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Abstract: Mercury (Hg) is a dangerous and persistent trace element. Its organic and highly toxic form,
methylmercury (MeHg), easily crosses biological membranes and accumulates in biota. Nevertheless,
understanding the mechanisms of dietary MeHg toxicity in fish remains a challenge. A time-course
experiment was conducted with juvenile white seabreams, Diplodus sargus (Linnaeus, 1758), exposed
to realistic levels of MeHg in feed (8.7 µg g−1, dry weight), comprising exposure (E; 7 and 14 days)
and post-exposure (PE; 28 days) periods. Total Hg levels increased with time in gills and liver
during E and decreased significantly in PE (though levels of control fish were reached only for
gills), with liver exhibiting higher levels (2.7 times) than gills. Nuclear magnetic resonance (NMR)-
based metabolomics revealed multiple and often differential metabolic changes between fish organs.
Gills exhibited protein catabolism, disturbances in cholinergic neurotransmission, and changes in
osmoregulation and lipid and energy metabolism. However, dietary MeHg exposure provoked
altered protein metabolism in the liver with decreased amino acids, likely for activation of defensive
strategies. PE allowed for the partial recovery of both organs, even if with occurrence of oxidative
stress and changes of energy metabolism. Overall, these findings support organ-specific responses
according to their sensitivity to Hg exposure, pointing out that indications obtained in biomonitoring
studies may depend also on the selected organ.

Keywords: organic mercury; dietary exposure; white seabream; gills; liver; total Hg accumulation;
NMR-based metabolomics; fish metabolome; polar metabolites

1. Introduction

Mercury (Hg) is recognized as a dangerous metallic pollutant because of its persistence
and high toxicity to organisms [1], and in recent years its increase in aquatic environments
rekindled serious environmental and human health concerns [2]. The high affinity of Hg
for cell membrane lipids [3] and its ability to interfere with cellular events such as growth,
proliferation, differentiation, or damage repair processes [4] classify it as one of the most
hazardous and toxic pollutants. Its presence in aquatic ecosystems is enhanced by natural
events such as forest fires and geological emissions, as well as by emissions related to fossil
fuel combustion, industrial applications, or mining [5–7].

A major concern is the ability of Hg to be easily transferred along trophic chains
through bioaccumulation and biomagnification processes and then be accumulated in
wildlife at high trophic levels [8,9]. In particular, in aquatic environments, its organic and
highly toxic form, methylmercury (MeHg), is produced both in the water column and
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in sediments by certain sulfate-reducing bacteria and tends to be accumulated mainly
in the tissues of aquatic organisms such as fish [10,11]. It is noteworthy that this trace
element can be absorbed by aquatic organisms either aqueously, through, e.g., respiratory
surfaces, or through the diet, resulting in absorption in the gastrointestinal tract [12,13].
Indeed, due to its high solubility in lipids, single valence, and small size, MeHg can easily
cross biological membranes and be completely absorbed from the digestive tract [14] and
readily reach the bloodstream for distribution to various organs. Furthermore, it is also
known that the elimination rates of the organic form of Hg are very slow, leading to its
bioconcentration within the cells of organisms, thus causing biological impairments even
at very low doses [15,16].

Although Hg toxicity has been the topic of several studies [17–19], clarifying the
mechanisms of dietary MeHg toxicity in fish remains challenging. Fish have been widely
used in ecotoxicological studies as worthy sentinel organisms [6,20–26] due to their ability
to accumulate and metabolize different contaminants in their tissues and to produce valid
and measurable responses (biomarkers) when exposed to stressful conditions, such as the
presence of Hg.

The white seabream, Diplodus sargus (Linnaeus, 1758), is a common demersal fish that
inhabits infralittoral and circalittoral rocky habitats in the Mediterranean Sea and eastern
Atlantic Ocean [27], and it has a relatively long-life span and an omnivorous benthic diet.
D. sargus accumulates dangerous elements in its tissues, such as Hg [28], even if it is a
medium-size fish. These remarkable features make D. sargus a valuable bioindicator species
for monitoring aquatic contaminants. In previous studies [29,30], white seabream was used
as animal model to shed light on MeHg neurotoxicity after dietary exposure by combining
bioaccumulation levels, oxidative stress profiles, and behavior assessment. However, these
conventional biochemical assays often need the support of high-throughput methods to
gain more comprehensive insights into the biological effects induced by environmental
pollutants on target organisms. Environmental metabolomics is regarded as a very accurate
method of investigation that assesses variation in the physiological state of organisms cop-
ing with different environmental scenarios, even under experimental conditions, through
the simultaneous evaluation of a large number of biomolecules [31]. Lin et al. [32] identi-
fied metabolomics as the comprehensive analysis of all low-molecular-weight (<1500 Da)
endogenous metabolites that may vary according to the physiological state, developmental
stage, or pathological state of cells, tissues, or organs, or of the entire organism under
investigation. In particular, metabolomics based on proton nuclear magnetic resonance
(1H NMR) allows for the simultaneous analysis of a wide range of metabolites involved in
different metabolic pathways, thus offering numerous advantages for elucidating organism–
environment interactions. In addition, it allows for the identification of novel metabolic
biomarkers in response to stress in organisms provoked by changes in abiotic factors,
diseases, or environmental pollutants [31–41].

Although previous studies have highlighted the detrimental impact of MeHg on the
brain of white seabream [29,30], so far, to our knowledge, no studies have examined its
effects on organs such as gills and liver through the use of environmental metabolomics.
Due to certain features (i.e., large surface area in close contact with dissolved water pol-
lutants, intense blood flow, and high cell regeneration, which are useful to indicate more
recent pollutant exposures), fish gills have been considered an important target of aquatic
pollution, and therefore they are frequently used in environmental biomonitoring stud-
ies [40–42]. Furthermore, gills are also capable of storing pollutants absorbed in the gut [43],
including MeHg [17,44]. Similarly, the liver is widely used to assess the health status
of fish [41,45], as it is an important organ of metabolic activity including detoxification
processes. Furthermore, its important role in bioaccumulation, transformation, and Hg
cycling processes confirms the importance of liver for understanding the toxic effects and
metabolic malfunctions induced by possible contact with this pollutant [17,20,44].

In order to further improve the current knowledge on the effects of Hg on aquatic
biota, the present study was designed to compare the cytotoxic effects of dietary MeHg on
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gills and liver of white seabream, D. sargus, through the evaluation of Hg bioaccumulation
and metabolomic profiling. In detail, fish were exposed by diet to a realistic concentration
of MeHg (8.7 µg g−1 dry feed) over 14 days. Successively, a post-exposure period of
28 days was also taken into consideration in order to estimate the recovery ability of the
two selected target organs in fish.

2. Materials and Methods
2.1. Chemicals

Deuterium oxide (D2O, heavy water; 99.8 atom %D; CAS-No. 7789-20-0) for NMR
spectroscopy was obtained from Armar AG Chemicals (Dottingen, Switzerland). The 2,2-
dimethyl-2-silapentane-5-sulfonate sodium salt (DSS; 97%, molecular weight: 218.32 g mol−1;
CAS-No. 2039-96-5) was purchased from Sigma-Aldrich (Milan, Italy). The other chemicals
required to conduct the metabolomics analysis, namely, methanol (molecular weight: 32.04 g
mol−1; CAS-No. 67-56-1) and chloroform (molecular weight: 119.38 g mol−1; CAS-No. 67-
66-3) were also purchased from Sigma-Aldrich (Milan, Italy). For the experimental exposure,
MeHg chloride (molecular weight: 251.08 g mol−1; CAS-No. 115-09-3) was purchased from
Sigma-Aldrich Chemical (Madrid, Spain). Other routine chemicals used in this work were of
analytical grade and acquired from local suppliers.

2.2. Experimental Set-Up and Sampling

Juvenile white seabreams (Diplodus sargus), provided by the Aquaculture Research
Station (IPMA—Olhão, Portugal), were used in the experiment. Fish wellbeing deserved
permanent attention in accordance with national and international guidelines for the
protection of animal welfare. Fish were allowed to acclimatize to experimental conditions
and routines for two weeks prior to MeHg exposure. Water temperature, salinity, and pH
were monitored daily, varying as follows, respectively: 13.5 ± 0.3 ◦C, 35 ± 2, and 7–8.

Fish were held in 300 L fiberglass tanks in an average density of 0.056 kg L−1 (initial
fish weight: 124 ± 11 g; initial total length: 18 ± 0.6 cm) under a 10 h light:14 h dark
photoperiod. Seawater was renewed daily (around 80%), and fish were fed once a day,
namely, 1–2 h before water renewal. In sampling days, fish were not fed in the 12 h
preceding handling that started around 09:00 am.

Fish were fed with feed (3 mm pellets) produced by SPAROS Company (Olhão,
Portugal) composed by 44% protein and 16% lipids. A solution of MeHg chloride (pre-
pared in ethanol) was added during the process of pellet production, with a homogenous
distribution of the toxicant throughout the batch. MeHg levels in contaminated pellets
(8.7 ± 0.5 µg g−1 dry weight) used to expose fish to this Hg form were similar to those
previously detected in natural food of D. sargus (e.g., Nereis diversicolor), as previously
described [29]. Control fish were fed with uncontaminated pellets, with the same size and
nutritional formulation, which were produced following an identical methodology but
without the addition of MeHg (residues lower than 0.01 µg g−1).

Fish were exposed to MeHg for 7 (E7) and 14 (E14) days. Then, to potentially allow
recovery for 28 days, fish started to be fed with uncontaminated pellets (post-exposure;
PE28) (Figure 1). Thus, the experiment had a total duration of 42 days. At each sam-
pling time (E7, E14, and PE28), fish were sacrificed for two different analyses as follows:
(i) eight fish for total Hg determinations; and (ii) six fish for metabolomics analysis
(Figure 1). During sampling, fish were anesthetized with 0.2 mg L−1 tricaine methanesul-
fonate (MS-222; molecular weight: 261.29 g mol−1; CAS-No. 886-86-2) purchased from
Sigma-Aldrich, China, and buffered with NaHCO3. Fish were then weighed, measured,
sacrificed by cervical transection, and properly bled from the cardinal vein (using hep-
arinized Pasteur pipettes). Gills and liver were excised, and the two sets of samples stored
at −80 ◦C until further processing for Hg determination and metabolomics.
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Figure 1. Experimental design with white seabream, Diplodus sargus, comprising an acclimation
time of 2 weeks (T0) followed by an exposure period to MeHg via diet for 7 (E7) and 14 days (E14).
Thereafter, fish were fed with a MeHg-free diet for 28 days (Day 42; PE28) to allow recovery. In
parallel, control groups of fish were also considered. At each experimental time, gills and liver were
collected to measure levels of Hg and to perform a metabolomic analysis.

2.3. Total Hg Determination

Firstly, gills and liver samples were lyophilized, homogenized, and then analyzed for
total Hg (tHg) in an advanced mercury analyzer (AMA) (AMA254, LECO Instruments),
according to the U.S. EPA method 7473 [46]. Briefly, the initial preparation step of the
analytical process of AMA was removing the moisture through a drying process to concen-
trate Hg in the sample. Thermal decomposition (around 750 ◦C) was used to pyrolytically
reduce Hg in the sample to its elemental form. Elemental Hg was then trapped on a gold
amalgamator and eventually liberated by heating the amalgamator. Elemental Hg was
transported by a stream of oxygen and measured by atomic absorption spectrometry [47].
Certified reference materials (fish protein: DORM-4; dogfish liver: DOLT-4) from the Cana-
dian National Research Council were used to ensure the accuracy of the procedure, and the
obtained values were consistent with the certified ones.

2.4. Metabolomics Analysis
2.4.1. Extraction of Metabolites

Polar metabolites were extracted from liver and gill tissues of white seabreams
(n = 6 per condition at each sampling time) by applying a “two-step” methanol/chloroform/
water protocol, as reported in detail in previous works [35,40]. Briefly, frozen 100 mg
sub-samples of each fish tissue were transferred in 2 mL Eppendorf tubes with the addition
of cold methanol (4 mL g−1) and cold distilled water (0.85 mL g−1) in order to be homoge-
nized using a TissueLyser LT bead mill (Qiagen, Hilden, Germany), with the inclusion of a
3.2 mm stainless steel bead in each tube. Therefore, homogenization took place for 10 min
at 50 vibrations/s. The homogenates, after addition of chloroform (4 mL g−1) and distilled
water (2 mL g−1), were then vortexed for 60 s to be mixed and left on ice for 10 min to
partition. Afterward, samples were centrifuged for 5 min at 2000 g at 4 ◦C, resulting in
a triphasic mixture. The upper methanol layer (600 µL) with polar metabolites was then
carefully removed and transferred into clean vials to be dried in a centrifugal vacuum
concentrator (Eppendorf 5301). The resulting pellet was then kept at −80 ◦C. Prior to NMR
analysis, the dried extracts were resuspended in 600 µL of a 0.1 M sodium phosphate buffer
(pH 7.0, 10% D2O) with 1 mM DSS, used as internal reference, and then transferred to a
5 mm diameter NMR tube. DSS acts as an internal standard and provides a chemical shift
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reference (δ = 0.0 ppm) for the NMR spectra, while D2O provides a deuterium lock for the
NMR spectrometer.

2.4.2. 1H NMR-Based Metabolomics and Spectral Pre-Processing

A Varian-500 NMR spectrometer working at a spectral frequency of 499.74 MHz at
298 K was used to analyze fish tissue extracts. To obtain one-dimensional (1-D) 1H NMR
spectra, a PRESAT pulse sequence was applied for suppressing the resonance of residual
water, with 6 kHz spectral width and a 2.0 s relaxation delay. A total of 128 transients
was collected into 16,384 data points requiring a 10 min acquisition time for each sample
under investigation. All data sets were zero filled to 32,768 data points, and exponential
line-broadenings of 0.5 Hz were used before application of the Fourier transformation.
A Chenomx Processor, a module of Chenomx NMR Suite (version 5.1; Chenomx Inc.,
Edmonton, Canada) software, was then used for manually phasing, baseline-correction, and
calibration (DSS at 0.0 ppm) of all 1H NMR spectra acquired. The Chenomx 500 MHz library
database, another module included into the Chenomx NMR Suite software, was utilized
for identifying the different peaks profiled within the acquired 1H NMR spectra from each
seabream gill and liver in order to be assigned with reference to known chemical shifts
and peak multiplicities. Furthermore, the use of Chenomx NMR Profiler, another module
also included in the Chenomx NMR Suite software, allowed us to quantify the level of
each individual metabolite detected in the 1H NMR spectra using the known concentration
of the internal standard DSS, previously introduced in each sample prior to the NMR
analysis [48,49]. Thereafter, the concentration of the metabolites of interest recorded in
seabream gills and liver at all the experimental times was expressed as mean ± standard
deviation (SD).

2.5. Data Statistical Analysis

GraphPad software (Prism 7.0, San Diego, CA, USA) was used for all the statistical anal-
yses. Bioaccumulation data on the levels of total Hg (µg g−1) measured in seabream gills
and liver were presented as mean ± SD, and statistically significant differences (p < 0.05)
between the control and exposed fish at all the experimental times were established by
application of a two-way analysis of variance (ANOVA) followed by the post hoc Sidak’s
multiple comparisons test. Metabolomics data were expressed in mM as mean ± SD. For
each fish organ, metabolite changes were calculated via the ratio between the averages
of exposed fish at each sampling time and control peak areas. The metabolic dataset was
tested for normality using the Shapiro–Wilk distribution test, and after confirmation of
normal distribution, data homogeneity was evaluated through the Levene test. Data were
analyzed by one-way ANOVA using Dunnett’s multiple comparison test, which was aimed
at finding significant differences between the control and exposed fish at each experimental
time. Data were considered statistically significant at p < 0.05.

3. Results
3.1. Total Hg Accumulation

The levels of total Hg (tHg) measured at all experimental times in the gills and liver of
white seabreams exposed to MeHg by diet, as well as those of control fish, are depicted
in Figure 2. Overall, a significant rise of tHg levels was observed in both fish organs
throughout the 14-day exposure period, followed by a drop during the post-exposure time
of 28 days. In particular, the highest tHg levels were detected at E14, both in the gills
(3.7 µg g−1) and in the liver (10.2 µg g−1), with the latter organ depicting levels 2.7 times
higher. It is worth noting that during the post-exposure period, tHg levels decreased for
both organs but remained above the values recorded in the control fish.
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Figure 2. Total Hg level (tHg; µg g−1) measured in the gills and liver of white seabream exposed
to MeHg and in control fish at each experimental time over 14 days of exposure (7 and 14 days,
corresponding to E7 and E14) and 28 days of post-exposure (day 42, corresponding to PE28). Data
correspond to mean ± standard deviation (n = 8). Significant differences (Sidak’s test; p < 0.05) in
relation to the control group are indicated by * for each experimental time.

3.2. Metabolomics

3.2.1. 1H NMR Spectroscopy of Gill and Liver Extracts of Unexposed Fish

Typical 1-D 1H NMR spectra of the metabolome of the gills and liver of juvenile
white seabream D. sargus from the control group are shown in Figure 3. Among the
several metabolites identified, it was found that gills were dominated by the osmolyte
taurine, whose concentration was found to be about eight times higher than that of the
other metabolites. Conversely, the metabolome of liver was characterized by a dominant
presence of carbohydrates (e.g., glucose, maltose, fructose), whose concentrations were
up to 60 times higher than those of the other detected metabolites. Among the other
prominent classes of compounds found in the metabolome of both fish organs, amino
acids (e.g., glutamate, alanine), Kreb’s cycle intermediates (e.g., succinate), and nucleotides
(e.g., uracil) were observed. It is also worth noting that some metabolites such as arginine,
malonate, choline, acetylcholine, betaine, and inosine were exclusively detected in the
gills, whereas cholate, acetate, acetone, cystathionine, trimethylamine N-oxide (TMAO),
maltose, fructose, glycogen, adenosine triphosphate/adenosine diphosphate (ATP/ADP),
and niacinamide were observed only in the liver.
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(7) alanine, (8) acetate, (9) arginine, (10) glutamate, (11) glutathione, (12) glutamine,
(13) aspartate, (14) creatine, (15) acetone, (16) succinate, (17) malonate, (18) choline, (19) acetyl-
choline, (20) cystathionine, (21) phosphocholine, (22) glycerophosphocholine, (23) taurine, (24) betaine,
(25) TMAO, (26) glycine, (27) glucose, (28) inosine, (29) tyrosine, (30) phenylalanine, (31) hypoxan-
thine, (32) uracil, (33) maltose, (34) fructose, (35) glycogen, (36) ATP/ADP, and (37) niacinamide.

3.2.2. Metabolome of Gills in MeHg-Exposed Fish

Dietary exposure to MeHg provoked alterations in different classes of metabolites in
fish gills at each experimental time (Table 1). Indeed, a significant increase in the levels
of several amino acids (leucine, isoleucine, valine, alanine, tyrosine, phenylalanine) was
recorded during the exposure period (E7; E14). However, it is worth noting the significant
decline observed in almost all amino acids at the post-exposure time that lasted 28 days
(PE28). Regarding energy metabolism, a significant notable rise in lactate was noted at
all the experimental times with respect to the control, combined with a complex pattern
of variation in the levels of malonate, glycogen, and glucose. Furthermore, significant
increases in the levels of osmolytes (taurine, glycerophosphocholine), the neurotransmitter
acetylcholine, and miscellaneous metabolites (phosphocholine, inosine) were also observed
with respect to the control at all MeHg experimental times and in the post-exposure period,
in which fish were fed with a MeHg-free diet.

Table 1. Percent changes in concentrations of metabolites in the gills of white seabream (D. sargus)
following MeHg-dietary exposure (E7, E14) and post-exposure (PE28) periods, in relation to control
groups (n = 6) (Dunnett’s test, * p < 0.05; ↑ and ↓ indicate an increase and decrease in respect to the
control group, respectively).

Metabolites Gills
E7 E14 PE28

Amino acids
Leucine ↑ 12% ↑ 59% * ↓ 12%

Isoleucine ↑ 10% ↑ 37% * ↓ 21% *
Valine ↑ 20% * ↑ 43% * ↓ 16%

Alanine ↑ 31% * ↑ 65% * ↓ 4%
Tyrosine ↑ 9% ↑ 27% * ↓ 37% *

Phenylalanine ↑ 34% * ↑ 54% * ↓ 24% *
Energy-related

Lactate ↑ 102% * ↑ 166% * ↑ 99% *
Malonate ↑ 32% * ↑ 64% * ↓ 16% *
Glycogen ↓ 69% * ↓ 31% * ↑ 5%
Glucose ↓ 18% * ↑ 17% * no change

Osmolytes
Taurine ↑ 58% * ↑ 64% * ↑ 156% *

Glycerophosphocholine ↑ 122% * ↑ 162% * ↑ 228% *
Neutransmitters

Acetylcholine ↑ 68% * ↑ 50% * ↑ 149% *
Miscellaneous

Phosphocholine ↑ 83% * ↑ 126% * ↑ 116% *
Inosine ↑ 67% * ↑ 195% * ↑ 111% *

3.2.3. Metabolome of Liver in MeHg-Exposed Fish

Dietary exposure to MeHg provoked alterations in different classes of metabolites in
fish liver at each experimental time (Table 2). In regard to amino acids, a significant increase
was found in the level of alanine at all the exposure and post-exposure experimental times
combined with a significant drop in the concentration of glutamine and glutamate. In
terms of energy production, the concentration of glucose decreased significantly at all
the experimental times, whilst the ATP/ADP ratio increased significantly. Overall, with
regard to other metabolites, significant reductions in glutathione at PE28 and creatine
levels at all the experimental times were detected, associated with a significant enhance-
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ment of cystathionine and niacinamide levels at both the exposure and post-exposure
experimental times.

Table 2. Percent changes in concentrations of metabolites in the liver of white seabream (D. sargus)
following MeHg-dietary exposure (E7, E14) and post-exposure (PE28) periods in relation to control
groups (n = 6) (Dunnett’s test, * p < 0.05; ↑ and ↓ indicate an increase and decrease in respect to the
control group, respectively).

Metabolites Liver
E7 E14 PE28

Amino acids
Alanine ↑ 32% * ↑ 30% * ↑ 13%

Glutamate ↓ 32% * ↓ 73% * ↓ 42% *
Glutamine ↓ 33% * ↓ 24% * ↓ 7%

Energy-related
Glucose ↓ 41% * ↓ 52% * ↓ 41% *

ATP/ADP ↑ 18% ↑ 40% * ↑ 31% *
Glucose ↓ 41% * ↓ 52% * ↓ 41% *

ATP/ADP ↑ 18% ↑ 40% * ↑ 31% *
Miscellaneous

Creatine ↓ 20% * ↓ 39% * ↓ 27% *
Cystathionine ↑ 2% ↑ 79% * ↑ 112% *
Glutathione ↑ 6% ↓ 4% ↓ 16% *
Niacinamide ↑ 55% * ↑ 58% * ↑ 73% *

4. Discussion

To date, the use of metabolomics has proven to be an extremely effective tool for
investigations of the perturbed metabolic pathways in aquatic biota triggered by a variety
of pollutants [26,31,32,49–51], including Hg [20,40,41]. In this work, the metabolomic
approach was applied on gills and liver of white seabream, D. sargus, with the aim of
elucidating the cytotoxic effects of dietary MeHg and the potential recovery ability of the
selected target organs during a successive post-exposure period, revealing differential
impairments in various metabolic pathways.

The use of 1H NMR-based metabolomics allowed for the simultaneous detection of
27 metabolites in the gills and 31 metabolites in the liver. Interestingly, some metabolites
were in common among the two fish organs, though organ-specific metabolites were also
observed. In detail, the presence of metabolites involved in neurotransmission (i.e., acetyl-
choline, choline) and osmoregulation (betaine) was observed solely in the gills, whereas
some carbohydrates and molecules involved in energy metabolism (i.e., fructose, maltose,
glycogen, ATP/ADP, niacinamide), as well as ketone bodies (i.e., acetate, acetone), were
predominantly recorded in the liver. The evidence of organ-specific metabolomic profiles,
both in terms of presence of specific metabolites and in terms of their concentrations, as
previously described in other aquatic organisms [35,52], may be explained by the differ-
ential physiological functioning of the two examined organs. In fact, the gills of fish are a
multipurpose organ that, in addition to respiratory gas exchange, play prominent roles in
feeding by filtering food particles, osmotic regulation, active ion transport, and nitrogenous
waste excretion [35,43]. Conversely, the liver of fish is a target organ involved in a number
of metabolic activities, including energy and carbohydrate metabolism [35,53], besides
for playing a key role in accumulation, biotransformation, and cycling of environmental
pollutants, because of its effective detoxification system useful to counteract the harmful
effects of hazardous chemicals [54].

The different physiological role of the two examined organs would also explain their
dissimilar capacity to accumulate Hg. In fact, in the present study it was found that the
liver, responsible for detoxification of pollutants, showed more than two times higher levels
of total Hg than the gills following MeHg dietary exposure. In both organs, total Hg levels
tended to decrease during the post-exposure period, though concentrations did not reach
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baseline levels after 28 days of depuration, as they remained statistically higher than the
values recorded in the control, thereby attesting to the strong persistence of Hg within
biological tissues [29,55–57]. Comparable results were also observed in white seabream
following waterborne exposure and post-exposure periods to inorganic mercury (iHg) in a
study aimed at elucidating Hg toxicokinetics [58]. Overall, the differential bioaccumulation
of Hg, together with the physiological specificities of the two examined fish organs, were
on the basis of organ-specific impairments observed in a variety of metabolic pathways.

4.1. MeHg-Induced Metabolome Changes in Fish Gills

It is well known that free amino acids are the most abundant components in the gills of
fish [38,41]. In this study, the dietary exposure of white seabreams to realistic concentration
of MeHg (8.7 µg g−1) provoked, at all the selected exposure times (E7, E14), an increase in
the level of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine),
tyrosine, phenylalanine, and alanine, likely due to a MeHg-induced protein catabolism,
followed by a noteworthy drop in their concentrations at the successive post-exposure
period (PE28), perhaps associated with a possible occurrence of protein biosynthesis as a
repair or cell renewal/turnover process. As is widely documented in the literature, BCAAs
play a key function in the immune system by both regulating protein turnover and being
precursors for the biosynthesis of new molecules (i.e., immunoglobulins, interleukins,
and chemokines), which are essential for cells such as lymphocytes to correctly perform
their functions [59]. Thus, the rise in BCAA levels could suggest the involvement of the
immune system to counteract the detrimental impact of MeHg in the gills. The occurrence
of intense protein turnover activity appears also to be confirmed by the increased levels
of alanine during the exposure period. Indeed, this amino acid is implicated in nitrogen
metabolism, which underlies the processes of nitrogen waste excretion occurring in the
gills as a consequence of protein catabolism [43,60]. Therefore, these results hint at the
existence of ammonia excretion impairment triggered by dietary exposure to MeHg, which
nevertheless seemed to be slightly mitigated during the post-exposure period.

Moreover, the higher levels of tyrosine and phenylalanine, coupled with the enhance-
ment of acetylcholine detected at all the experimental times, may be associated with
alterations in the neurotransmission system. As a matter of fact, tyrosine and phenylalanine
are precursors of the neurotransmitter dopamine, which is implicated in the dopaminergic
system [61], while acetylcholine is the major neurotransmitter involved in the cholinergic
system. It is known that both these nervous systems are strictly associated with the hy-
poxic signaling of fish gills [62]. Hence, the changes observed in these metabolites may be
related to the disruption of the gas exchange processes [63], therefore corroborating the
MeHg neurotoxic effects already documented in previous works carried out on the brain
of white seabreams upon exposure to Hg forms [29,39]. Moreover, a plausible reason for
the increase in acetylcholine could also be the inhibition of acetylcholine esterase (AChE)
activity, already demonstrated in fish exposed to MeHg [64,65].

The depression of neuronal activity could therefore result in an alteration of the
normal functioning of the gills, also supported by the increased concentration of alanine as
discussed above. The increased energy demand would seem to be partly counterbalanced
by the enhanced levels of lactate, which may suggest a shift towards anaerobic energy
metabolism [41]. Furthermore, the increased levels of malonate, a precursor for fatty acid
synthesis [66], indicate also impairments in the energy metabolism related to the highly
biosynthetic activity aimed at mitigating the harmful impact caused by dietary MeHg
exposure in white seabream.

Besides changes in energy metabolism, in the gills of fish the osmoregulation system
appeared also to be disrupted following exposure to MeHg via diet, as supported by the
increased levels of taurine and glycerophosphocholine observed during all the exposure
and post-exposure times. The MeHg effect on the concentration of osmolytes confirms
the high sensitivity of the osmoregulatory system in aquatic organisms exposed to Hg
species and other classes of pollutants [20,67,68]. However, as already reported in previous
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works [20,35], it is noteworthy to highlight that the raised levels of glycerophosphocholine
and phosphocholine, both precursors of phosphatidylcholine, could suggest the occurrence
of phospholipid breakdown, leading to cell membrane instability, persisting even during
the following 28 days when the specimens were fed by a MeHg-free diet [69].

Moreover, among the changes observed in the metabolome of fish gills, it is interesting
to note the increased levels of inosine, likely due to the breakdown of adenosine, which are
a sign of cellular stress, commonly occurring during high energy demand [70]. In addition,
Li et al. [71] pointed out how inosine may exert a vasodilatory effect on the gill lamellae of
fish. Therefore, the increase in this metabolite, persisting even during the post-exposure
period, hints at the emergence of an energy deficit in the branchial tissue, probably due to
the intense biosynthesis activity elicited by dietary MeHg exposure.

Finally, it is interesting to note how certain metabolites, and in particular those in-
volved in neurotransmission, osmoregulation, and cell membrane stability, appeared to be
altered even during the post-exposure period (PE28). This may reflect a higher sensitivity of
certain metabolic pathways than others to MeHg exposure and emphasize the persistence
of certain harmful effects triggered by MeHg, even after a considerable time beyond the
exposure phase [29,72].

4.2. MeHg-Induced Metabolome Changes in Fish Liver

The MeHg dietary exposure of white seabreams provoked alterations in some metabolic
pathways also at the hepatic level that, with some exceptions, appeared differently from
those revealed at the gills. Among amino acids, the changes observed in the levels of
alanine were comparable with those recorded in the gills. In fact, the concentrations of
alanine increased during all the exposure and post-exposure times, thus confirming the
impact of MeHg in nitrogen metabolism [43,64].

Contrarily to the gills, changes in the amino acids glutamate and glutamine were
observed in the liver. These metabolites, which are precursors of glutathione, were found
to be reduced especially during the selected exposure times. These impairments, taken
together with the drop recorded in the levels of glutathione, support the involvement
of the antioxidant system to face the impact triggered by MeHg exposure, as already
widely reported in the literature, since it is known that a decisive way to initiate Hg
toxicity in organisms is through oxidative stress [20,29,35,40,41]. Moreover, the decrease
in glutathione levels could also be associated with the high MeHg reactivity towards the
reduced sulphydryl group [73]. In this regard, Akiyama et al. [74] emphasized the relevance
of the enzyme cystathionine γ-lyase (CSE) in producing reactive sulphur species useful in
mitigating the detrimental impact of MeHg. Therefore, the enhancement of cystathionine,
the main substrate of CSE, detected in the liver of fish by the metabolomics approach, could
suggest the MeHg-induced inhibition of CSE.

Moreover, in the liver of seabreams dietarily exposed to MeHg, variations in the
levels of glucose, ATP/ADP, creatine, and niacinamide were also noted and could be
ascribed to disruptions in energy metabolism. In fact, the drop revealed in the glucose
levels and the unchanged level of glycogen, despite the regular food administration to
seabreams, suggest hepatic gluconeogenesis inhibition, contrarily to what was observed in
the golden grey mullet collected in a highly Hg-polluted environment [20,41]. However,
the increased ATP/ADP levels, coupled with increased concentrations of niacinamide,
which is the NAD precursor, could indicate high energy production in the liver necessary
to sustain the detoxification and repairing actions [37] to face the detrimental effects of
MeHg. Furthermore, creatine is a key molecule in the transfer of energy through organs
and tissues [75]. Thus, its reduction in the fish liver, despite the high ATP/ADP levels
detected, could be justified by its transfer to tissues with a higher energy demand [76,77].

Contrary to the results observed in the gills, the levels of several metabolites detected
at the hepatic level appeared to be altered even at PE28, indicating a higher sensitivity to
MeHg of this organ than the gills, probably linked also to the higher Hg accumulation
recorded in the liver. Therefore, these findings further support the occurrence of organ-
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specific responses elicited by fish in accordance with their sensitivity to Hg exposure, since
it has been previously documented that MeHg is able to affect differently even parts of the
same organ, as observed within the brain optic tectum of white seabreams [39].

5. Conclusions

In this work, the NMR-based metabolomic approach allowed us to shed light into
the toxic metabolic pathways triggered by dietary MeHg exposure in juveniles of white
seabream, Diplodus sargus, as well as to reveal organ-specific cytotoxicity mechanisms
induced by MeHg in the gills and liver. In brief, following exposure to MeHg via diet, an
intense energy catabolism associated with disruption of neurotransmission and osmoregu-
lation systems was observed in the gills, whereas impaired antioxidant and detoxification
systems were revealed in the liver, coupled with changes in the energy metabolism. Al-
though the post-exposure period of 28 days had allowed a partial recovery of both target
organs, there was still evidences of oxidative stress and changes of the energy metabolism,
revealing long-term effects of dietary MeHg in fish. Overall, organ-specific cytotoxicity
mechanisms of dietary MeHg exposure were discerned, pointing out the vulnerability
of fish health to this Hg form at highly impacted ecosystems and the need for increased
surveillance in this direction, therefore emphasizing the urgency of the further development
of new remediation strategies against this persistent environmental pollutant.
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