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Abstract: A growing body of literature has attempted to characterize how traffic-related air pollution
(TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespi-
ratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms
through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of
the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic
biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identi-
fied the omic biomarkers significantly associated with short- or long-term TRAP and used these
biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related
associations with biological pathways involving lipid metabolism, cellular energy production, amino
acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress.
Our analysis suggests that an integrated multi-omics approach may provide critical new insights
into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a
more unified approach for characterizing the dynamic and complex biological processes linking
TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and
opportunities associated with such efforts.

Keywords: traffic-related air pollution; DNA methylation; methylomics; proteomics; metabolomics;
multi-omics; cardiovascular disease; respiratory disease

1. Introduction

It is well established that exposure to traffic-related air pollution (TRAP) is associated
with adverse respiratory and cardiovascular outcomes [1–3]. Research suggests that the
pathways underlying associations between TRAP exposure and cardiorespiratory outcomes
likely involve oxidative stress, endothelial dysfunction, and inflammatory responses [1,4–9].
A growing number of epidemiological studies are investigating how changes in DNA
methylation patterns (methylomics), proteomic profiles, and metabolomic profiles under-
lie the physiological pathways linking TRAP exposure to respiratory and cardiovascular
health (e.g., [10–15]). Nevertheless, no large-scale longitudinal study to date has identi-
fied common biological pathways involving TRAP-related methylomic, proteomic, and
metabolomic patterns. Such evidence could help establish a unified multi-omics frame-
work to gain a better understanding of the adverse health consequences of air pollutants.
Furthermore, this knowledge could be used to help design relevant interventions.
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Previous work has outlined many of the challenges of establishing a unified multi-
omics approach to air pollution epidemiology. Common challenges include the need for
repeated samples, the identification of an appropriate exposure metric, and the availability
of appropriate statistical techniques to handle the large number of omics analytes [16–20].
Furthermore, challenges related to heterogeneity in study designs, populations, air pollu-
tants of interest, exposure windows, omics measurement methods, and analytic techniques
arise when synthesizing the literature [10,11,20–23]. Despite these challenges, multi-omics
integration (i.e., integrating across multiple levels of biology such as methylation patterns,
proteomic profiles, and metabolomic profiles) aimed at understanding mechanisms link-
ing environmental risk factors to chronic disease can advance clinical and public health
knowledge and inform the design and implementation of relevant interventions [24–26].
To advance the goal of developing an integrated multi-omics approach, we conducted the
first systematic review focused on the associations between three types of omic markers
and ambient TRAP exposure. Using these signals from across omics types, we aimed to
pinpoint common biological pathways known to be involved in respiratory and cardio-
vascular disease (CVD), assess the challenges and benefits of a multi-omics approach, and
identify research needs. The number of studies directly linking TRAP exposure to clinical
outcomes through changes in omics signals is relatively small. Despite this, we believe that
identifying omics signals and pathways known to be associated with both TRAP exposure
and cardiorespiratory disease is a prudent step toward advancing clinical and public health
decision-making.

2. Materials and Methods
2.1. Search Strategy and Study Selection

We searched Embase and PubMed for English-language epidemiologic articles pub-
lished between January 2010 and February 2023 that reported on the association between
TRAP exposure and one or more of three omics types (DNA methylation [methylomics],
proteomics, and metabolomics). We included both studies that examined at least one
targeted biomarker in association with TRAP (some of which were not truly ‘omics’ ap-
proaches given the small number of biomarkers assayed), as well as studies that assessed a
large number of omic markers through an untargeted approach. Given the rapid expansion
of the omics field, 2010 was chosen as a date that could capture the important recent
developments in technology and understanding. Indeed, metabolomics was considered an
“emerging field” up until 2010, top-down proteomics was not widely used until 2011 [27],
and methylation research had just benefited from landmark technological developments in
the form of upgraded methylation arrays. For example, the Illumina Infinium Methylation
450 K array was released in 2011 and represented a leap forward compared to the previ-
ous model (450,000 versus 27,000 CpG sites) [28]. Additionally, foundational databases
that annotate genes, proteins, and metabolites, such as KEGG and UniProt, underwent
major changes post-2010 and continue to update their knowledge banks routinely [29].
Furthermore, although pathway analysis tools such as Reactome and NIH-DAVID were
released in 2003, the addition of the open-source platform MetaboAnalyst in 2009 allowed
researchers to gain more insight from their omics data without significant training [30].
Search terms included DNA methylation, proteomics, metabolomics, TRAP, and partic-
ulate matter (PM). The search strategy and screening process are described in detail in
Supplementary File S1. We screened the extracted articles by title and abstract. We ex-
cluded reviews and reports, as well as in vitro, in silico, ex vivo, and animal studies. We
excluded articles not containing one or more TRAP exposures. Relevant pollutants included
particulate matter < 2.5 microns (PM2.5), particulate matter < 10 microns (PM10), PM con-
stituents, ultrafine particulate matter (UFP), black carbon (BC), elemental carbon (EC),
organic carbon (OC), nitrogen dioxide (NO2), nitrogen oxides (NOx), carbon monoxide
(CO), sulfur dioxide (SO2), sulfate (SO4

2−), ozone (O3), diesel exhaust (DE), and poly-
cyclic aromatic hydrocarbons (PAHs). Some studies that examined high versus low traffic
scenarios did not specify individual pollutants but rather called the pollution mixture
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“TRAP”. Such pollutant mixtures have been called “TRAP” throughout this review. Studies
containing TRAP without further specification were either (1) traffic-specific and focused
on pollutants originating directly from traffic or commuter exposures, or (2) levels of am-
bient pollutants typically associated with traffic. We excluded studies that identified the
source of air pollution as anything other than traffic-related (e.g., we excluded occupational
exposures); however, we did not require source apportionment, nor did we comment on
whether ambient pollution is necessarily due to TRAP. Studies focused on people who
were pregnant or under 18 years of age were also excluded. The focus of this review was to
capture the available literature regarding adult exposure to TRAP, given the importance
of examining these sub populations separately and the likelihood of different physiolog-
ical responses to TRAP in terms of disease risks [31]. In addition to the 115 articles that
remained after screening, we identified 24 papers through expert knowledge, for a total
of 139 unique studies. There were 54 methylomic, 57 proteomic, 37 metabolomic, and
9 overlapping studies—four of which included both proteomics and metabolomics and five
that included both proteomics and methylation (Figure 1).
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Figure 1. Flow diagram of the article selection process with exclusion criteria.

2.2. Data Extraction and Organization

We extracted the following from each article: study design and sample size, air pollu-
tion exposure methods, exposure metrics, omics assay methods, participant demographics,
statistical methods, and results (Table 1 and Supplementary File S2 Tables S1–S3). Statisti-
cally significant associations between different TRAP exposures and each omics article
type (methylomic, proteomic, and metabolomic) were identified (Supplementary File S2,
Tables S4–S6). We used statistical significance thresholds determined by the original au-
thors, which included both adjusted and non-adjusted p-values. The specific statistical
thresholds used in each study to determine the significance of association among TRAP
and various omics signals are given in Supplementary File S2, Tables S1–S3. Air pollu-
tion exposures were split by pollutant type and averaging period (short-term: ≤30 days;
long-term: >30 days).
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Using the significant associations shown in Supplementary File S2 Tables S4–S6, we
identified common biological processes and types of biomarkers represented across the
omics types (an abbreviated version of results shown in Table S7 and full results shown
in Supplementary File S2 Table S8). Gene Ontology (GO) molecular functions (molecular-
level activities performed by gene products, e.g., glucose transmembrane transport) were
extracted for each gene and protein [32]. Where available, Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (pathways of common molecular interaction, e.g., tumor
necrosis factor signaling) were indicated for all genes, proteins, and metabolites [29,33,34].
For genes and proteins without KEGG data, GO biological processes (functions of gene
products) were used instead. The neXtProt knowledgebase [35] was used to extract GO
molecular functions, GO biological processes, and KEGG pathways for all genes and pro-
teins. The GenomeNet KEGG COMPOUND Database [36] was used to extract KEGG
functions for all available metabolite markers. To integrate omics signals in terms of their
biological function (regardless of the omics approaches that were used or not in the orig-
inal literature), we categorized each biomarker and their assigned biological functions
(both KEGG and GO) to create a list of all biological functions that could be involved
in respiratory and CVD processes. Within these lists, we identified methylomic, pro-
teomic, and metabolomic signals involved in particular pathways. Based on this analysis,
the analyses described in Section 2.3 below, and the relevant literature, we theorized
about possible interactions among these markers that may affect disease states. Based
on Supplementary File S2 Tables S4–S8, we created a simplified conceptual diagram of
the putative relationships among TRAP, omics signals, subclinical processes, and clinical
outcomes (Figure 2). 
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Figure 2. Overview of the relationships among traffic-related air pollution, omics markers, and sub-
clinical and clinical cardiovascular and respiratory disease outcomes. Solid arrows indicate a well-
established, known relationship, as evidenced by the biomedical literature. Dashed arrows indicate 
a probable association or an association with possible mediators that needs to be further investi-
gated. The color coding of text within methylomic, proteomic, and metabolomic text boxes corre-
sponds to a category of biological pathways. Green—lipid metabolism; orange—cellular energy pro-
duction; blue—amino acid metabolism; red—inflammation and immunity; yellow—coagulation; 
purple—endothelial function; white—oxidative stress; black—analytes that do not fit into the above 
categories (vitamins, purines, xanthines, etc.). Abbreviations: ARG2—Arginase 2; C1q—Comple-
ment component 1q; C3—Complement component 3; C4A—Complement component 4A; CCL2—
CC motif chemokine ligand 2/monocyte chemoattractant protein 1; CCL3—CC motif chemokine 
ligand 3/macrophage inflammatory protein 1 alpha; CD14—Cluster of differentiation 14; CD40LG—
Cluster of differentiation 40 ligand; CX3CL1—Fractalkine; CXCL10; CXC motif chemokine ligand 
10/interferon gamma inducible protein 10; F2—Coagulation factor 2; F2R- Coagulation factor 2 re-
ceptor; F3—Coagulation factor 3; FGF2—Fibroblast growth factor 2; GM-CSF—Granulocyte macro-
phage colony stimulating factor; ICAM1—Intercellular adhesion molecule 1; IL1b—Interleukin 1 
beta; IL4—Interleukin 4; IL6—Interleukin 6; IL10—Interleukin 10; MAPK—Mitogen activated pro-
tein kinase; NOS2—Nitric oxide synthase 2; Nf-KB—Nuclear factor kappa light chain enhancer of 
activated B cells; P13K-AKT—Phosphatidylinositol 3 kinase and AKT/protein kinase B; SER-
PINE1—Serpin family E member 1/Plasminogen activator inhibitor 1; TLR2—Toll like receptor 2; 
TLR4—Toll like receptor 4; TNF—Tumor necrosis factor alpha; TNFa—Tumor necrosis factor alpha; 

Figure 2. Overview of the relationships among traffic-related air pollution, omics markers, and
subclinical and clinical cardiovascular and respiratory disease outcomes. Solid arrows indicate a
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well-established, known relationship, as evidenced by the biomedical literature. Dashed arrows
indicate a probable association or an association with possible mediators that needs to be further
investigated. The color coding of text within methylomic, proteomic, and metabolomic text boxes
corresponds to a category of biological pathways. Green—lipid metabolism; orange—cellular energy
production; blue—amino acid metabolism; red—inflammation and immunity; yellow—coagulation;
purple—endothelial function; white—oxidative stress; black—analytes that do not fit into the above
categories (vitamins, purines, xanthines, etc.). Abbreviations: ARG2—Arginase 2; C1q—Complement
component 1q; C3—Complement component 3; C4A—Complement component 4A; CCL2—CC
motif chemokine ligand 2/monocyte chemoattractant protein 1; CCL3—CC motif chemokine ligand
3/macrophage inflammatory protein 1 alpha; CD14—Cluster of differentiation 14; CD40LG—Cluster
of differentiation 40 ligand; CX3CL1—Fractalkine; CXCL10; CXC motif chemokine ligand 10/inter-
feron gamma inducible protein 10; F2—Coagulation factor 2; F2R- Coagulation factor 2 receptor;
F3—Coagulation factor 3; FGF2—Fibroblast growth factor 2; GM-CSF—Granulocyte macrophage
colony stimulating factor; ICAM1—Intercellular adhesion molecule 1; IL1b—Interleukin 1 beta;
IL4—Interleukin 4; IL6—Interleukin 6; IL10—Interleukin 10; MAPK—Mitogen activated protein ki-
nase; NOS2—Nitric oxide synthase 2; Nf-KB—Nuclear factor kappa light chain enhancer of activated
B cells; P13K-AKT—Phosphatidylinositol 3 kinase and AKT/protein kinase B; SERPINE1—Serpin
family E member 1/Plasminogen activator inhibitor 1; TLR2—Toll like receptor 2; TLR4—Toll
like receptor 4; TNF—Tumor necrosis factor alpha; TNFa—Tumor necrosis factor alpha; VCAM1—
Vascular cell adhesion molecule 1; VEGFa—Vascular endothelial growth factor alpha; vWF—Von
Willebrand factor.

2.3. Pathway and Network Analyses

We conducted bioinformatics analyses synthesizing the results across the omics studies
using the lists of relevant biomarkers shown in Supplementary File S2 Table S9 (representing
all significant associations shown in Supplementary File S2 Tables S4–S6). We included all
biomarkers identified as significantly associated, even if individual studies chose different
statistical significance thresholds (reflecting in part differences in omic assay approaches,
the number of biomarkers assessed, and study-specific analytic approaches). This reflects
the individual study authors’ decisions about which biomarkers were most salient given
the methodological characteristics of the study and allows us to be most comprehensive
in including a large set of possible biomarkers. We used the open-source tools Reactome
(Version 85) [37] and MetaboAnalyst 5.0 [38] to conduct pathway analyses. Specifically, we
used Reactome to perform overrepresentation pathway analyses on the gene methylation
sites and proteins that were significantly associated with TRAP exposure (separately for
each omic type and associations with short- and long-term TRAP exposures). We chose
Reactome because it allows for pathway analysis with methylation markers and proteins,
its strength in providing visualization of salient pathways, and its clear cross-linkages to
other databases. For our Reactome analysis, relevant parameters selected to perform these
analyses included “project to human” and “include interactors,” limiting the results to
human genes and proteins, and drawing from the IntAct database to increase the analysis
background, respectively. MetaboAnalyst was used to conduct a KEGG pathway analysis
of all metabolites that were significantly associated with TRAP (separately for short- and
long-term exposures) since this software is commonly used with metabolites and provides
additional analytic features. Relevant parameters selected included a hypergeometric
test for enrichment analysis and relative betweenness centrality topology analysis. These
programs generate lists of pathways indicated by the extracted analytes. Some pathways
discussed in this review were not on the indicated lists of these pathway analyses, and
therefore statistical significance values were not given. Given that we extracted the KEGG
functions and/or GO data for each analyte, we were able to group omics signals effectively,
despite pathway analysis-related statistical thresholds that may be limiting in representing
all biological pathways involved in TRAP exposure.
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MetaboAnalyst was also used to conduct four KEGG network analyses representing
the functional relationships among biomarkers. We created two networks incorporating
methylation markers and metabolites that were significantly associated with short- and
long-term TRAP exposure (Figures 3 and 4) and two networks incorporating proteins and
metabolites that were significantly associated with short- and long-term TRAP exposure
(Figures 5 and 6). In each case, we used separate networks for short- and long-term
exposures. In network analyses, networks are parameterized by degree (i.e., the number
of incoming/outgoing edges on each node) and betweenness (i.e., the number of shortest
paths between each pair of nodes). Higher values for degree and betweenness restrict
the network to only the most highly connected and relevant nodes [39,40]. For our two
short-term network analyses, degree and betweenness filters were constrained to a degree
of at least three. In the long-term exposure analyses, networks did not contain enough
nodes to apply these filters. This is due to the relative sparsity of literature examining
associations between long-term exposures and omics signals.
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Figure 3. Short-term air pollution and gene–metabolite network analysis. Circular nodes repre-
sent genes, whereas square nodes represent metabolites. The color of each node corresponds to
the category of the biological pathway to which that analyte belongs. Green—lipid metabolism;
orange—cellular energy production; blue—amino acid metabolism; red—inflammation and immu-
nity; yellow—coagulation; pink—endothelial function; white—oxidative stress; black—analytes
that do not fit into the above categories (vitamins, purines, xanthines, etc.). Abbrevia-
tions: ACE—Angiotensin converting enzyme; CCL2—Monocyte chemoattractant protein 1;
CRP—C-reactive protein; CSF2—Colony stimulating factor 2; CXCL10—Interferon gamma-induced
protein 10; EDN1—Endothelin 1; EDNRB—Endothelin receptor type B; F2—Coagulation fac-
tor 2; F2R—Coagulation factor 2 receptor; F3—Coagulation factor 3; IL1B—Interleukin 1 beta;
IL2—Interleukin 2; IL6—Interleukin 6; IL-8—Interleukin 8; ICAM1—Intercellular adhesion molecule
1; MPO—Myeloperoxidase; NOS2—Nitric oxide synthase 2.
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Figure 4. Long-term air pollution and gene–metabolite network analysis. Circular nodes
represent genes, whereas square nodes represent metabolites. The color of each node corre-
sponds to the category of the biological pathway to which that analyte belongs. Green—lipid
metabolism; orange—cellular energy production; blue—amino acid metabolism; red—inflammation
and immunity; yellow—coagulation; pink—endothelial function; white—oxidative stress;
black—analytes that do not fit into the above categories (vitamins, purines, xanthines, etc.).
Abbreviations: CACNA2D1—Calcium voltage-gated channel auxiliary subunit alpha2delta 1;
ENPP2—Ectonucleotide pyrophosphatase 2; F2RL3—Coagulation factor 2 receptor-like thrombin or
trypsin receptor 3; GNAS—GNAS complex locus; OXT—Oxytocin prepropeptide; SELP—P selectin.
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category of the biological pathway to which that analyte belongs. Green—lipid metabolism;
orange—cellular energy production; blue—amino acid metabolism; red—inflammation and immunity;
yellow—coagulation; pink—endothelial function; white—oxidative stress; black—analytes that do not
fit into the above categories (vitamins, purines, xanthines, etc.). Abbreviations: 15(3)-HETE—15 Hydrox-
yeicosatetraenoic acid; ACE—Angiotensin converting enzyme; ALOX15—Arachidonate 15 lipoxy-
genase; APRT—Adenine phosphoribosyltransferase; APOB—Apolipoprotein B; CCL2—monocyte
chemoattractant protein 1; CCL20—CC motif chemokine ligand 20; CKB—Creatine kinase B;
CRP—C reactive protein; CSF2—Colony stimulating factor 2; CXCL1—CXC motif chemokine
ligand 1; CXCL3—CXC motif chemokine ligand 3; CXCL5—CXC motif chemokine lig-
and 5; CXCL10—Interferon gamma induced protein 10; CXCL11—CXC motif chemokine
ligand 11; EGF— Epidermal growth factor; EDN1—Endothelin 1; F3—Coagulation fac-
tor 3; IL1B—Interleukin 1 beta; IL2—Interleukin 2; IL4—Interleukin 4; IL6—Interleukin 6;
IL8—Interleukin 8, ICAM1—Intercellular adhesion molecule 1; MMP2—Matrix metalloproteinase 2;
MMP9—Matrix metalloproteinase 9; MPO—Myeloperoxidase; PLAT—Plasminogen activator, tissue
type; VEGFA—Vascular endothelial growth factor A.
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sponds to the category of the biological pathway to which that analyte belongs. Green—lipid
metabolism; orange—cellular energy production; blue—amino acid metabolism; red—inflammation
and immunity; yellow—coagulation; pink—endothelial function; white—oxidative stress;
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SERPINE1—Plasminogen activator inhibitor 1.
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Table 1. Overview of the literature.

Omics Type Study Design Exposure
Assessment

Exposure
Window Study Populations a Country Sample Size Sex Distribution Omics Approach

Methylomics
n = 54 studies

Cross-sectional: 29
Panel: 9

Cohort: 5
Cross-over: 9

Quasi-experimental: 2

Fixed site
measurement: 16
Spatiotemporal

model: 21
Personal

measurement: 12
Controlled
exposure: 5

Short-term: 29
Long-term: 25

NAS: 10 [41–50]
KORA: 3 [45,49,51]

WHI: 3 [52–54]
ARIC: 3 [52–54]

EPIC-Italy: 2 [55,56]
MESA: 2 [57,58]

Sister Study: 2 [59,60]
BAPE: 2 [61,62]

Taiwan Biobank: 2 [63,64]
REGICOR: 1 [55]

EPIC-Netherlands: 1 [56]
Lifelines: 1 [51]

EXPOsOMICS: 1 [65]
SAPALDIA: 1 [66]

Lothian Birth Cohort: 1 [67]
SPHERE: 1 [68]

USA: 17
China: 15

Italy: 8
Canada: 4

Netherlands: 3
Taiwan: 3

Germany: 2
Switzerland: 2

UK: 2
Belgium: 2

Spain: 1
South Korea: 1

Czech Republic: 1

<50: 20
50–99: 3

100–1000: 20
>1000: 11

100% female: 4
100% male: 11

Other: 39

Candidate gene: 26
Epigenome-wide

association study: 24
Global methylation: 4

Proteomics
n = 57 studies

Cross-sectional: 28
Panel: 8

Cohort: 3
Cross-over: 10

Quasi-experimental:
Case-control: 3

Fixed site
measurement: 24
Spatiotemporal

mode: 19
Personal

measurement: 9
Biomarker: 2
Controlled
exposure: 4

Short-term: 36
Long-term: 21

NAS: 3 [69–71]
SWAN: 3 [72–74]
KORA: 3 [75–77]

Heinz–Nixdorf Recall: 3
[75,78,79]

Framingham Offspring: 2
[80,81]

AIRCHD: 2 [82,83]
EPIC-Italy: 1 [84]

BPRHS: 1 [85]
Malmo Diet and Cancer: 1 [86]

AHAB-II: 1 [87]
SAGE: 1 [88]

Nurse’s Health Study: 1 [89]
ELISABET: 1 [90]
ESCAPE: 1 [91]

SAPALDIA: 1 [75]
FINRISK: 1 [75]

TwinGene: 1 [75]
MESA: 1 [92]

CAFEH: 1 [93]
CoLaus: 1 [94]

USA: 17
China: 17
Canada: 6

Germany: 4
India: 3

Taiwan: 3
Italy: 2

Sweden: 1
UK: 1

France: 1
Brazil: 1

Sweden: 1
Finland: 1

Switzerland: 1

<50: 15
50–99: 10

100–1000: 13
>1000: 19

100% female: 3
100% male: 6

Other: 48

Targeted: 54
Untargeted: 3



Toxics 2023, 11, 1014 10 of 39

Table 1. Cont.

Omics Type Study Design Exposure
Assessment

Exposure
Window Study Populations a Country Sample Size Sex Distribution Omics Approach

Metabolomics
n = 37 studies

Cross-sectional: 15
Panel: 7

Cohort: 2
Cross-over: 7

Natural Experiment: 1

Fixed site
measurement: 8
Spatiotemporal

model: 10
Personal

measurement: 14
Biomarker: 1
Controlled
exposure: 4

Short-term: 26
Long-term: 11

DRIVE: 3 [95–97]
NAS: 2 [98,99]

Children’s Health Study: 2
[100,101]

KORA: 2 [102,103]
SAPALDIA: 1 [104]
EPIC-Italy: 1 [104]

ACE: 1 [105]
ACE-2: 1 [106]

Oxford St. 2: 1 [13]
TAPAS II: 1 [13]
CAFEH: 1 [107]
EARTH: 1 [108]
AIRCHD: 1 [83]
SCOPE: 1 [109]

TwinsUK: 1 [110]

USA: 17
China: 12

Germany: 2
UK: 2

Sweden: 1
Switzerland: 1

Italy: 1
India: 1
Spain: 1

Netherlands: 1
Brazil: 1

<50: 15
50–99: 6

100–1000: 7
>1000: 4

100% female: 1
100% male: 5

Other: 31

Targeted: 8
Untargeted: 29

a Numbers represent the number of papers reviewed that contain the given characteristic. Where the original study included multiple study populations, all study populations and
countries were counted. Abbreviations: ACE—Atlanta Commuters Exposure; AHAB-II—Adult Health and Behavior; AIRCHD—Air Pollution and Cardiovascular Dysfunctions in
Healthy Adults Living in Beijing: ARIC—Atherosclerosis Risk in Communities; BPRHS—Boston Puerto Rican Health Study; CAFEH—Community Assessment of Freeway Exposure
and Health; DRIVE—Dorm Room Inhalation to Vehicle Emissions; EARTH—Environmental and Reproductive Health; ELISABET—Enquête Littoral Souffle Air Biologie Environnement;
EPIC—European Prospective Investigation into Cancer and Nutrition; ESCAPE—European Study of Cohorts for Air Pollution Effects; KORA—Cooperative Health Research in the
Region of Augsburg; MESA—Multiethnic Study of Atherosclerosis; NAS—Normative Aging Study: REGICOR—REgistre GIroní del COR; SAGE—Study on Global Aging and Adult
Health; SAPALDIA—Swiss Study on Air Pollution and Lung Disease in Adults; SCOPE—A Prospective Study Comparing the Cardiometabolic and Respiratory Effects of Air Pollution
Exposure on Healthy and Prediabetic Individuals; SPHERE—Susceptibility to Particle Health Effects, miRNA and Exosomes; SWAN—Study of Women’s Health Across the Nation;
TAPAS—Transportation, Air Pollution, and Physical Activities; WHI—Women’s Health Initiative.
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3. Results and Discussion
3.1. Overview of the Literature

Table 1 provides an overview of the study designs, exposure assessment approaches,
study populations, sample sizes, sex distributions, and omics approaches used in the
studies included in this review.

We did not conduct a formal analysis of study quality for two primary reasons. First,
for our hypothesis-generating study, our goal was to be as comprehensive as possible in
identifying biomarkers and biological processes putatively important to the relationship
between air pollution and respiratory disease and/or CVD. Second, given that the omics
field is relatively new and is rapidly evolving, the common study quality assessment
criteria ‘checklists’ would not be appropriate for the types of studies we included in our
review. Some elements—such as study design, sample size, adjustment for confounders,
exposure assessment methods, etc.—were elements we considered and discussed below.
However, we suggest that, moving forward as a field, the assessment of multi-omics studies
requires study quality evaluation criteria. Some work has already been published to this
effect (e.g., [111]), but a more general guideline is warranted. Relevant considerations
could include whether the study was targeted or untargeted, assay technology and process
(e.g., assay size, laboratory quality checks), relevance of the biological matrix used, and
appropriateness of the bioinformatics approaches.

3.1.1. TRAP Exposure Assessment

Exposure assessment approaches differed by omics type: spatiotemporal modeling
was most common for methylomic papers, fixed site monitoring was most common for
proteomics papers, and personal monitoring was most common for metabolomics papers
(Table 1). Short-term exposures were more commonly assessed than long-term exposures
for each omic type. For long-term exposures, the most common exposure window was
an annual average (44, 28, and 22% of methylomic, proteomic, and metabolomic studies,
respectively). As in air pollution epidemiology generally, each exposure assessment ap-
proach and exposure window have strengths and weaknesses in the context of different
study designs; a potential benefit of a multi-omics approach is the enhanced reliability
of knowledge obtained from triangulating findings from studies that employ the diverse
combinations of exposure assessment techniques and windows.

The most common pollutant studied across all three omics (regardless of exposure win-
dow) was PM2.5. Forty-six methylation papers, 41 proteomics papers, and 32 metabolomics
papers measured PM2.5 exposure. PM10, UFP, BC, NO2, NOx, and O3 were all considered in
each omic type; however, they were less commonly studied in papers focused on long-term
exposures. Papers that did not investigate PM2.5 generally focused on O3 or diesel exhaust.
Given the study designs and exposure assessment methods, time-varying exposures and
TRAP mixtures were generally not accounted for in the analyses; future studies should
consider time-varying exposures and mixtures.

3.1.2. Study Populations

Research in this field predominantly draws from populations in North America, China,
and Western Europe (Table 1); future studies should include more geographic diversity,
requiring an investment in TRAP exposure and omics assessment in other geographic
regions. Additionally, although most study populations included people regardless of sex,
single-sex cohorts were common (especially for methylomic papers, where 28% were single-
sex). Three methylomic, two proteomic, and four metabolomic papers considered effect
modification by sex [45,57,67,86,101,102,112–114] (Supplementary File S2, Tables S1–S3).
Fourteen methylomic, 16 proteomic, and 21 metabolomic studies contained populations
with a mean age or entire age range of 35 years old or younger. Twenty-three methylomic,
nine proteomic, and four metabolomic studies contained populations with a mean age or
entire age range of 60 years or older. In general, the methylomic literature had slightly older
participants, and the metabolomics literature had slightly younger participants. However,
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there was adequate representation of all ages throughout all three omics types. Most studies
included healthy participants or did not specify health conditions as criteria for eligibility.

3.1.3. Biological Matrices

Methylomic, proteomic, and metabolomic markers were assessed using a variety of
biological matrices (Supplementary File S2 Tables S1–S3). Leukocytes and whole blood
were the most common biological matrices for methylomic papers (27 and 17 papers,
respectively). All studies adjusted for cell composition except those exclusively using CD4+

helper cells or buccal cells as the matrix of interest or those using paired samples with a
short lag time [115–120]. Methylation data can readily be obtained from blood samples. It
is shown that blood methylation levels correlate with methylation levels in other tissues
and relate to external exposures [121]. Given that leukocytes are derived from whole blood,
these biological matrices are equivalent. Peripheral blood mononuclear cells (PBMCs),
however, are a specific subset of leukocytes. The choice to utilize PBMCs or leukocytes in
methylomic research depends on research goals and the cell type of interest; however, both
are sufficient [122,123]. For proteomic papers, serum and plasma were the most common
biological matrices (34 and 21 papers, respectively). Nine proteomics papers used both
serum and plasma, with the inclusion of plasma serving primarily to measure fibrinogen
levels [71,72,75,81,92,124–127]. Three proteomics papers used bronchoalveolar lavage fluid
to understand the associations between TRAP and the bronchoalveolar proteome, serving
as a more direct measure of TRAP’s influence [128–130]. Both serum and plasma matrices
in proteomics research are well-accepted; however, some studies suggest that plasma
has superior predictive power for physiological outcomes [131], while others suggest
that serum is preferred for clinical chemistry [132]. Plasma is used over serum for the
exploration of coagulation proteins; however, the presence of added anticoagulants in
plasma can influence research outcomes [132]. Similar to proteomics, serum and plasma
were the most common biological matrices for metabolomics papers (17 and 14 papers,
respectively). Serum is currently considered the gold standard in metabolomics research,
providing more sensitive results in biomarker detection; however, plasma also provides
accurate results and has high reproducibility [133,134]. Five metabolomics papers utilized
urine [101,135–138] and two used bronchoalveolar lavage fluid [139,140].

In general, decisions about the biological matrix were largely determined based
on the availability of samples within a cohort rather than on the biological relevance
of a given matrix for TRAP-cardiorespiratory relationships. Although other matrices
(e.g., myocytes, bronchiolar cells, endothelial cells, etc.) may serve as a more direct source
of omics signals, they are often inaccessible and/or invasive to procure [141,142]. Addi-
tionally, none of the studies explicitly considered biomarker interactions (e.g., protein–
protein or protein–metabolite) or the possibility of biomarker degradation or metabolism
(e.g., considering how TRAP exposure may only affect biomarker levels over a specific
temporal window) [141,143–145]. Finally, without the ability to obtain repeated measures of
multiple omics types within individuals over relevant periods, it is not possible to directly
assess putative relationships between TRAP exposure and cascading biological processes.
That is, although we can view the associations among multiple omics layers and pollutants
across similar short- and long-term exposure windows, we do not have a direct means to
measure the exact temporal changes in methylomic, proteomic, and metabolomic makers
occurring at consistent points post-exposure.

3.1.4. Omics Assessment

In the methylomics literature, multiple high-throughput approaches and bioinformat-
ics technologies were used (Supplementary File S2, Table S1). The most common forms of
methylation quantification were methylation arrays (37 papers) and bisulfite polymerase
chain reaction (PCR) sequencing (13 papers). The PCR sequencing papers focused on
candidate gene approaches (primarily for inflammatory and immune-related proteins, as
well as genes related to circadian rhythm and epigenetic age) [41,50,118–120,125,146–152].
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Analyses using arrays took advantage of the evolving technology to capture the most com-
prehensive set of biomarkers possible: one paper utilized a 385 K array [46], twenty-four
utilized a 450 K array [42–45,47–49,51–60,65–67,153–156], and twelve utilized an 850 K ar-
ray [61–64,116,117,157–162]. Although we recommend the use of the most comprehensive
technology available, the contribution of groundbreaking studies using older arrays to the
current body of knowledge should not be understated [163,164]. Similarly, for the bioin-
formatics analyses of the methylomics results, researchers took advantage of the rapidly
evolving tools such as KEGG for pathway analysis [42,46,116,140,160,161], the National
Institutes of Health Databases for Annotation, Visualization, and Integrated Discovery
(NIH-DAVID) [42,56,65,155,156], Ingenuity Pathway Analysis (IPA) [43,66,130,153,157,165],
Mummichog [14,95–97,104–108,166,167], and MetaboAnalyst [98–100,102,136,168–171].

Compared to the methylomics literature, there was homogeneity in approaches used
across the proteomics literature (Supplementary File S2, Table S2). Only three of the fifty-
seven proteomics papers used untargeted omics approaches (and therefore, the use of
bioinformatics approaches for analysis was limited to relatively few studies) [130,138,165].
Instead, many studies assessed the concentration of approximately 20 targeted proteins
(e.g., cytokines, chemokines, and other immune/inflammatory-related markers). This led
to abundant data on the associations among TRAP and the concentration of key proteins re-
lated to inflammation and immunity, and therefore cardiorespiratory disease. The proteins
represented often overlapped well with the proteins encoded by candidate genes targeted
in methylation studies. While this is useful for multi-omics interpretation, the relative lack
of untargeted analyses may limit our understanding of the complete proteomic response
to TRAP and potentially bias our analyses by over-representing certain processes already
considered important in cardiorespiratory disease. Furthermore, it can make it difficult to
integrate methylomic, proteomic, and metabolomic results together.

In contrast to the proteomics literature, most (28/37) of the metabolomics papers used
untargeted approaches and twenty-two incorporated bioinformatics approaches for the
interpretation of results (e.g., eleven used Mummichog [14,95–97,104–108,166,167] and nine
used MetaboAnalyst [98–100,102,136,168–171]; Supplementary File S2, Table S3). Specific
to metabolomics is the challenge of metabolite identification. Fourteen of the thirty-seven
metabolomics papers had level one confidence (the highest level of confidence confirmed
by the reference standard) [83,97,100,103–105,108–110,113,139,166,171,172], whereas an
additional six studies contained some level one matches mixed with lower confidence
findings [13,96,106,107,167,173]. Thirteen studies had level two confidence, primarily
confirmed by library spectrum match [14,99,102,119,135,136,138,140,168–170,174,175]. Only
two studies did not contain metabolites with level two or greater confidence [99,101].
The variation in metabolite identification confidence reflects a level of uncertainty in the
metabolomics signals observed across different studies [176,177].

3.2. Omics Markers and Associated Biological Pathways

Omics markers representing biological pathways related to lipid metabolism, cellular
energy production, amino acid metabolism, inflammation and immunity, coagulation,
endothelial function, and oxidative stress were present across the literature. In this section,
we outline trends in common biological pathways and molecular functions associated
with methylomic, proteomic, and metabolomic markers of TRAP exposure, along with
the hypothesized connections to cardiorespiratory disease. Not all omics markers may be
related to clinical outcomes, and further research is needed to identify the most critical
pathways underlying the relationship between TRAP exposure and disease. Figure 2 shows
a simplified diagram of the relationships. The supporting literature is summarized in
Supplementary File S2, Tables S4–S8. Throughout this section, ‘TRAP’ refers to the air
pollutant mixture (or studies in which individual pollutants are not specified). We also
identified individual pollutants in all cases where the original researchers did. For the
pathway and network analyses, we combined all results regardless of the specific pollutant
and thus used the more general ‘TRAP’.
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Table S7 synthesizes the methylomic, proteomic, and metabolomic literature together.
The table is organized by KEGG pathway and only includes those pathways most repre-
sented and explored in the literature: lipid metabolism, cellular energy production, amino
acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxida-
tive stress. Within each KEGG pathway, all methylomic, proteomic, and metabolic markers
significantly associated with short- and/or long-term TRAP are noted. Each omics type
was separated into associations for short- and long-term exposure. Details are given in the
following sections.

3.2.1. Lipid Metabolism

Phospholipids, sphingolipids, and acylcarnitines were represented throughout the
metabolomics literature. However, no studies explored the associations between TRAP
and methylomic or proteomic markers related to lipid metabolism (Supplementary File S2,
Tables S6–S8). In the metabolomics literature, both short- and long-term PM2.5 expo-
sures were negatively associated with phospholipid levels [25–29]. In contrast, short-term
UFP, NO2, and O3 were consistently and positively associated with levels of phospho-
lipids [98,103,140]. Phospholipid metabolism is essential for normal cellular function as
it is involved in generating biological membranes and plays an important role in cellular
signaling processing in nearly all tissues [178]. Phospholipid imbalances are implicated
in neurological disorders and neurodegenerative diseases, while damaged and oxidized
phospholipids are associated with atherosclerosis and CVD (Figure 2) [179,180]. It is not
understood exactly how TRAP associations with phospholipid metabolites contribute to
the aforementioned diseases.

Sphingolipids, such as sphingosines and some sphingomyelins, were negatively asso-
ciated with short- and long-term PM2.5 as well as with short-term UFP [98,101,171] but were
positively associated with short-term O3 and Ni [98,101,140,181]. For example, sphingosine
1-phosphate (a known risk factor for coronary artery disease (CAD)) [182] was negatively
associated with short-term UFP and positively associated with short-term Ni [98]. Addi-
tionally, ceramide (a reaction product of sphingomyelin and/or sphingosine that is elevated
in patients with hypertension, angina pectoris, myocardial infarction, and stroke [183–185])
was negatively associated with short-term PM2.5 and UFP exposure [98,171]. However,
eight sphingomyelins were positively associated with long-term PM2.5 and short-term
O3 [98,140]. Given these findings, it is possible that TRAP (and particularly the PM compo-
nents) may not predominately work through pathways involving sphingolipids to affect
CVD. However, future studies should confirm this hypothesis and also consider whether
methylation patterns or proteins related to lipid metabolism are implicated.

In contrast to the trends with sphingolipids, acylcarnitines were positively associated with
short-term TRAP and negatively associated with short-term NO2 [13,98,114,138,168,173,175].
It has been shown that higher levels of medium- and long-chain acylcarnitines are positively
associated with both CVD and the risk of cardiovascular death in patients with stable angina
pectoris [186–188].

Although most markers of lipid metabolism were considered only in the metabolomics
literature, arachidonic acid and linoleic acid metabolism KEGG pathways were considered
in both the proteomics (one protein involved in each) and metabolomics (20 and 13 metabo-
lites, respectively) literature (Table S7). Synthesizing the results from these studies, our
MetaboAnalyst pathway analyses suggested that the arachidonic acid metabolism KEGG
pathway was significantly enriched by metabolites associated with both short- and long-
term TRAP exposure (p = 4.29 × 10−4 and p = 0.01, respectively). Specifically, exposure to
short-term diesel exhaust was associated with higher concentrations of the protein arachi-
donate 15-lipoxygenase (ALOX15). This enzyme helps generate bioactive lipid molecules,
such as eicosanoids, hepoxilins, and lipoxins [189]. Interestingly, short-term diesel exhaust
was also associated with lower levels of multiple metabolites related to ALOX15 [130,139].
The metabolomics literature also considered other components of the arachidonic acid and
linoleic acid metabolism pathways. For example, short-term PM2.5 and diesel exhaust ex-
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posure were associated with higher and lower levels of eicosanoids, respectively [109,139].
These signaling lipids regulate homeostatic and inflammatory processes, making them
important markers in the progression of CVD [189,190]. Additionally, short-term PM2.5 and
other TRAP exposures were associated with higher levels of thromboxane, prostaglandin,
and leukotriene metabolites [101,139,167,168,172]. These metabolites are associated with
modifications of the immune and inflammatory responses and help mediate leukocyte
accumulation [191]. Finally, short-term PM2.5, NO2, and other short-term TRAP exposures,
as well as long-term PM2.5 and NO2, were associated with higher levels of metabolites
involved in linoleic acid metabolism [102,103,139,167,168,170]. Dysregulated linoleic acid
metabolism is traditionally considered pro-inflammatory and pathological, but the linoleic
acid pathway is still not well understood [190].

The network analyses we conducted consistently identified metabolites related to
arachidonic and linoleic metabolism, such as arachidonic acid, leukotrienes, prostaglandins,
and thromboxanes (Figures 3–6; green symbols correspond to lipid metabolism). These
metabolites associated with short-term air pollution exposures were connected with genes
and proteins related to inflammation and the immune system (red symbols), endothe-
lial function (pink symbols), and coagulation (yellow symbols; Figures 3 and 5). Lipid
metabolism markers associated with long-term air pollution exposures had similar
trends, though fewer nodes were identified for the gene–metabolite network overall
(Figures 4 and 6).

3.2.2. Cellular Energy Production

Three cellular energy production KEGG pathways were associated with short- and
long-term TRAP exposure: (1) the citric acid cycle, (2) glycolysis/gluconeogenesis, and
(3) the pentose phosphate pathway (Table S7, Figure 2). Although no methylomic or
proteomic markers related to the citrate cycle were identified as significantly associated with
TRAP, our MetaboAnalyst pathway analyses synthesizing results across studies identified
the citric acid cycle KEGG pathway as being significantly enriched by the metabolites
significantly associated with short- and long-term TRAP exposure (p = 8.86 × 10−3 and
p = 1.65 × 10−3, respectively). Specifically, exposure to short-term TRAP was associated
with higher levels of some citric acid cycle intermediates (e.g., succinyl-CoA, succinate,
cis-aconitic acid, and alpha-ketoglutaric acid) [136–138,168]. But short-term PM2.5 exposure
was associated with lower levels of pyruvate, while short-term EC was associated with
lower levels of citric acid and isocitric acid [97]. In contrast, long-term PM2.5 exposure
was associated with higher levels of malic acid and succinic acid [98,166]. Notably, citric
acid cycle dysregulation has been associated with CVD [192,193]. For example, one case-
cohort study found an increased risk of CVD with higher concentrations of fasting plasma
malic acid, 2-hydroxyglutarate, and fumarate [193], while a nested case-control study
found higher levels of succinic acid, malic acid, citric acid, and 2-hydroxyglutarate to be
associated with a higher risk of atrial fibrillation [192]. Higher levels of malic acid and
succinic acid associated with long-term PM2.5 exposure may underlie part of the known
association between TRAP and the risk of CVD. Future studies could explore whether
TRAP exposure is also associated with the methylation of genes encoding for key rate
limiting and regulatory enzymes in the citric acid cycle, such as citrate synthase, isocitrate
dehydrogenase, and alpha-ketoglutarate dehydrogenase, as well as the concentrations of
these enzymes. Additionally, future studies could explore functional relationships among
citric acid, coagulation, and endothelial function, given the relationships we identified in
the long-term air pollution and protein–metabolite network analysis (Figure 6).

The central carbohydrate metabolism pathways represented by biomarkers associ-
ated with TRAP include the glycolysis/gluconeogenesis and pentose phosphate pathways
(Figure 2). The glycolysis/gluconeogenesis KEGG pathway was represented by two pro-
teomic and five metabolomic markers significantly associated with TRAP, but no methy-
lomic markers (Table S7). Similarly, five metabolomic (but no methylomic or proteomic)
markers identified as belonging to the pentose phosphate KEGG pathway were significantly
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associated with TRAP (Table S7). For the glycolysis/gluconeogenesis KEGG pathway, ex-
posure to short-term diesel exhaust was associated with lower levels of the protein alcohol
dehydrogenase class four mu/sigma chain and higher levels of the protein aldehyde de-
hydrogenase dimeric nicotinamide adenine dinucleotide phosphate-preferring [130]. In
metabolomics studies, exposure to short-term PM2.5 was associated with lower levels
of the metabolites lactate, pyruvate, and glyceric acid 1,3-bisphosphate [96,97,135], and
exposure to long-term PM2.5 was associated with lower levels of 3-phosphoglycerate and
lactate [98]. Short-term exposure to O3 was associated with higher levels of glucose and
lactate [140], whereas exposure to short-term TRAP was associated with lower levels of
glucose and 3-phosphoglycerate [98,138]. For the pentose phosphate KEGG pathway,
short-term PM2.5, PM components, and certain other TRAP exposures were associated
with lower levels of the metabolites glyceraldehyde, glycerate, 3-phosphoglycerate, and
pyruvate [96–98], and long-term PM2.5 was associated with lower levels of glycerate and
3-phosphoglycerate [96–98,110,138,140,166]. However, short-term exposure to O3 was asso-
ciated with higher levels of glucose and glycerate [140]. In pathological circumstances such
as CVD, glucose metabolism (glycolysis and the pentose phosphate pathway) typically
increases relative to fatty acid oxidation [194–196]. Further longitudinal research exploring
multi-omic markers of carbohydrate metabolism in response to TRAP exposure would help
clarify the salient relationships.

3.2.3. Amino Acid Metabolism

Although no methylomic or proteomic markers related to the alanine, aspartate, and gluta-
mate metabolism KEGG pathway were identified as significantly associated with TRAP, our
MetaboAnalyst pathway analysis synthesizing results from across studies identified the alanine,
aspartate, and glutamate metabolism KEGG pathway as significantly enriched by metabolites as-
sociated with short- and long-term TRAP exposure (p = 3.39 × 10−4 and p = 6.0 × 10−3, respec-
tively). There were 14 metabolites representing the KEGG pathway, but there were no consistent
patterns of associations among short- and long-term TRAP exposure and concentrations of
these metabolites [83,97,98,100,107,110,135–137,140,166–168,168,170] (Supplementary File S2,
Tables S6–S8).

The arginine and proline metabolism KEGG pathway was represented by biomarkers
of all three omics types (two genes, one protein, and fourteen metabolites) (Table S7),
and our MetaboAnalyst pathway analysis synthesizing the metabolomics literature sug-
gested this pathway was significantly enriched by metabolites significantly associated with
short-term TRAP exposure (p = 6.62 × 10−4) but not long-term TRAP exposure. Taken
together, there is moderately strong evidence that arginine and proline metabolism may
affect the relationship between TRAP and CVD. For example, in the methylomics liter-
ature, exposure to short-term PM2.5 was associated with hypomethylation of the genes
that code for nitric oxide synthase 2 (NOS2) and arginase 2 (ARG2) [61,118,137]. These
are key enzymes for macrophage pathways linking L-arginine metabolism to inflam-
mation and immunity [197]. The protein NOS2 catalyzes the reaction of L-arginine to
nitric oxide (NO), which inhibits cell proliferation and kills pathogens [198,199]. The
protein ARG2 catalyzes the reaction of L-arginine to L-ornithine, which can metabolize
further into polyamines and L-proline. Notably, L-ornithine production promotes cell
proliferation and repairs tissue damage [200,201]. ARG2 activity is also associated with
the killer-type macrophage response [197,202,203]. Many of the metabolites related to
this arginine and proline metabolism pathway were implicated across the metabolomics
literature, though some of the results were inconsistent in terms of direction of associa-
tion (Supplementary File S2 Table S6) [83,96–98,101,107,110,136,138,166,167]. For example,
short-term PM2.5 was associated with lower levels of L-arginine, L-glutamate, phosphocrea-
tine, and pyruvate and with higher levels of L-ornithine and nitric oxide [83,97,101,113,119].
However, short-term O3 exposure was associated with higher levels of creatinine, L-
arginine, L-glutamate, L-ornithine, and L-proline [113,140]. Furthermore, other short-
term PM exposures were associated with lower levels of creatinine and higher levels of



Toxics 2023, 11, 1014 17 of 39

L-arginine, L-glutamate, L-ornithine, L-proline, D-proline, and sarcosine [138,168]. Finally,
in the proteomics literature, short-term diesel exhaust was associated with lower levels
of the protein creatine kinase B-type [130], and in our network analysis for short-term
exposure to TRAP, the protein creatine kinase B-type was also associated with a metabolite
related to lipid metabolism (Figure 5). Given the overlap in the biomarkers identified
using the three omics types, further research is warranted into how TRAP exposure may
plausibly result in clinically meaningful biological cascades involving arginine and proline
metabolism. Such an undertaking would require repeated measures of exposures and
omics markers to ensure that the relevant temporal relationships are captured for different
levels of biology along the pathway (e.g., how methylation changes related to NOS2 and
ARG2 could affect protein expression and subsequent metabolic processes). Future work
should also explore the potential connections among amino acid metabolism (blue sym-
bols), coagulation (yellow symbols), inflammation (red symbols), and endothelial pathways
(pink symbols) given the results of our network analyses for both short- and long-term
TRAP exposures (Figures 3–6).

3.2.4. Inflammation and Immunity

Many methylomic and proteomic markers (but not metabolomic markers) identified
in the literature review as associated with TRAP exposure were involved in pathways
involved in inflammation and immunity (Figure 2). The most enriched pathways included
cytokine and chemokine signaling, toll-like receptor (TLR) signaling, and mitogen-activated
protein kinase (MAPK) signaling. Biomarkers of these pathways (especially of the cytokine
and chemokine signaling pathways) were also well-represented in our network analyses
(Figures 3–6; red symbols correspond to inflammation and immunity).

Our Reactome pathway analysis identified cytokine signaling in the immune system
as significantly enriched by genes related to the methylation sites and proteins associated
with short-term TRAP exposure (p = 1.11 × 10−16 and p = 1.11 × 10−16, respectively).
This pathway was also significantly enriched by proteins associated with long-term TRAP
exposure (p = 1.11 × 10−16), but not genes related to the methylation sites. In particular,
there were 13 genes and 40 proteins (with 10 overlapping gene–protein markers) that were
part of the cytokine–cytokine receptor interaction KEGG pathway, as well as eight genes
and nineteen proteins (with four overlapping gene–protein markers) that were part of the
chemokine signaling KEGG pathway (Table S7). Short-term PM2.5 exposure was associated
with hypermethylation of the genes encoding for cytokines and chemokines, such as In-
terleukin 6 (IL6), Interleukin 10 (IL10), granulocyte-macrophage colony-stimulating factor
2 (CSF2), fractalkine (CX3CL1), interferon-gamma inducible protein 10 (CXCL10), and
macrophage inflammatory protein 1 alpha (CCL3) [61,117]. In contrast, short-term PM2.5
was associated with hypomethylation of the genes that encode monocyte chemoattractant
protein 1 (CCL2) and a cluster of differentiation 40 ligands (CD40LG) [61,117,125,147,148].
Additionally, long-term PM2.5 exposure was associated with hypomethylation of tumor
necrosis factor (TNF) and TNF receptor superfamily member 13C (TNFRSF13C) [48,147].
Consistent with some but not all of the methylation trends, proteomics studies found
that both short- and long-term exposure to TRAP was associated with higher levels of
most cytokine and chemokine proteins (exceptions included inverse associations with
tumor necrosis factor receptor superfamily member 11B, Interleukin 4, Interleukin 8, and
eotaxin-1) [76,82,84,89,91,93,94,105,115,117,125,128,138,147,165,204–207]. These observa-
tions were consistent across pollutants and exposure windows. Additional research on
the associations among pollutants other than PM2.5 and the methylation of genes en-
coding for cytokines and chemokines would further strengthen the already compelling
evidence that TRAP may impact cytokine and chemokine signaling in ways that could
affect respiratory and cardiovascular outcomes. Cytokines and chemokines regulate the
immune response by controlling immune cell trafficking and the cellular arrangement of
immune organs [208,209]. High levels of both cytokines and chemokines represent im-
mune activation and inflammation and are predictive of CVD and adverse cardiovascular
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events, such as heart failure and myocardial infarction [209–212]. In addition, many of
the key cytokines identified here are involved in the pathogenesis of asthma, COPD, and
pulmonary fibrosis [213]. Finally, as shown in our network analyses, many of the genes
and proteins associated with short-term TRAP exposure (e.g., IL6/IL6, CXCL10/CXCL10,
CCL2/CCL2) were interconnected and were also connected to metabolites of amino acid
and lipid metabolism (Figures 5 and 6)—strengthening the argument for the involvement
of cytokine signaling in the physiological response to TRAP.

Eight methylomic markers and eleven proteomic markers, with four overlapping
gene–protein markers and no metabolomic markers, represented the TLR signaling KEGG
pathway (Table S7). Short-term exposure to PM2.5 and BC was associated with hypomethy-
lation and hypermethylation of TLR2, respectively [41,61]. Exposure to short-term PM10
and other short-term TRAP was associated with hypomethylation of TLR4 [150,151]. Ex-
posure to short-term PM10 and SO4 were associated with hypomethylation of CD14 and
MAP3K7, respectively [46,151]. The remaining methylomic and proteomic markers belong-
ing to the TLR KEGG pathway overlapped with the cytokine–cytokine receptor interaction
KEGG pathway described previously and in Table S7. These trends are important because
the TLR signaling pathway detects pathogen-associated molecular patterns, stimulating
both the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and MAPK
pathways, as well as cytokine production, thereby affecting inflammatory and immune
responses associated with CVD and adverse respiratory outcomes [214,215].

In addition to the trends for cytokine and chemokine signaling and the TLR signaling
pathways, we identified 12 methylomic markers and nine proteomic markers associated
with TRAP as belonging to the MAPK signaling KEGG pathway, with two overlapping
gene-protein markers and no metabolomic markers (Table S7). In the methylomics liter-
ature, short-term BC exposure was associated with hypermethylation of MAP3K2 and
MAP3K6, as well as hypomethylation of MAP4K3 and MKNK2 [46]. Short-term SO4 expo-
sure is associated with hypermethylation of MAP3K11 and hypomethylation of RPS6KA3,
MAP3K7, and TGFB1 [46]. Long-term exposure to PM10 and NO2 was associated with
hypomethylation and hypermethylation of PDGFB and CACNA2D1, respectively [48,56].
Lastly, for the methylomics literature, short-term PM2.5 exposure was associated with
hypermethylation of FGF2 [117]. In the proteomics literature, short-term PM2.5, UFP, BC,
NO2, and CO exposures were associated with higher levels of fibroblast growth factor
2 protein [117,138]. In addition, short-term diesel exhaust exposure was associated with
higher levels of MAPK 1 and cell division control protein homolog 42 and lower lev-
els of protein kinase C beta type [130,165]. Finally, short-term UFP, BC, NO2, and CO
were associated with higher levels of tropomyosin receptor kinase B [138]. Synthesizing
across the studies, our Reactome pathway analysis identified the MAPK signaling cascade
pathway as significantly enriched by proteins associated with short-term TRAP exposure
(p = 4.35 × 10−8). Although this pathway was not significantly enriched by methylation
markers associated with TRAP exposure, the body of evidence taken together suggests
that TRAP exposures may affect MAPK signaling cascades, which is critical since this path-
way has implications for oxidative stress, vascular remodeling and dysfunction, cardiac
hypertrophy, cardiac remodeling, and atherosclerosis [216–221].

3.2.5. Coagulation

The complement and coagulation cascade KEGG pathway was represented by four
methylomic markers and fourteen proteomic markers significantly associated with TRAP,
with two overlapping gene–protein markers. There were no metabolomic markers of this
pathway identified as significantly associated with TRAP (Table S7). Short-term exposure to
PM2.5 was associated with hypomethylation of the genes that encode plasminogen activator
inhibitor type I (SERPINE1), coagulation factor III (F3), and coagulation factor II receptor
(F2R), as well as hypermethylation of coagulation factor II (F2) [41,49,125,148,160]. Within
the proteomics literature, short-term exposure to PM10 and PM2.5–10 was associated with
lower levels of the protein plasminogen activator inhibitor type 1, whereas long-term expo-
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sure to PM2.5, NO2, CO, and O3 was associated with higher levels of this protein [72,74,76].
Additionally, short-term exposure to PM2.5, UFP, BC, NO2, and CO was associated with
higher levels of coagulation factor III protein (F3) [127,138]. The combination of associations
with short-term exposures and methylation markers and long-term exposures and proteins
(e.g., SERPINE1) may provide evidence for time-dependent biological cascades or effects;
future research should explore this possibility using a study design that can take advantage
of repeated measures for exposures and outcomes. Further research could explore the
possibility of similar overlap across omics types by building on the TRAP and proteomics
literature suggesting significant and generally positive associations with other key coagula-
tion and complement proteins (e.g., complement component 3, complement component
4B, fibrinogen, Von Willebrand factor, coagulation factor VII, D-dimer, alpha-1 antitrypsin,
protein C inhibitor, complement C1q subcomponent subunit A, and tissue-type plasmino-
gen activator; Supplementary File S2, Table S5) [71,73,74,76,78,86,92,124–127,130,138,207].
The importance of complement and coagulation cascades is also underscored by the con-
nections of coagulation factors, coagulation factor responses, plasminogen activators, and
plasminogen activator inhibitors in the network analyses (represented by yellow markers)
to biomarkers of amino acid metabolism (blue markers), lipid metabolism (green mark-
ers), and inflammation and immunity (red markers; Figures 3–6). Taken together, there
is strong evidence supporting the putative links between TRAP exposure, coagulation
and complement cascades, and CVD (Figure 2). This is supported by other studies that
show that higher levels of plasminogen activator inhibitor 1, fibrinogen, Von Willebrand
factor, coagulation factor VII, and complement component 3 are each associated with the
risk of CVD and atherosclerosis [220–227]. Furthermore, higher levels of plasminogen
activator inhibitor 1 and Von Willebrand factor have been associated with increased odds
of myocardial infarction [220,227].

3.2.6. Endothelial Function

Methylomic, proteomic, and metabolomic markers associated with TRAP exposure
were associated with five KEGG pathways related to endothelial function: cell adhesion
molecules, vascular endothelial growth factor (VEGF) signaling, vascular smooth muscle
contraction, lipid and atherosclerosis, and leukocyte transendothelial migration (Table S7).

The first KEGG pathway, cell adhesion molecules, was represented by five methy-
lomic markers, five proteomic markers (including three overlapping with the methylomic
markers), and no metabolomic markers (Supplementary File S2, Tables S4 and S5). The
three overlapping markers were a cluster of differentiation 40 ligands (CD40LG), p-selectin
(SELP), and intercellular adhesion molecule 1 (ICAM1). For CD40LG, short-term PM2.5
was associated with hypomethylation of the corresponding gene [117,125,148], whereas
short-term PM2.5, NO2, SO2, SO4, EC, and multiple PM components were associated with
higher levels of the protein [76,115,117,125,127,147,148,205,207]. For SELP, long-term PM2.5
was associated with hypomethylation of the corresponding gene, and long-term PAHs were
associated with lower levels of the protein [48,125,172,207]. For ICAM1, short-term BC
and O3 were associated with hypomethylation of the corresponding gene [41], short-term
PM2.5 had inconsistent associations with the corresponding gene [41,61,125,147], and both
short- and long-term TRAP exposures were generally associated with higher levels of the
protein [69–71,92,105,124,147,205,228]. Biomarkers of the cell adhesion molecule pathway
(e.g., SELP, ICAM1) were also identified in our network analysis for both short- and long-
term TRAP exposures as being highly connected to markers of other biological processes
(e.g., lipid metabolism; Figures 3–6). Cell adhesion molecules are essential in the normal
development of the heart and blood vessels; however, they play a role in the development
of respiratory diseases and CVD, such as pulmonary fibrosis and atherosclerosis [229].

The second KEGG pathway, the VEGF signaling pathway, was represented by no
methylomic, three proteomic, and two metabolomic markers associated with TRAP ex-
posure (Supplementary File S2, Tables S5 and S6). For proteomics, short-term exposure
to diesel exhaust was associated with higher levels of the cell division control protein
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42 homolog and lower levels of protein kinase C beta type [130]. In addition, expo-
sure to short-term NO2 and long-term NOx was associated with higher levels of VEGF-
alpha (VEGFA) [84,115]. VEGFA was also identified as connected to markers of lipid
metabolism and amino acid metabolism in our network analysis for short-term TRAP
exposure (Figure 5). For metabolomics, short-term PM2.5 was associated with higher levels
of nitric oxide, and short-term EC was associated with higher levels of prostaglandin
I2 [118,119,167]. Upregulation of VEGF signaling is involved in angiogenesis and can
be a response to hypoxia [230]. Higher concentrations of these analytes associated with
TRAP exposure could indicate difficulty delivering oxygen from the lungs to the periphery;
however, VEGF signaling is not always pathological.

The third KEGG pathway, vascular smooth muscle contraction, was represented by
one methylomic, three proteomic, and four metabolomic markers associated with TRAP
exposure (Supplementary File S2 Tables S4–S6). For methylomics, long-term PM2.5 was
associated with hypomethylation of the guanine-nucleotide-binding protein alpha subunit
complex locus (GNAS) [48]. For proteomics, short-term UFP, BC, NO2, and CO were
associated with higher levels of endoglin [138], and short-term diesel exhaust was positively
associated with mitogen-activated protein kinase 1 and negatively associated with protein
kinase C beta type [130]. For metabolomics, short-term PM2.5 was positively associated
with nitric oxide and 20-hydroxyeicosatetraenoic (HETE) acid [109,118,119], and short-term
TRAP was positively associated with arachidonate and prostaglandin I2 [167,168,173].
Contraction of the vascular smooth muscle within arteries, arterioles, veins, and lymphatic
vessels increases resistance in the cardiovascular system and decreases blood flow [231].
TRAP-associated modulation in these signals could inform part of the relationship between
TRAP exposure and blood pressure, and therefore CVD. Further research is needed to
clarify the exact physiological mechanisms linking TRAP, omics signals, blood pressure,
and CVD.

The fourth KEGG pathway, lipid and atherosclerosis, was represented by no methy-
lomic or proteomic markers but three metabolomic markers associated with TRAP expo-
sure (Supplementary File S2 Table S6). Short-term PM2.5 was positively associated with
nitric oxide, and short-term TRAP was positively associated with cholesterol and triglyc-
eride [118,119,138]. Cholesterol and triglycerides, both positively associated with TRAP
exposure, are risk factors for atherosclerosis. Furthermore, TRAP is already known to be as-
sociated with atherosclerosis through the exacerbation of risk factors such as hypertension
and insulin resistance [232].

The final KEGG pathway, leukocyte transendothelial migration, was represented by three
methylomic markers, six proteomic markers (one overlapping with a methylomic marker),
and no metabolomic markers associated with TRAP exposure (Supplementary File S2,
Tables S4 and S5). The trends for the overlapping marker (ICAM1), as well as two of
the other proteomic markers (i.e., protein kinase C beta type and cell division control
protein homolog 42), were described previously. The other methylation markers associated
with short-term PM2.5 encode protein subunit alpha 13 (positive association) and actinin
alpha 3 (negative association) [43,161]. The other proteomic markers positively associated
with short-term TRAP exposure included vascular cellular adhesion molecule 1 (VCAM1;
with PM2.5, NO2, CO, SO4, and O3) [71,92,205], matrix metalloproteinase (MMP2; with
BC and PNC), and MMP9 (with SO2) [82]. In our network analysis for short-term TRAP
exposures, MMPs shared network connections with markers of processes such as lipid and
amino acid metabolism (Figure 5). Leukocyte trans-endothelial migration is critical in the
immune response and responsible for facilitating a systemic reaction upon exposure to a
pathogen [233]. The subclinical effects of differential leukocyte count post-TRAP exposure
have previously been noted [234] and represent part of the well-documented inflammatory
response to TRAP.
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3.2.7. Oxidative Stress

Multiple KEGG pathways represented in the methylomic, proteomic, and metabolomic
literature are associated with the oxidative stress response (Table S7; Figure 2). For example,
the citrate cycle, pentose phosphate metabolism, MAPK signaling, p53 signaling, Janus
Kinase/signal transducers and activators of transcription (JAK–STAT) signaling, apoptosis,
and regulation of autophagy KEGG pathways are all known to be activated in response to
oxidative stress [217,235–241]. The biomarkers related to several of these pathways were
described previously. Others are described in this section.

The p53 signaling pathway is activated in response to oxidative stress and TRAP
exposure and helps to ensure cell survival [236,237]. For this pathway, one methylomic and
seven proteomic markers (including one overlapping gene–protein marker) were identi-
fied as significantly associated with TRAP (Supplementary File S2, Tables S4, S6, and S8).
Short-term exposure to PM2.5 was associated with hypomethylation of SERPINE1 [148].
Additionally, short-term exposure to PM10 and PM2.5–10 was associated with lower levels
of the corresponding protein, whereas long-term exposure to PM2.5, PM2.5–10, NO2, CO,
and O3 were associated with higher levels [72,74,76]. Furthermore, short-term BC and
NO2 were associated with higher levels of insulin-like growth factor binding proteins 1
and 3, while short-term diesel exhaust was associated with lower levels of insulin-like
growth factor binding protein 2 and 14-3-3 protein sigma [82,130]. Finally, long-term PM2.5
and PM10 exposures were associated with higher levels of alpha-1 antitrypsin [86]. Given
the role of p53 signaling in anti-angiogenesis, programmed cell death, metabolism reg-
ulation, and vasodilation, this pathway can affect cardiovascular outcomes [242,243]. In
addition, p53 signaling plays a supportive role in the maintenance of lung homeostasis;
therefore, dysregulation and deficiency of p53 signaling can be associated with respiratory
diseases [244].

Similarly to the p53 signaling pathway, the JAK–STAT signaling pathway is activated by
oxidative stress and reactive oxygen species [240]. This signaling pathway is mainly involved
in coordinating immune responses, including cytokine signaling [245]. Four methylomic
markers and fourteen proteomic markers (including four overlapping gene-protein markers)
of this pathway were identified as significantly associated with TRAP (Supplementary File S2,
Tables S4, S6, and S8). Three of the methylomic markers (for the genes CSF2, IL6, and IL10)
were described in the section on inflammation and immunity. Briefly, short- and long-term
TRAP was associated with hypomethylation of these markers and higher levels of the proteins
they encode [61,76,91–94,115,117,127,128,147,165,204,228,246,247]. Hypermethylation of one
methylomic marker relevant here (related to a gene that encodes interferon gamma (IFNG))
was associated with short-term TRAP exposure (though short-term BC was associated with
hypomethylation) [41,120]. Relatedly, short-term PM2.5, NO2, CO, PAHs, and PM con-
stituents were associated with higher levels of the protein IFNG [115,204]. Short-term TRAP
was also positively associated with other proteins involved in JAK–STAT signaling, includ-
ing granulocyte colony-stimulating factor 3, granulocyte-macrophage colony-stimulating
factor receptor alpha, Interleukin 2 alpha, Interleukin 5, Interleukin 7, Interleukin 12, and
signal transducer and activator of transcription 3 (STAT3) [115,117,128,138,165,206]. In con-
trast, short-term TRAP was associated with lower levels of Interleukin 4, Interleukin 13, and
protein tyrosine phosphatase non-receptor type 6 [115,117,165]. These associations with
markers related to JAK-STAT signaling are important for the relationship between TRAP
exposure and CVD outcomes because dysregulation of JAK–STAT signaling is associated
with CVD [248,249]. Furthermore, cytokine signaling induced through the JAK–STAT
pathway is implicated in COPD, asthma, and other respiratory conditions [250,251].

Apoptosis, or programmed cell death, can be caused by oxidative stress [238]. Repre-
senting the apoptosis KEGG pathway, TRAP was associated with one methylomic marker,
three proteomic markers (including one overlapping with a methylomic marker), and
one metabolomic marker (Supplementary File S2, Tables S4–S6). Trends for the overlap-
ping methyl-omic-proteomic marker, tumor necrosis factor-alpha, were described pre-
viously. For the other proteomic markers, short-term PM10, UFP, NO2, CO, and PAHs
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were positively associated with Interleukin 1 beta, whereas short-term UFP, BC, NO2,
and CO were inversely associated with tropomyosin receptor kinase B [94,138,204]. For
metabolomics, short-term PM2.5, UFP, and long-term PM2.5 were associated with lower lev-
els of the sole metabolite, sphingosine [98,101,171]. Apoptosis is a vital part of normal cell
turnover and immune system functioning, implicating this pathway in cardiorespiratory
disease [252–254].

The final oxidative-stress-related KEGG pathway, the regulation of autophagy, is
involved in apoptosis and helps maintain cellular homeostasis [238,239,241,255]. This path-
way was represented by one methylomic marker and two proteomic markers (including
one overlapping marker) associated with TRAP. Trends were previously described for the
overlapping marker, interferon-gamma. The other protein, interferon alpha 2, was posi-
tively associated with short-term PM2.5 [117]. Proper functioning of adaptive autophagy
processes is important for cardiovascular health and aging [256–258].

3.2.8. TRAP, Omics, and Respiratory Disease

Short- and long-term TRAP exposure is associated with worse respiratory outcomes,
including worse lung function [61,90,110,154,259–263], and with more asthma exacerbation
and COPD burden [262,264–267]. In our review, three methylomic markers, seven proteomic
markers (including three overlapping methylomic–proteomic markers), and three metabolomic
markers were represented in the KEGG pathway for asthma (Table S7). The overlapping
markers included three inflammation and immunity markers (TNF, CD40LG, and IL-10); we de-
scribed trends for these previously [61,72,91,94,115,117,125,128,147,147,204,205,207,228,247,260].
For the other proteomics markers, short-term PM2.5, PM10, NO2, CO, and SO2 were in-
versely associated with IL-4; short-term CO was inversely associated with IL-13 [115,117,128];
and short-term NO2 and diesel exhaust were positively associated with IL-5 [115,128].
Additionally, short-term PM2.5, PM10, CO, and SO2 were inversely associated with mono-
cyte chemoattractant protein 1, whereas long-term PM2.5, NO2, and NOx were positively
associated with this protein [84,115,117]. For metabolomic markers, short-term TRAP was
positively associated with leukotriene C4 and inversely associated with prostaglandin
D2 [168], and short-term NO2, CO, and EC were inversely associated with histamine [166].
These trends, along with others described in previous sections, suggest plausible biological
processes that affect the TRAP exposure-respiratory disease relationship. For example, it
has been observed that linoleate metabolism is associated with asthma [104], and arginine
and proline metabolism as well as methionine and cysteine metabolism are associated
with asthma and COPD [106]; these are processes associated with TRAP exposures. Ad-
ditionally, elevated NO is characteristic of airway inflammation [268], and we previously
described trends relating TRAP to higher NO [61,118,119]. Similar trends are observed
between TRAP exposures and markers of systemic inflammation (e.g., CRP, fibrinogen) that
are associated with worse lung function [269–272]. Finally, the associations we described
previously relating TRAP exposures to cytokines and chemokines have implications for
airway remodeling, asthma, and COPD [213].

3.2.9. TRAP, Omics, and CVD

As described above and elsewhere, many studies have observed associations between
TRAP exposure and biomarkers related to CVD (e.g., [273–275]). A subset of studies used
meet-in-the-middle approaches (i.e., identifying common associations of exposures and
CVD outcomes with biomarkers), mediation analyses, and other approaches to more di-
rectly link TRAP exposures to CVD outcomes (e.g., heart rate [120], blood pressure [149,150],
and incident CVD [84]). As in our review, these studies considered biomarkers for processes
related to inflammation and immunity, endothelial function, and oxidative stress. Most of
these studies considered only single omic types, but one that considered both proteomic
and metabolomic biomarkers identified 20 biomarkers associated with both short-term
TRAP and changes in blood pressure or heart rate variability [138]. As in our review, that
study identified biomarkers implicated in lipid metabolism (e.g., trimethylamine N-oxide),
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cellular energy production (e.g., succinic acid), inflammation (e.g., C-reactive protein), coag-
ulation (tissue factor pathway inhibitor), endothelial function (e.g., angiotensin-converting
enzyme), and oxidative stress (e.g., malondialdehyde). Our review was able to take this
type of logic one step further—with the network analyses (Figures 3–6). By integrating
information across multi-omic types, we can build on the systems biology approaches
now being used to understand the pathophysiology of CVD (e.g., [276,277]). Specifically,
our network analyses suggest that interconnections among amino acid metabolism, lipid
metabolism, inflammation, coagulation, and endothelial function are important to the
relationship between TRAP exposures and CVD.

4. Conclusions

To our knowledge, this is the first systematic review synthesizing the literature fo-
cused on TRAP-associated methylomic, proteomic, and metabolomic biomarkers in the
context of respiratory and cardiovascular outcomes. Through a comprehensive, integrated
lens, we explored TRAP-associated pathways involving lipid metabolism, cellular energy
production, amino acid metabolism, inflammation and immunity, coagulation, endothelial
function, and oxidative stress. We find that a multi-omics synthesis provides new insights
into the biological pathways associated with TRAP and has advantages over single-omics
approaches. Synthesizing results from the (predominately single-omic) literature, we
showed that similar or analogous biomarker signals were observed across multiple omic
types (e.g., TRAP exposure associated with methylation of genes encoding for proteins
that are also associated with TRAP). Specifically, we identified consistent patterns between
methylation status and protein levels within cytokine–cytokine signaling, TLR signaling,
MAPK signaling, complement and coagulation cascades, cell adhesion molecules, and
asthma KEGG pathways. Additionally, we observed analogous proteomic and metabolomic
associations with TRAP exposure within certain lipid and amino acid metabolism KEGG
pathways. Finally, within the arginine and proline metabolism KEGG pathway, we were
able to integrate methylomic, proteomic, and metabolomic findings to provide evidence
suggesting possible mechanistic linkages between TRAP exposure, subclinical indicators,
and clinical disease. Corroborating evidence across multiple levels of biology—including
with a focus on functional interrelationships and network analyses—is only possible with
multi-omics. Furthermore, multi-omics has the potential to aid in the discovery and assess-
ment of quantitative biomarkers at different levels of biology (related methylation patterns,
proteins, and metabolites) that could predict subclinical and perhaps clinical respiratory
and cardiovascular responses to TRAP exposure, thereby improving clinical and public
health decision-making. This could perhaps be clinically translated using advances to
epigenetic clocks and other risk prediction tools that address residual risk remaining after
the use of current risk prediction tools [211,278–281]. The continued development of omics
technologies represents immense potential for the advancement of personalized medicine.
Researchers and clinicians should continue to collaborate on the identification of omics
signals associated with air pollution exposure, preclinical disease, and clinical disease to
develop helpful risk prediction tools.

4.1. Strengths and Limitations

A major strength of our systematic review is that we provided a synthesis of find-
ings from across three types of omics markers. This multi-omics process offers superior
insight into the biological underpinnings of respiratory diseases and CVD than single-
omics methods alone. We compiled methylomic, proteomic, and metabolomic evidence
from methodologically diverse studies in a novel way to understand how short- and long-
term TRAP exposure-associated multi-omics signals relate to one another, allowing us to
identify the most relevant biological pathways that may be involved in the pathogenesis
of cardiorespiratory disease and help inform clinical risk prediction. Nevertheless, our
review had several limitations. First, to synthesize results across studies that used heteroge-
neous exposure metrics and methods, we made the simplifying assumption of categorizing
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short- and long-term exposures as ≤30 days and >30 days, respectively. This decision was
supported by convention within the literature but does not necessarily reflect a critical
biological change occurring at 30 days. Additionally, due to the availability of published
studies, there were fewer long-term exposures represented in our analysis. This limitation
of our review is a limitation of the field in general. Given the relative sparsity of long-term
exposure periods as well as a tendency to select targeted rather than untargeted omics
approaches, the omics signals and pathways associated with long-term TRAP exposure
may be incomplete or less comprehensive relative to short-term TRAP exposure. Second,
to synthesize the biological implications of the individual biomarkers identified as associ-
ated with TRAP, we made simplifying assumptions that we could include all individually
identified biomarkers together in our pathway and network analyses, and although we
considered short- and long-term exposures separately, we did not separate results by pol-
lutant type. Different TRAP components likely have different biological impacts. This
could even be true of the same TRAP component; for example, PM2.5 toxicity could vary
by source and composition, and we did not account for these differences. More generally,
it is possible that direct comparisons or synthesis were not warranted in each case due
to certain differences in the study population, exposure metric, or other methodological
choices within the individual studies that would result in meaningful differences in the
true underlying biology. Third, our synthesis of the results and identification of relevant
pathways were necessarily limited by the choices of the individual studies (including those
related to the ways ‘statistical significance’ was defined). If the studies did not include
certain biomarkers that may be important to the physiological response to TRAP, we could
not capture them—particularly for proteomics, this may have limited our findings since
there were somewhat fewer studies with large numbers of proteins assayed, and the litera-
ture may have overrepresented certain biological pathways due to precedent rather than
biology. Targeted omics approaches (as employed with many of the proteomics studies)
allow for focused, relatively resource-efficient confirmatory investigations following earlier
studies identifying potentially important biomarkers; however, future studies leveraging
evolving technology may consider a more comprehensive set of proteins. Conversely, un-
targeted approaches (as employed with many of the metabolomics studies) are exploratory.
They analyze the broadest set of possible biomarkers. While this has the advantage of
helping identify the most expansive set of possible biologically relevant biomarkers and
pathways, they need to be followed up with confirmatory studies to test the hypotheses
they generate. Relatedly, if metabolite identification with a high level of confidence was
not provided by the individual untargeted studies, we may have missed critical biolog-
ical pathways. Next, we limited the scope of our review to exclude people who were
pregnant and/or under 18 years old. Future research should consider these important
populations. Fourth, reflecting the literature, this review contains a relatively large number
of studies representing only single-sex cohorts. Their inclusion is critical to this review as
it represents a large proportion of our current knowledge; however, single-sex research
limits our understanding of the potentially variable response to TRAP exposure between
sexes. Future work should consider sex and gender more fully, including the possibility for
effect modification by sex and/or gender. Similarly, our results may not be transportable
to children who were not in our study population. Finally, and perhaps most critically,
we could not assess whether TRAP exposures resulted in meaningful biological cascades
following the gene-to-protein-to-metabolite paradigm, as no study we reviewed included
all three omics types and none included the repeated measures of the omics markers that
would be needed to assess dynamic biological processes. This is apparent in the occasional
inconsistent associations with short- versus long-term exposure windows of the same
pollutant (in terms of strength and/or direction of association). It is possible that these
differences arise from true differences among study populations and their responses to
pollution, or alternatively, from an inability to accurately capture the biological cascades
occurring at various time points.
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4.2. Future Directions

Building on the strengths of the studies presented in this review and the conclusions
that could be drawn by comparing the results using heterogeneous research methodologies,
several critical areas for further research are warranted. The primary challenges our field
currently faces are related to the true integration of multi-omics signals within studies that
can appropriately characterize the dynamic and complex biological processes linking TRAP
exposure to subclinical and clinical diseases. To address this critical challenge, we need
large, longitudinal studies representing diverse study populations. Ideal features include
time-varying, high-resolution exposure assessment coupled with repeated quantification
of multi-omics signals in multiple tissue types with comprehensive assay coverage. If
multiple cohorts are included in a study, standardization of methods across cohorts would
facilitate interpretation and comparability of results. A major goal of such a study would be
to consider how air pollution exposures might lead to physiological signals suggestive of
the biological cascades leading from exposure to sub-clinical disease to clinical disease (ne-
cessitating several repeated measures of the biological matrix over different time courses).
A consideration of both the short- and long-term physiological effects of TRAP would be
warranted, including a consideration of individual TRAP components and TRAP mixtures.
Ideally—and expected based on the historic evolution of technology—omics technology
will continue to evolve to analyze larger numbers of biomarkers more quickly and cheaply.
It would also be worth examining sex and gender differences, along with other differences
that could lead to disparities in health consequences attributed to air pollution exposure.
The use of emerging and novel data management and analysis approaches that can han-
dle large and complex data structures inherent in multi-omics studies will be important
(e.g., multiblock methods and tensor decomposition methods) [23,276,282–287]. Open-
source bioinformatics platforms are an important resource and should be invested in to
ensure they are kept up-to-date and able to handle multi-omics analyses. Relatedly, it
would be critical to consider the optimal multi-omics integration approach (e.g., whether
each omics type is analyzed first and then types are synthesized, or whether processing
integrates across omics types earlier) [288–290]. If such a comprehensive study could be
conducted, it would provide mechanistic insight into the pathophysiology and progression
of the disease and would inform the identification of multi-omic signatures of air pollution
exposure that could be predictive of key health outcomes. Insights gained from such studies
could inform screening priorities, clinical decision-making, and public policy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11121014/s1, Supplementary File S1: Search strategy for
systematic review article selection process; Supplementary File S2: Multi-omics synthesis tables
and data extraction spreadsheets used in the systematic review process, Table S1: Methylomics
data extraction table. Information regarding study author, design, participant demographics, and
basic methodology were extracted. Each row corresponds to a unique study. (ACE—Atlanta Com-
muters Exposure; ARIC—Atherosclerosis Risk in Communities; BPRHS—Boston Puerto Rican Health
Study; EPIC—European Prospective Investigation into Cancer and Nutrition; KORA—Cooperative
health Research in the Region of Augsburg; MESA—Multi Ethnic Study of Atherosclerosis; NAS—
Normative Aging Study: REGICOR—REgistre GIroní del COR; SAPALDIA—Swiss Study on Air
Pollution and Lung Disease in Adults; SPHERE—Susceptibility to Particle Health Effects, miRNA and
exo-somes; WHI—Women’s Health Initiative); Table S2: Proteomics data extraction table. Information
regarding study author, design, participant demographics, and basic methodology were extracted.
Each row corresponds to a unique study. (ACE—Atlanta Commuters Exposure; AHAB-II—Adult
Health and Behavior; AIRCHD—Air Pollution and Cardiovascular Dys-functions in Healthy Adults
Living in Beijing; BPRHS—Boston Puerto Rican Health Study; CAFEH—Community Assessment of
Freeway Exposure and Health; ELISABET—Enquête Littoral Souffle Air Biologie Environnement;
EPIC—European Prospective Investigation into Cancer and Nutrition; ESCAPE—European Study of
Cohorts for Air Pollution Effects; KORA—Cooperative Health Research in the Region of Augsburg;
MESA—Multi Ethnic Study of Atherosclerosis; NAS—Normative Aging Study; SAGE—Study on
Global Aging and Adult Health; SAPALDIA—Swiss Study on Air Pollution and Lung Disease in
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Adults; SWAN—Study of Women’s Health Across the Nation); Table S3: Metabolomics data ex-
traction table. Information regarding study author, design, participant demographics, and basic
methodology were extracted. Each row corresponds to a unique study. (ACE—Atlanta Commuters
Exposure; AIRCHD—Air pollution and Cardiovascular Dys-functions in Healthy Adults Living in
Beijing; CAFEH—Community Assessment of Freeway Exposure and Health; DRIVE—Dorm Room
Inhalation to Vehicle Emissions; EARTH—Environmental and Reproductive Health; EPIC—European
Prospective Investigation into Cancer and Nutrition; KORA—Cooperative Health Research in the
Region of Augsburg; NAS—Normative Aging Study; SAPALDIA—Swiss Study on Air Pollution
and Lung Disease in Adults; SCOPE—A Prospective Study Comparing the Cardiometabolic and
Respiratory Effects of Air Pollution Exposure on Healthy and Prediabetic Individuals; TAPAS—
Transportation, Air Pollution and Physical Activites); Table S4: Methylomics synthesis table. All
statistically significant associations between TRAP and methylomics markers from the methylomics
literature were compiled into this table. For each gene, KEGG pathways and Gene Ontology (GO)
molecular functions were indicated. If available, sepcific CpG sites corresponding to the genes were
given. Each pollutant was broken down into short-term (<30 days) and long-term (>30 days) expo-
sure. (PM2.5—Particulate Matter 2.5 Microns or Less; PM10—Particulate Matter 10 Microns or Less;
BC—Black Carbon; NO2—Nitrogen Dioxide; NOx—Nitrogen Oxides; SO4—Sulfate; O3—Ozone;
TRAP—Traffic-Related Air Pollution); Table S5: Proteomics synthesis table. All statistically significant
associatons between TRAP and proteomics markers within the proteomics literature were compiled
into this table. For each protein, KEGG pathways and Gene Ontology (GO) molecular functions were
indicated. Each pollutant was broken down into short-term (<30 days) and long-term (≥30 days)
exposure. (PM2.5—Particulate Matter 2.5 Microns or Less; PM10—Particulate Matter 10 Microns
or Less; PM1—Particulate Matter 1 Micron or Less; UFP—Ultrafine Particulate Matter; BC—Black
Carbon; NO2—Nitrogen Dioxide; NOx—Nitrogen Oxides; CO—Carbon Monoxide; SO4—Sulfate;
O3—Ozone); Table S6: Metabolomics synthesis table. All statisically significant associations between
TRAP and metabolomics markers within the metabolomics literature were compiled into this ta-
ble. For each metabolite, KEGG pathways were indicated. Each pollutant was broken down into
short-term (<30 days) and long-term (≥30 days) exposure. (PM2.5—Particulate Matter 2.5 Microns or
Less; PM10—Particulate Matter 10 Microns or Less; PM1—Particulate Matter 1 micron or Less; UFP—
Ultrafine Particulate Matter; BC—Black Carbon; EC—Elemental Carbon; NO2—Nitrogen Dioxide;
NOx—Nitrogen Oxides; CO—Carbon Monoxide; SO2—Sulfur Dioxide; O3—Ozone; Ni—Nickel; V—
Vanadium; Al—Aluminium; Si—Silicon; K—Potassium; Cu—Copper; Zn—Zinc; Fe—Iron; Pb—Lead;
Se—Selenium; TRAP—Traffic-Related Air pollution); Table S7: Combined synthesis of significant
associations; Table S8: Complete synthesis table. This table synthesizes the methylomic, proteomic,
and metabolomic literature. The table is organized by KEGG pathway. Within each KEGG pathway,
all methylomic, proteomic, and metabolic markers significantly associated with short and/or long-
term TRAP are noted. Each pollutant was broken down into short-term (<30 days) and long-term
(≥30 days) exposure. (PM2.5—Particulate Matter 2.5 Microns or Less; PM10—Particulate Matter 10
Microns or Less; UFP—Ultrafine Particulate Matter; BC—Black Carbon; EC—Elemental Carbon;
NO2—Nitrogen Dioxide; NOx—Nitrogen Oxides; CO—Carbon Monoxide; SO2—Sulfur Dioxide;
S04—Sulfate; O3—Ozone; Ni—Nickel; V—Vanadium; Al—Aluminium; Si—Silicon; K—Potassium;
Cu—Copper; Zn—Zinc; Fe—Iron; Pb—Lead; Se—Selenium; TRAP—Traffic-Related Air Pollution);
Table S9: The list of all methylomic, proteomic, and metabolomic markers used for pathway and
network analyses in both MetaboAnalyst and KEGG.
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