accuracy. Figure 2B
illustrates a common human semi-PBTK model with a respiratory exposure route. In this
model, organs or tissues not directly relevant to the study are categorized as richly perfused
tissues (e.g., brain, heart, spleen, intestines, kidneys, adrenal glands, thyroid, lungs, and
bone marrow) or poorly perfused tissues (e.g., muscle and skin) [11].
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Figure 2. The whole PBTK model (A) and semi-PBTK model (B) of humans. IV, intravenous injection;
IA, arterial injection; Q, blood flow; M, metabolites; U, urine; CLint, intrinsic clearance; Ke, excretion
rate. The subscripts LU, HT, BR, MU, AD, SK, SP, PA, HA, ST, GU, BO, KI, TH, RP, PP, and LI refer
to lung, heart, brain, muscle, fat, skin, spleen, pancreas, hepatic artery, stomach, gut, bone, kidney,
thymus, richly perfused tissue, poorly perfused tissue, hepatic vein, respectively.

During the modeling process, consideration must be given to which organs or tissues
should be included. Firstly, the PBTK model includes compartments for blood, metabolic
organs (such as the liver), and excretory organs (such as the kidneys), as they are closely
associated with toxicokinetic studies. Secondly, it is necessary to determine whether other
organs or tissues should be included in the chemical ADMET processes. For example, in
the case of oral administration, compartments for the stomach and gut should be added.
For lipophilic chemicals with high octanol-water partition coefficients (log Kow > 3), an
independent compartment for adipose tissue should be included. Thirdly, adherence to the
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parsimony principle is crucial [9]. As model complexity increases, more data are required
for fitting and validation purposes. In the field of chemical toxicology, greater attention has
been focused on target organs or tissues such as the liver and kidney, while fewer studies
have explored other organs or tissues comprehensively. Due to insufficient data availability
that can support a complex PBTK model effectively, it is essential to simplify the model as
much as possible in order to enhance its predictive reliability.

2.1.2. Building Mathematical Equations

After determining the model structure, mathematical equations were established to
describe the ADME processes of xenobiotics in each organ or tissue. The establishment of
the model should follow the principle of mass equation [7,9,12]:

dAt

dt
= At,in − At,out − At,e − At,m (1)

where dAt/dt is the amount if change of xenobiotics in a compartment per unit time; At,in is
the amount of entry into the compartment; At,out is the quantity leaving the compartment;
At,e is the amount excreted by the compartment; and At,m is the amount of compartment
metabolism.

In the PBTK model, the absorption process of xenobiotics by organs or tissues obeys
the simple diffusion principle in Fick’s law [1,11]. Based on the distribution characteristics
of xenobiotics in organs or tissues, PBTK models can be categorized into three types:

(1) Perfusion-limited model: in this model, xenobiotic concentrations in organs, tis-
sues, and blood reach instant equilibrium without concentration differences. Organs,
tissues, and blood are considered as a single compartment with a homogeneous dis-
tribution of xenobiotics. The only limiting factor for xenobiotic distribution is blood
flow velocity [12,13]. This model is suitable for small lipid-soluble molecules that can
readily cross membrane barriers and when organs or tissues are small-sized with high
blood flow [7,14,15];

(2) Permeability-limited model: in this model, xenobiotics penetrate organs or tissues
through membrane barriers, resulting in a concentration gradient between organs or
tissues and blood. Depending on the number of membrane barriers, the permeability-
limited model can have two or three sub-compartments. This model is suitable for
molecules with polarity or large molecular weight [14,15];

(3) Dispersion model: in this model, xenobiotics are distributed in organs or tissues with
a gradient, and the degree of dispersion is evaluated using the dispersion coefficient
(DN). A higher DN indicates a greater dispersion of xenobiotics in organs or tissues.
When DN approaches infinity, the dispersion model is similar to the perfusion-limited
model [16–21]. This model is suitable for xenobiotics with high hepatic clearance [8].

The metabolism of xenobiotics can be described as first-order kinetic, second-order
kinetic, and saturation process [11,15]. Table 1 provides commonly used mathematical
equations to describe the ADME processes in PBTK models [15].

Table 1. The mathematical equations in the PBTK model [15].

Toxicokinetic Process Equation

Absorption
Respiratory tract Ca =

Qp ·Cinh+Qc ·Cv
Qc+Qp/Pb

(2)

Percutaneous dAsk
dt = Kp·S

(
Cair − Csk

Ps:a

)
+ Qsk·

(
Ca − Csk

Ps:b

)
(3)

Oral dAo
dt = Ko·(A− Ao) (4)

Intravenous Cv =
Kz+(∑n

t Qt ·Cvt)
Qc

(5)
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Table 1. Cont.

Toxicokinetic Process Equation

Distribution
Protein binding Cb =

n·β·Kd ·C f
1+Kd ·C f

(6)

Irrigation rate-limiting structure dAt
dt = Qt·(Ca − Cvt) (7)

Membrane rate-limiting tissue dAt
dt = PAt·

(
Cvt − Ct

Pt

)
(8)

Metabolism
First-order kinetic dAmet

dt = K f ·Cvt·Vt = CL·Cvt (9)
Second-order kinetic dAmet

dt = Ks·Cvt·Vt·Cc f (10)
Saturation process dAmet

dt = Vmax ·Cvt
Km+Cvt

(11)
Excretion
Kidney dArc

dt =
(

GFR Tm
Kt+Cp

)
·Cp (12)

Lung Cx =
(

0.7·Ca
Pb

)
+ (0.3·Cinh) (13)

Equation (2): Qc, cardiac output; Qp, alveolar ventilation; Pb, blood-air distribution coefficient; Ca, xenobiotics
concentration in arterial blood; Cinh, xenobiotics concentration in inhaled gas; Cv, xenobiotics concentration in
mixed venous blood. Equation (3): Ask, total amount of skin xenobiotics exposed; t, time; Kp, skin permeability
coefficient; S, skin exposure area; Cair, concentration of xenobiotics in the air; Csk, concentration of exposed
skin xenobiotics; Ps:a, skin-air distribution coefficient; Qsk, skin blood flow; Ps:b, skin-blood partition coefficient.
Equation (4): Ao, total amount of xenobiotics absorbed; Ko, oral absorption rate constant; A, oral exposure dose.
Equation (5): Kz, intravenous administration rate; Qt, blood flow in “t” chamber; Cvt, xenobiotics concentration
in venous blood of outflow chamber “t”. Equation (6): Cb, binding xenobiotics concentration; n·β, maximum
binding rate; Kd, dissociation constant; Cf, free xenobiotics concentration. Equation (7): At, total amount of
xenobiotics in “t” chamber. Equation (8): PAt, mass transfer coefficient; Pt, organ/tissue–blood allocation
coefficient. Equation (9): Amet, total amount of xenobiotics metabolism; Kf, first-order metabolic rate constant;
Vt, “t” chamber volume; CL, clearance. Equation (10): Ks, second-order me tabolic rate constant; Ccf, cofactor
concentration. Equation (11): Vmax, maximum velocity of enzyme-catalysis; Km, Michaelis constant. Equation
(12): Arc, total amount of xenobiotics in kidney; GFR, glomerular filtration rate; Tm, apparent maximum transport
rate of the carrier system; Kt, apparent Mieman constant; Cp, xenobiotics concentration in plasma. Equation (13):
Cx, xenobiotics concentration in exhaled gas.

2.2. Definition of Model Parameters

As shown in Table 2, the PBTK model mainly contains physiological, physicochemical,
and biochemical parameters. The physiological parameters include animal body weight,
cardiac output, blood flow through an organ or tissue, the volume of the organ or tissue, and
so on [22–25]. The physiological parameters are obtained from the literature, depending on
the specific study objectives, or determined through experiments [26–29]. Physiological
parameters can be influenced by factors such as age, sex, and diseases.

Physicochemical parameters refer to the blood-air distribution coefficient and tissue-
blood distribution coefficient, which represent the concentration ratio of xenobiotics in
different carriers at steady state and vary with the properties of the xenobiotics. For
xenobiotics with insufficient documented physicochemical parameters, data can be obtained
through three approaches. Firstly, in vivo experiments can provide distribution coefficients
based on steady-state toxicokinetic data from repeated administration or dynamic data
from single intravenous administration [11,30–34]. Secondly, in vitro experiments such
as vial equilibration [35–44], equilibrium dialysis [45–47], ultrafiltration [46], and others
have been reported for determining distribution coefficients. Thirdly, in silico approaches
involve computation and simulation methods that determine distribution coefficients based
on structural characteristics and physicochemical properties of xenobiotics [48–58].

Biochemical parameters include the absorption rate constant, maximum velocity,
Michaelis constant, etc. These parameters can be calculated using plasma or tissue xenobiotic
concentration versus time profiles and excretion data from in vivo [59] or in vitro [60–65] ex-
periments. They can also be obtained through computation and simulation using quantitative
structure–activity relationship models based on the molecular structure of xenobiotics [66–69].
It is important to note that metabolic parameters obtained from in vitro experiments can-
not be directly used in an in vivo PBTK model. Appropriate data transformation should
be performed, considering the metabolic differences between in vitro and in vivo stud-
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ies [11,70,71]. In order to identify the most sensitive parameters within existing mammalian
models, Schneckener et al. [72] extrapolated a validated rabbit PBTK model to six other
mammalian species using established species-specific models. By calculating sensitiv-
ity across various mammalian species, different compounds, and diverse administration
routes, only 5.4% (n = 33) parameters had sensitivity values over 0.4.

Table 2. The physiological, physicochemical, and biochemical parameters in the PBTK model.

Parameter Data Source

Physiological parameter

Body weight
Cardiac output

Blood flow to organ or tissue
Volume of an organ or tissue

Alveolar ventilation

Literature
In vivo experiment.

Physicochemical parameter Blood-air distribution coefficient
Tissue-blood distribution coefficient

Literature
In vivo experiment
In vitro experiment
In silico prediction

Biochemical parameter

Maximum velocity
Michaelis constant

First-order rate constant
Second-order rate constant

Literature
In vivo experiment
In vitro experiment
In silico prediction

For the parameters unable to be obtained, the accessible data can be fixed in the PBTK model, and added data can
be measured, thus simulating and obtaining uncertain data.

2.3. Model Simulation

PBTK model simulation involves generating predictive curves of toxicokinetics that
fit with measured data by solving ordinary differential equations through mathematical
calculations and software.

2.3.1. Algorithm

Common algorithms used to solve ordinary differential equations are Euler, Gear,
Runge-Kutta, and predictor-corrector. These algorithms follow the principle:

New value = old value + slope× dt (14)

where dt is the calculated step value, and slope is the first derivative of the equation of a
curve at a given point. For a particular compartment in the PBTK model,

At,1 = At,0 + (dAt/dt)× dt (15)

where A is the total amount of xenobiotics, and the subscripts t,0 and t,1 represent the start
and end times of each calculation, respectively.

The Euler is the most frequently used algorithm to solve ordinary differential equations
in the PBTK model [73,74]. The error generated by the Euler algorithm is proportional to
the square of the step value (dt2), so a smaller dt2 is needed to reduce this error, although
it requires more calculation time. In addition, the Euler algorithm is not applicable to
stiff system solutions, for which the Gear algorithm is recommended due to its greater
stability [11].

2.3.2. Software

Existing software for PBTK modeling and analysis can be divided into two categories;
the first is general mathematical and engineering modeling software, such as MATLAB,
Berkeley Madonna, R, and acslX. These software packages require users to build a model
framework and write corresponding codes, necessitating high modeling and programming
skills. The advantage of these software packages is their high flexibility [75], allowing



Toxics 2023, 11, 874 7 of 20

users to construct customized PBTK models based on their needs and perform complex
analyses such as uncertainty analysis, Monte Carlo analysis, and Markov chain Monte
Carlo (MCMC) analysis. The second is the professional PBTK and modeling software, such
as Simcyp, PK-Sim, GastroPlus, Cloe PK, PKQuest, etc. This software is user-friendly and
requires minimal modeling and programming skills. Users can either combine various
components of the model or directly use built-in models provided by the software. Some
software packages also integrate functions for predicting the physicochemical properties of
xenobiotics. These software options are suitable for researchers who are not interested in
computation and programming or lack modeling experience [7–9,76,77]. Mahdi et al. [78]
investigated a suitable solvent for subcutaneous delivery of rifampicin through in silico
predictions by GastroPlus, which reduced the cost and time required for formulation devel-
opment by utilizing in vivo data to simulate in vitro findings. Hanke et al. [79] developed
a rosuvastatin model using the open-source PBTK software PK-Sim, incorporating plasma,
urine, and feces data of rosuvastatin, positron emission tomography measurements of
tissue concentrations, and seven different rosuvastatin drug–drug interaction studies. The
PK-Sim expression database provided the relative expression in different organs by analyz-
ing drug transporters and metabolizing enzymes. However, there are certain limitations
when using software to predict drug metabolism. These software have a high threshold and
need users to receive sufficient professional knowledge on the data and parameters that
are to be used in the implementation. The establishment of a PBTK model needs numerous
drug parameters, so further validation and optimization of the constructed model are
essential to improve its accuracy.

2.4. Model Evaluation

A constructed PBTK model should undergo evaluation under various scenarios, partic-
ularly its ability to predict experimental data not used in the modeling process. Additionally,
uncertainty, variability, and sensitivity analyses are performed [7,11].

2.4.1. Verification of Measured Data

The predictive performance of the PBTK model is evaluated through visual inspection,
statistical tests, and discrepancy indices by comparing predicted values to measured
values [1,11,80,81]. Based on visual inspection, the most commonly used method, Figure 3A
exhibits superior predictive ability compared to Figure 3B due to the logarithmic scale
typically used for the concentration versus time curve.
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In the context of PBTK model validation, statistical hypothesis tests and discrepancy
tests are not applicable because the null hypothesis assumes that the model is identical to
the actual biological system, which is not realistic [80]. Classical statistical methods such
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as Mann-Whitney, two-sample χ2, and two-sample Kolmogorov are also not suitable for
assessing consistency between predicted and measured values due to the self-correlation of
concentration values at different times in pharmacokinetics [11]. To assess the predictive
ability of the PBTK model, linear regression analysis can be performed to compare the
predicted and measured values. A high prediction ability is indicated when the intercept
of the regression equation is close to 0 and the slope and correlation coefficient are close
to 1 [10,77]. Another method for assessing the predictive ability of the PBTK model is to
calculate the chi-square χ2 as Equation (16). This approach is applicable when there are
multiple measured values at the same time point. Peters used this method in an overall
PBTK model to evaluate the model fitting [82]. An χ2 value close to 1 indicates better model
fitting and prediction performance. The Akaike information criterion (AIC) and Bayesian
information criterion (BIC) are commonly used for assessing predictive ability [83,84]. AIC
and BIC are calculated using Equations (17) and (18), respectively. Smaller values of AIC
and BIC indicate a better model fit. When there is a significant difference between the
fitted model and the real model, it is primarily reflected in the likelihood function term
−2In(L). When the difference in the likelihood function is not significant, the penalty term
2k, accounting for the number of model parameters, becomes influential. Models with
better fit and fewer parameters are preferred as the increase in the number of parameters
leads to increased 2k and AIC values. The penalty term for BIC is larger than that for AIC,
taking into account the number of observations. This prevents excessive model complexity
when there is a large number of observations. The last method is to calculate the fold
error (FE), as Equation (19). Firstly, the noncompartmental analysis was performed to
obtain the peak concentration, peak time, area under the curve, and other parameters of
the observations. Then, the fitting values or predicting values of the above parameters
were obtained from corresponding models. Due to the different laboratory conditions,
detection methods, and other confounding factors, the measured value and the predicted
value cannot be consistent completely, and the model is acceptable when the FE ≤ 2 [80].

χ2 = 1
n

n
∑

i=1

(
∆2

i
σ2

i

)
(16)

In Equation (16), n is the number of observations, ∆ is the residual, i.e., the differ-
ence between the measured and predicted values, and σ is the standard deviation of the
measured values at the same time point.

AIC = 2k− 2In(L) (17)

BIC = In(n)·k− 2In(L) (18)

In Equations (17) and (18), k is the number of model variables, L is the likelihood
function, and n is the number of observations.

FE = 10|log( Simulated
Observed )| (19)

2.4.2. Uncertainty Analysis

The PBTK model is constructed according to the physiological and anatomical features
artificially, and these parameters are obtained from in vitro and in vivo experiments or
in silico predictions. An illogical model structure or inaccurate parameters will result in
an inaccurate prediction [7,11]; therefore, the uncertainty analysis is performed to assess
the impact of parameter errors on model prediction results. Three methods are used for
uncertainty analysis; the first is the Monte Carlo simulation, which calculates an output
parameter value by randomly selecting input parameter values fitting specific probability
distribution. Cox [85] employed Monte Carlo uncertain analysis within a PBTK model to
re-evaluate the risk assessments of benzene metabolism in animals and humans, and the
probability distribution of the entire dose–response function for benzene-induced tumors
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in male B6C3F1 mice was quantified. The second method is probability-bound analysis;
in this approach, input parameters are systematically varied from minimum to slightly
above minimum, then set at the normal value, followed by slightly below the maximum,
and finally at the maximum of the distribution. Concurrently, the corresponding output
parameters are observed, representing extreme values of parameter variation. The third
is the Fuzzy simulation, in which the parameters are fuzzed after input, and the output
is obtained by fuzzy rules. If the distributions of uncertain parameters are known, the
Monte Carlo simulation method can be used [86–90]. Otherwise, the fuzzy simulation is
suggested [91–93]. If only the maximum and minimum values of the parameters are known,
the probability-bound analysis is suggested [11,94]. Through the uncertainty analysis, the
impact of input parameters on the model is elucidated and improves the prediction ability
of the model.

2.4.3. Variation Analysis

When constructing the PBTK model for population studies, the physiological and
biochemical parameters are variable due to individual differences. The variation analysis
is used to analyze the parameter variability in the PBTK model during the assessment of
predicting ability in population toxicokinetics. The methods for uncertainty analysis are
also applicable to variation analysis, and the MCMC is the classic method for variability
analysis [95–98]. In their study on the maximum detection time (MDT) of 1,1-difluoroethane
in the blood after inhalation abuse among the adult male population in the United States,
Huet et al. [99] introduced variability in huffing pattern and body mass index using the
Monte Carlo simulation within the PBTK model, and the results indicated that the MDT of
1,1-difluoroethane in blood after abuse ranged from 7.8 to 15.8 h.

2.4.4. Sensitivity Analysis

The sensitivity analysis reflects the impact of parameter changes on model prediction
results and is expressed by sensitivity ratio as Equation (16) [76]:

S =
∂O
∂I
× I

O
(20)

In Equation (20), S is the sensitivity value representing the percentage change of the
corresponding output value when a certain input parameter changes by 1% and other input
parameters remain unchanged. O is the output prediction result of the model, I is the input
parameter of the model. |S| ≥ 0.5 means a highly sensitive parameter; 0.2 ≤ |S| < 0.5
means a medium sensitivity parameter; 0.1 ≤ |S| < 0.2 means a low sensitivity parameter;
|S| < 0.1 means an insensitive parameter, and the parameter sensitivity is not significant.

To analyze the interaction effects of parameters on the prediction results, the above
sensitivity analysis method is not applicable, and the global sensitivity analysis is suggested.
Campolongo and Saltelli proposed the two-step method for global sensitivity analysis.
Firstly, the Morris method was utilized for screening the parameters potentially involved
in interactions; then, the effects of these interactions were quantified using the extended
Fourier amplitude sensitivity test [100], a reliable and efficient method suitable for small
sample sizes [101,102]. A high sensitivity value of a certain parameter means that a slight
change of the parameter will dramatically affect the prediction results. The parameters
with high sensitivity are considered the key factors that should be accurately controlled to
improve the prediction accuracy of the models. Jeong et al. [103] used a PBTK approach,
coupled with global sensitivity analysis, to predict and evaluate the pharmacokinetic
profiles of nafamostat in a virtual healthy population under various dosing regimens, and
the results suggested that the hepatic distribution and metabolism had a significant impact
on systemic exposure and clearance of nafamostat.
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2.4.5. Model Optimization

When the predicted value differs greatly from the measured value, the model struc-
ture or parameters may be inappropriate, and model optimization should be performed.
In vivo experiments are suggested to clarify the ADME process for a reasonable model
structure. For the prediction deviation caused by inappropriate parameters, the uncertainty,
variability, and sensitivity analysis can be performed to determine the parameters that
greatly impact the prediction value. Then, the parameters are optimized by in vivo, in vitro,
and in silico methods to improve the prediction accuracy of the models.

3. Applications of Physiologically Based Toxicokinetics (PBTK) in Health Risk Assessment
3.1. Exposure Assessment

Forward dosimetry is used to predict the internal dose (tissular chemical concentration)
by external dose (exposure chemical concentration) and is called reverse dosimetry and
vice versa [104]. The PBTK model establishes a reliable correlation between the external
dose and internal dose so that reverse dosimetry is particularly suitable for exposure
assessment [105]. It is suitable for practical applications in exposure assessment, such as
population-based studies on herbicide fluorine [106]. If the external dose is linear with the
internal dose, it can be calculated by the following equation:

Exposure dose = C
[X] (21)

where C is the measured concentration of the chemical or metabolite in tissues, and [X] is the
theoretical value in a biological sample at a simulated exposure dose of one unit. [X] represents
the maximum concentration, area under the curve, or other toxicokinetic parameters.

3.2. Extrapolation

Compared to classical compartment models and population pharmacokinetic models,
the PBTK model, which is based on physiological and anatomical features, is more suit-
able for extrapolation. Many parameters in the PBTK model cannot be directly obtained
through in vivo experiments; therefore, in vitro and in silico assays are necessary. In the
PBTK model, various extrapolations such as in vitro-in vivo extrapolation (IVIVE), dose
extrapolation, exposure route extrapolation, and interspecific extrapolation are performed
to predict toxicokinetic processes across different species and exposure conditions. This
approach significantly reduces the reliance on animal experiments while conserving human
and material resources, aligning with the “3R” principle of animal ethics.

3.2.1. IVIVE

The in vitro cellular assays used for predicting the in vivo ADME processes of chem-
icals in IVIVE do not account for active transport, biotransformation, and other factors,
leading to uncertainty in this extrapolation method. Poulin et al. [107] highlighted the need
for adjustments when applying intracellular free concentrations obtained from in vitro
assays to in vivo studies. While novel cell culture methods such as 3D cell culture and
coculture provide better simulation of the in vivo state compared to traditional monolayer
cell culture, their complexity and cost restrict their utilization for high-throughput screen-
ing. In this context, the PBTK model used in IVIVE offers a more accurate and convenient
prediction of chemical ADME processes in vivo [108].

The reverse dosimetry approach based on PBTK modeling enables establishing a
relationship between in vitro concentrations and human exposure doses, facilitating a
dose-response assessment using IVIVE. In their study, Fabian et al. [109] employed the
PBTK model to extrapolate the lowest observed effect concentrations of ten environmental
endocrine disruptors determined in vitro to the equivalent oral doses in rats and compared
them with the lowest observed effect levels (LOEL) values derived from animal studies.
Results indicated that predicted LOEL values for six out of ten chemicals were consistent
with those obtained from animal experiments within an acceptable range, while the remain-
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ing four differed by more than 10-fold. This investigation highlights the potential utility
of reverse dosimetry based on the PBTK model for conducting IVIVE analysis, although
further improvements in accuracy are needed.

Dejongh et al. [110] developed a PBTK model using data from in vitro assays, such as
tissue-blood partition coefficients and liver metabolism parameters. The in vivo neurotoxi-
city of eight neurotoxicants (benzene, toluene, lindane, acrylamide, parathion/paraoxon,
caffeine, diazepam, and phenytoin) was predicted and compared to literature-based in vivo
values. The predicted values showed a correlation with the experimental values, with
greater accuracy observed for low neurotoxic chemicals (approximately 2-fold deviation)
compared to high neurotoxic chemicals (approximately 10-fold deviation). This study sug-
gested the potential application of PBTK models in IVIVE studies. Brinkmann et al. [111]
focused on two classes of chemicals, using 7-ethoxyresorufin-O-deethylase and vitellogenin
as exposure biomarkers in Oncorhynchus mykiss. The half-effect concentrations (EC50)
of these chemicals were determined through both in vitro and in vivo assays. The in vitro
EC50 was used as a dose parameter in the PBTK model to predict chemical concentrations
in the blood and liver of Oncorhynchus mykiss. Linear correlations were observed be-
tween in vitro EC50 and the concentrations of chemicals in the blood and liver, indicating
that combining the PBTK model with in vitro assays can accurately predict results from
in vivo experiments.

3.2.2. Dose Extrapolation

In toxicology experiments, a high dose exposure is commonly employed; however,
actual exposure to xenobiotics typically occurs at low doses. Consequently, dose extrap-
olation becomes crucial in risk assessment, particularly when transitioning from high to
low doses. Simple linear extrapolation often leads to significant deviations due to potential
saturation of absorption, metabolism, and excretion during high dose exposure. To address
this issue more accurately, the PBTK model incorporates nonlinear equations such as the
Michaelis-Menten equation to describe the nonlinear processes of chemicals in vivo. For
example, Wang et al. [112] employed the PBTK model to simulate the toxicokinetic of
vinyl chloride in the human body after exposure to 100 ppm for 6 h. Subsequently, this
model was utilized to predict the exhaled breath concentration of vinyl chloride following
exposures of 59 ppm and 261 ppm for 7.5 h. The PBTK model’s predicted values aligned
closely with the measured values, thereby demonstrating its precise predictive capability
for in vivo concentrations of inhaled vinyl chloride.

3.2.3. Exposure Route Extrapolation

Exposure route extrapolation involves developing a model based on intravenous
administration and incorporating absorption processes to extrapolate to non-intravenous
routes such as oral, subcutaneous, or inhalation exposure. Traditional extrapolation meth-
ods often assume complete absorption in different routes, disregarding factors like the
first-pass effect in oral administration. The PBTK model can simulate the absorption
process in various exposure routes, offering a more scientifically sound and accurate
extrapolation approach.

Gajewska et al. [113] employed a PBTK model to extrapolate the oral no observed
adverse effect level (NOAEL) of three cosmetic ingredients (coumarin, hydroquinone,
and caffeine) in animal studies to estimate the corresponding oral NOAEL in humans.
Based on this, they predicted the concentration in the human body following percutaneous
absorption. The findings revealed that for low exposure doses, the oral route did not
consistently result in higher in vivo concentrations compared to the percutaneous route.

3.2.4. Interspecific Extrapolation

In toxicological experiments, ethical considerations often require testing on experi-
mental animals, and the findings need to be extrapolated to humans for risk assessment
purposes. Traditional extrapolation methods rely on scaling factors such as body weight
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or body surface area, which fail to account for metabolic differences between species and
consequently introduce significant uncertainty. Interspecific extrapolation using the PBTK
model allows the accurate prediction of toxicokinetic processes across different species by
adjusting species-specific parameters such as physiological and metabolic rate parameters.

The human PBTK model for acrylamide and its metabolite epoxyproacrylamide was
developed by Sweeney et al. [114], based on the rat PBTK model, with adjustments made
to certain parameters using human data. The model successfully predicted the toxicoki-
netic processes of these compounds in humans, yielding results consistent with literature
measurements. Furthermore, this model was employed to investigate the safety dose of
acrylamide in humans.

3.3. PBTK of the Special Population

The primary distinction between the special population and the general population
lies in the alterations observed in physiological structure and parameters. Consequently, a
PBTK model designed for a specific population can be developed. This involves modifying
the general population model framework, replacing standard physiological parameters
with those specific to the particular population, and integrating distinctive mechanisms
related to specific chemicals. Commonly employed PBTK models for special populations
encompass three categories: pregnant women and fetuses, children, as well as patients
afflicted with hepatic or renal impairment.

For pregnant women and fetuses, they are often modeled together rather than sepa-
rately in PBTK models. Abduljalil et al. [115] investigated the anatomical, physiological,
and metabolic changes occurring in pregnant women throughout gestational weeks. Stud-
ies have demonstrated significant alterations in crucial parameters such as cardiac output,
protein binding, and metabolic enzyme activity during pregnancy. Moreover, many physio-
logical parameters change non-linearly over time and require description through distinct
algorithms. Xia et al. [116] presented a relatively simple structure of the PBTK model
for pregnancy, incorporating essential physiological parameters like renal function and
CYP450 enzyme system activity. The model was validated using four reference drugs.
Wu et al. [117] expanded the PBTK model constructed by Xia et al. by adding physiological
parameters such as fetal placenta, fat, and plasma volume for the application in pregnant
women. Dallmann et al. [118] provided a comprehensive review of existing PBTK models
during pregnancy, characterizing the model structures for pregnant women and fetuses. In
this model, the fetus was connected to the mother through the umbilical artery and vein of
the placenta. Corley et al. [119] assessed the applicability of PBTK models for pregnant and
lactating women in child risk assessment. The PBTK model developed by Lu et al. [120]
integrated variations in enzyme activity and accurately predicted the therapeutic doses
of three drugs, namely caffeine, metoprolol, and midazolam, which were metabolized
by CYP1A2, CYP2D6, and CYP3A4 respectively, in pregnant women. The findings re-
vealed a two-fold increase in caffeine exposure among pregnant women compared to their
non-pregnant counterparts.

For children, physiological parameters vary significantly across the different stages of
development from infancy to 18-year-old adolescence. Therefore, it is more appropriate
to express these parameters as age-related. Edgington et al. [121] summarized changes
in relevant physiological parameters in children, such as body weight, height, organ
weight, and organ-specific blood flow. They modified adult PBTK models by incorporating
age-related adjustments and proposed age-corrected models to predict chemical concen-
trations in plasma for children at corresponding ages. Kovar et al. [122] developed an
adult PBTK model for buprenorphine and norbuprenorphine, and this model was also
suitable for children and preterm neonates since it considered age-related changes. Khalil
et al. [123] provided a summary of the methodology, application, and limitations of PBTK
models for pediatric medication. Generally, the PBTK model proves valuable in simulating
and predicting pharmacokinetics after medication administration in children by provid-
ing guidance on optimal timing, dosage, and frequency while avoiding ethical concerns.
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However, there are limitations due to the incompleteness of physiological process descrip-
tions and variability and uncertainty in the population, limiting the clinical application of
these models.

In the case of hepatic and renal impairment, the primary impact is on the clearance of
chemicals from the body, leading to a slower decrease in plasma concentration. To predict
the temporal profile of chemical concentrations in patients with hepatic and renal impair-
ment, it is necessary to adjust physiological parameters affected by liver and kidney damage
without modifying the model structure [124]. Compared to a healthy state, parameters such
as hepatic and renal blood flow, liver and kidney function, plasma protein binding rate,
enzyme activity, and elimination processes are primarily affected. Furthermore, enzyme
activity, CL, and biliary excretion are affected during oral exposure in cases of hepatic
impairment [125,126]. Additionally, chemicals primarily metabolized by the liver are sig-
nificantly affected by renal impairment. This condition decreases glomerular filtration rate
(GFR), renal tubular secretion, and protein binding and has repercussions on intestinal
and hepatic [127]. Strougo et al. [124] proposed a semi-PBTK model for patients with
both hepatic and renal insufficiencies to accommodate situations where data availability is
limited since full PBTK models necessitate an extensive. Li et al. [128] used the PBTK model
to predict the intravenous and oral pharmacokinetics of bisoprolol across multiple dose
levels in normal adult human populations and patients with renal impairment. During the
model construction process, parameters such as GFR, creatinine clearance rate, age, and
tissue blood flow were adjusted to represent patients with impaired renal function.

3.4. Metabolic Characteristics and Mechanisms

Complex models can be built based on the ADME processes of chemicals to simulate
the effects of transporters, metabolic enzymes, and receptors, thereby predicting the internal
dose of specific organs or tissues. Through the integration of TK and toxicodynamic (TD)
models, a concentration–effect relationship can be established to aid in investigating the
mechanism underlying xenobiotic toxicity. For example, glycyrrhetinic acid (GA) inhibits
renal 11β-hydroxysteroid dehydrogenase 2 (11β-HSD 2) and enhances mineralocorticoid
receptor activity, leading to pseudo-hyperaldosteronism. Xu et al. [129] developed a human
PBTK model of GA and a renal TK/TD model that can describe the effects of 11β-HSD
2 and mineralocorticoid receptors. The biomarkers such as urine cortisol and cortisone
concentrations, as well as endpoints including angiotensin II, aldosterone, potassium ions,
and sodium ions of GA were predicted using this model. This integrated model can be
utilized to determine the safe dosage of GA.

3.5. Mixture Risk Assessment

In daily life, exposure to multiple chemicals simultaneously is a common occurrence.
Synergistic and antagonistic interactions between these chemicals can either enhance or
weaken their toxic effects. Therefore, accurately assessing the risk of chemical mixtures
requires considering these interactions rather than simply calculating the total toxic effects
through addition or subtraction. The PBTK model can account for the pharmacokinetic
characteristics of chemicals and accurately evaluate the toxic effects of mixtures by incorpo-
rating mixture interactions. In studies involving multiple mixtures, it is common practice
to establish a binary mixture PBTK model and subsequently build upon it to develop a
multivariate mixture PBTK model. For instance, Haddad et al. [130] constructed a PBTK
model to simulate the toxicokinetics of mixtures composed of benzene (B), toluene (T),
ethylbenzene (E), and m-xylene (X) in rats. Initially, pairwise chemical combinations were
simulated with optimized parameters obtained from experimental data for B-T, B-E, B-X,
T-E, T-X, and E-X. The mechanism of interactions between binary mixtures was determined
by evaluating the metabolic inhibition constant Ki for competitive or noncompetitive in-
hibition scenarios. Subsequently, using this information as a foundation, they developed
a comprehensive PBTK model for all four chemicals in the mixture, which effectively
predicted their respective toxicokinetic processes.
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4. Prospects

The PBTK model has undergone gradual development since its initial proposal by
Teorell in the 1930s [131], particularly from the 1960s onwards. In the 1980s, it found
application in toxicology and became known as the PBTK model. With advancements in
computer science and technology, the PBPK/PBTK model has experienced rapid growth
and widespread utilization. Its applications encompass chemical risk assessment, new
drug development, and generic drug research. Compared to traditional compartmental
models, the PBTK model offers enhanced accuracy in dose determination, exposure route
analysis, and interspecific extrapolation, rendering it more suitable for health risk assess-
ment purposes. A robust PBTK model should possess four essential characteristics [11]:
(1) a physiologically-based structure with appropriate assumptions, (2) accurate mathe-
matical equations representing the model, (3) precise parameter values within the model,
and (4) comprehensive evaluation and verification of the model’s performance. However,
meeting these characteristics consistently throughout the construction processes of a PBTK
model poses inherent challenges:

(1) The PBTK model is based on the understanding of the in vivo ADME processes of
chemicals. However, it is challenging to construct a corresponding PBTK model for
certain drugs, such as Class 3 and 4 drugs in the Biopharmaceutics Classification
System (BCS), traditional Chinese medicine ingredients, heavy metals, etc., due to
limited knowledge about their ADME processes.

(2) The parameters required by the PBTK model are typically obtained through in vivo,
in vitro, and in silico assays. However, uncertainties may exist regarding parameters
measured using in vitro and in silico assays that require validation with further in vivo
experimental data. Moreover, special population groups, such as different races,
children, pregnant women, obese individuals, and those who are ill, exhibit distinct
physiological and ADME characteristics. Therefore, constructing PBTK models for
these special groups necessitates extensive experimental research support.

(3) Validating exposure characteristics among different subjects under various exposure
conditions is crucial for establishing a reliable PBTK model. Unfortunately, in toxico-
logical studies, the lack of relevant experimental data poses challenges for verifying
the accuracy of PBTK models.

(4) Constructing PBTK models can be relatively complex as it requires researchers to pos-
sess fundamental knowledge of toxicokinetics, toxicology, physiology, mathematics,
and modeling. This complexity limits accessibility to these models.

(5) For mixtures composed of different types of chemicals, it becomes difficult to con-
struct mixed PBTK models due to variations observed during their respective ADME
processes within an organism and also because interaction processes between them
can become intricate.

To support scientific researchers and risk assessment practitioners, the US Environ-
mental Protection Agency (EPA) [132] and the World Health Organization (WHO) [80]
have issued guidance documents on the PBPK/PBTK model in 2006 and 2010, respectively.
These documents provide modeling methods, applications in risk assessment, and stan-
dardized model description paradigms to facilitate understanding and qualification by
regulatory authorities. Since 2014, the FDA organized multiple PBTK workshops, and
modeling reports have been submitted to health authorities to optimize clinical trials or
seek clinical study waivers [133]. Recognizing the potential of the PBPK/PBTK model
in pharmaceutical development, the FDA and the European Medicines Agency (EMA)
released guidance documents in 2016. FDA focused on the standard format and struc-
ture of the report [105], and EMA issued the submission of supporting documentation
to demonstrate model reliability [106]. The Organization for Economic Cooperation and
Development (OECD) has issued a guidance document on PBTK models for regulatory
purposes concerning chemicals [134]. The OECD not only provides the process and self-
check form for constructing PBTK models but also offers 7541 existing PBTK models for
1150 chemicals and 13 typical cases as references.
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Future research in PBTK modeling aims to develop more efficient algorithms that
reduce simulation time and user-friendly software with simpler interfaces and lower costs.
Integration with quantitative pharmacology, systems biology, cellular pharmacokinetics,
and other disciplines will expand the capabilities of the PBTK model. Recognition and
acceptance by government and regulatory authorities will play a vital role in promoting its
application and development. The advancement and utilization of the PBTK model require
interdisciplinary collaboration among physiology, biochemistry, pharmacology, toxicology,
mathematics, computer science, and software engineering, as well as involvement from
government agencies, academia, research institutions, and enterprises. This collective
effort will drive the development and application of the PBTK model, including a more
complex mixture of PBTK models, PBTK/TD models, and the transition from animal-based
testing methods to non-animal alternatives in health risk assessment. However, when
utilizing PBTK models, it is crucial to consider various biological variabilities, differences
in exposure scenarios, and the accuracy of model parameters to ensure the reliability and
precision of the predictions. It is noteworthy that PBTK models predominantly focus on
vertebrates, raising concerns about their applicability to other acquisition of corresponding
model parameters when constructing PBTK models for non-vertebrate species within
the ecosystem present critical considerations. These issues necessitate attention in PBTK
models targeting ecological systems and require resolution in future research.

5. Conclusions

This review systematically delineates the characteristics of PBTK models, providing a
comprehensive overview covering aspects of modeling, application, and prospects. The ap-
plication of PBTK models has not only deepened our understanding of biological processes
within the body but also provided substantial support for fields such as drug exploitation
and environmental toxicology. The continuous development and refinement of PBTK
models will offer more accurate and reliable tools for health risk assessment.
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