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Abstract: The identification of the source of heavy metal pollution and its quantification are the
prerequisite of soil pollution control. The APCS-MLR, UNMIX and PMF models were employed
to apportion pollution sources of Cu, Zn, Pb, Cd, Cr and Ni of the farmland soil in the vicinity of
an abandoned iron and steel plant. The sources, contribution rates and applicability of the models
were evaluated. The potential ecological risk index revealed greatest ecological risk from Cd. The
results of source apportionment illustrated that the APCS-MLR and UNMIX models could verify each
other for accurate allocation of pollution sources. The industrial sources were the main sources of
pollution (32.41~38.42%), followed by agricultural sources (29.35~31.65%) and traffic emission sources
(21.03~21.51%); and the smallest proportion was from natural sources of pollution (11.2~14.42%). The
PMF model was easily affected by outliers and its fitting degree was not ideal, leading to be unable to
get more accurate results of source analysis. The combination of multiple models could effectively
improve the accuracy of pollution source analysis of soil heavy metals. These results provide some
scientific basis for further remediation of heavy metal pollution in farmland soil.

Keywords: heavy metals; source apportionment; APCS-MLR; UNMIX; PMF

1. Introduction

Soil is an important material basis for agricultural production and human survival [1].
In recent decades, with the gradual increase in population and rapid development of
industry and agriculture, the problem of heavy metal pollution in the farmland soil of
China has become a crucial problem [2,3]. Heavy metals in farmland soil are highly related
to the safety of agricultural products, which has attracted worldwide public attention [4,5].
Heavy metals can not only threaten soil quality and ecological environment but also be
accumulated in human body with transmission through the food chain [6,7]. Measures
should be taken to control and remediate heavy metal pollution in farmland soil, which
is essential to ensure the quality of the soil environment and the safety of agricultural
products. Furthermore, assessment of the status and sources of soil heavy metal pollution
is a prerequisite for effective prevention of pollution.

Heavy metals in soil mainly originate from soil parent materials and human activities.
Heavy metals contained in parent materials are enriched in the soil by weathering and
leaching [8]. Human activities mainly include high-intensity industrial and mining activi-
ties, agricultural activities and transportation that contribute heavy metals to farmland soil
through atmospheric deposition, sewage irrigation, fertilizer input and solid waste [9–11].
Existing methods of the source apportionment of heavy metals can be roughly divided in
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two categories: one is qualitative source identification, and the other is quantitative source
apportionment [12]. The former mainly uses multivariate statistical analysis (principal
component analysis, cluster analysis, correlation analysis, etc.) and geostatistical analysis
to identify major pollution sources [13–15]. The latter uses physical and chemical character-
istics of pollutants in receptors to identify pollution sources and to quantify its contribution
rate [12]. Among receptor models, absolute principal component scores–multivariate linear
regression (APCS-MLR), UNMIX and positive matrix factorization (PMF) were widely
used in the source apportionment of heavy metals in soils [16–18]. The model APCS-MLR
combines factor analysis and multiple linear regression to quantify pollution sources, with
simple operation and fast calculation speed [19]. The UNMIX model automatically removes
unreasonable data through the system built in the model and does not need to set the num-
ber and uncertainty of pollution sources, which reduces the impact of human factors [20].
The PMF model limits the factor scores and factor loads to be non-negative during the
solution process, which can handle missing and inaccurate data [21]. The receptor models
are widely used to perform source apportionment of atmosphere, water, sediment and
soil [20,22–24].

The research on the source apportionment of heavy metals has mainly focused on
the analysis of potential pollution sources and their contributions in contaminated sites;
however, the applicability of receptor models is rarely considered. Since soil is not a
homogeneous matrix, it has a high degree of spatial heterogeneity [25]. The types, quantity
and pollution status of pollution sources are different in different regions. The analytical
results of a receptor model are affected by factors such as sample data value errors and
modeling errors; using a single receptor model that cannot obtain information of pollution
sources accurately makes its conclusions controversial. Therefore, this study has employed
several commonly used source analysis methods to analyze the sources of heavy metals
and to assess the potential risks of heavy metals in farmland soils. The variation between
validation models was compared and its causes were analyzed to accomplish more reliable
results for source apportionment and to set a perfect foundation for prevention and control
of heavy metal pollution in farmland soil.

The objectives of this study were (1) to investigate the soil heavy metal pollution in
the study area, (2) to analyze the sources and contributions of heavy metals in the study
area by using the APCS-MLR, UNMIX and PMF models and compare the applicability of
the models, and (3) to evaluate the potential impact of heavy metal pollution in the study
area in terms of ecological risk.

2. Materials and Methods
2.1. Study Area

The study area is located in the southeast of China, the town of Lishui City, Zhe-
jiang Province. The study area covers an area of 2.12 km2, ranging from 119◦42′44.7′ ′ to
119◦42′5.5′ ′ E and 27◦46′50.6” to 27◦47′54.3” N. The study area belongs to a subtropical
monsoon climate zone, with an annual average temperature and precipitation of 17.8 ◦C
and 1568.4 mm, respectively. A northeast wind prevails in the study area. The farmland
in the study area is in the vicinity of the township residential area. A waste steel plant is
located in the south of the study area, and there is a bamboo processing plant in the east
(Figure 1). The farmland is terraced field, and a river flows from south to north. The water
for farmland irrigation mainly comes from rainfall and river water pumping irrigation. The
main crop in the study area is single cropping rice, and according to WRB 2022 the, soil
taxonomy in the studied area is hydragric.
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Figure 1. Distribution of sampling sites in the study area.

2.2. Sample Collection and Preparation

According to a grid density of 50 m × 50 m, 101 surface soil samples (0–20 cm) were
collected. Each soil sample was composed of 5 subsamples, which consisted of one from
the center and four from the surrounding area. The samples were put into PVC bags
and the coordinates of the sampling points were recorded. The collection of four profile
samples was consistent with the collection of soil surface samples, which consisted of
five sub-samples, one from the center and four surrounding ones 5 m apart. The sampling
point map is shown in Figure 1. The soil samples were air-dried in natural conditions and
visible intrusion of plants in samples were removed. The air-dried soil samples were passed
through a 2 mm aperture sieve. The grounded samples were passed through a 100 mesh
sieve and stored in sample bags. The soil pH was measured by pH meter (FE28, Mettler
Toledo, Shanghai, China) with a soil water ratio of 1:2.5. Soil organic matter (SOM) was
determined by heating a mixture of potassium dichromate and concentrated sulfuric acid
at 180 ◦C, and then titrated with ferrous sulfate solution. The content of soil heavy metals
was determined by the mixtures of HF (7 mL)—HNO3 (5 mL)—HClO3 (1 mL) to a fixed
the volume of 50 mL with de-ionized water. The digested solution was washed in 50 ml
flasks and volume was made using de-ionized water. The contents of copper (Cu), zinc
(Zn), lead (Pb), chromium (Cr) and nickel (Ni) were determined by inductively coupled
plasma optical emission spectroscopy (ICP-OES, Leeman prodigy 7 Hudson, NH, USA). The
cadmium (Cd) was analyzed by graphite furnace atomic absorption spectrometry (GFAAS,
PerkinElmer AA800, Los Angeles, CA, USA). The number of the certified reference material
was GBW 07405 (GSS-5) for the verification of soil analysis.
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2.3. Source Apportionment Models
2.3.1. Absolute Principal Component Scores–Multivariate Linear Regression (APCS-MLR)

The APCS-MLR model was proposed by Thurston and Spengler in 1985. According to
results of principal component analysis, the factor score was transformed to normalized
factor score, and multiple linear regression was performed on receptor content. The
contribution rate of the pollution source corresponding to each factor of the substance in
the receptor was calculated with the regression coefficient as follows.

Zij =
Cij − Ci

σi
(1)

(Z0)i =
0− Ci

σi
= −Ci

σi
(2)

APCSp = (Z0)i − Zij (3)

Ci = b0i +
n

∑
p=1

(
APCSp × bpi

)
(4)

where Cij is the content of heavy metal i at the jth sampling point; Ci is the mean content; σi
is the standard deviation; Zij is normalization matrix of element content; (Z0)i is the factor
score of the “zero” pollution point where all element contents are equal to 0. The principal
component analysis was conducted for Zij and (Z0)i; p is the number of factors obtained
in principal component analysis. APCSp is the absolute principal component scores; b0i
is a constant term obtained by multiple linear regression for metal element i; bpi is the
linear regression coefficient of element i on factor p. The contribution of each source was
calculated by bpi and APCSp.

2.3.2. UNMIX Model

The UNMIX model is a receptor model developed by the U.S. Environmental Protec-
tion Agency. Based on the contribution of different pollution sources to the receptor (soil),
it is a linear combination of different source components [26]. The equation is listed below:

Cij =
m

∑
k=1

FjkSjk + E (5)

where the Cij is the content of heavy metal i in the jth sampling point, Fjk is the percentage
of element j in the k source, Sik is the contribution of k source in sample i and E is the
standard deviation of analysis. The source component spectrum parsed by the model needs
to meet minimum system requirements that can be interpreted by the model (Min Rsq > 0.8,
Min Sig/Noise > 2).

The UNMIX model was standardized before importing data to the model. The data
were dimensionless and value range of observation was between 0 and 1. The standard
formula of dispersion was as follows [27]:

Xk =
Xi − Xi min

Xi max − Xi min
(6)

where Xk (k = 1, m) is the value after deviation standardization, Xi is the initial analysis
value of the sample, Xi min is minimum analysis value and Xi max is maximum analysis value.

2.3.3. Positive Matrix Factorization (PMF)

The PMF model is a multivariate factor analysis tool that decomposes the receptor
concentration data matrix into a factor contribution matrix and a factor distribution matrix
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under non-negative constraint [28]. The goal of PMF is to analyze pollution sources and
source contributions based on synthetic data sets [29]. The calculation method is as follows:

Xij =
p

∑
k=1

GikFkj + Eij (7)

where Xij is concentration matrix of the jth heavy metal in the ith sample, Gik is the
contribution of the kth source to sample i, Fkj is the value of the kth source to concentration
of heavy metal j and p is the number of factors; Eij is the residual.

The PMF model is defined and iterated on the basis of a weighted least squares method.
The factor contribution and distribution were obtained by minimizing the objective function
Q of the PMF model [30]. The calculation method is as follows:

Q =
n

∑
i=1

m

∑
j=1

(
Eij

Uij

)2

(8)

where Uij is uncertainty of element j in sample i.
The PMF model was run with concentration data and uncertainty data. The uncertainty

data includes sampling and analysis errors [31]. In this study, the contents of Cu, Zn, Pb,
Cd, Cr and Ni in the soil were all higher than the detection limit MDL. The calculation
method of uncertainty Unc was as follows:

Unc =
√(

θ × Cij
)2

+ (MDL)2 (9)

where Cij is concentration of heavy metal i in the jth sample; MDL is the detection limit
of the sample; θ is the relative standard deviation; the signal to noise ratio (S/N) can
be calculated by PMF, S/N > 2 can be considered as good data quality, and samples
with 0.2 < S/N < 2 can be considered as poor data quality, unable to provide sufficient
concentration change [32].

2.4. Potential Ecological Risk Index

The potential ecological risk index (RI) combines ecological and environmental effects
of heavy metals with toxicology [33]. The calculation formula for RI is as follows:

Ei
r = Ti

r ×
(

Ci
Si

)
(10)

RI =
n

∑
i

Ti
r ×

(
Ci
Si

)
(11)

where Ti
r is the biological toxicity of different elements i, which was determined as

Zn = 1 < Cr = 2 < Cu = Ni = Pb = 5 < Cd = 30. The Ci is the measured value of heavy metal
i (mg·kg−1), Si is the reference value of heavy metal i in soil (background value in Zhejiang
Province). Ei

r represents the potential ecological risk factors. RI is the comprehensive
potential ecological risk index of heavy metals. Ei

r < 40, RI < 150, indicates low potential
ecological risk; 40 ≤ Ei

r < 80, 150 < RI < 300 indicate moderate potential ecological risk;
80 ≤ Ei

r < 160, 300 ≤ RI < 600 shows considerable potential ecological risk; 160 ≤ Ei
r < 320,

600 ≤ RI < 1200 exhibit high potential ecological risk; and Ei
r ≥ 320, RI ≥ 1200 reveal very

high potential ecological risk.

2.5. Data Processing and Statistical Analysis

The soil sampling points in the study area were located with ArcGIS 10.2. The descrip-
tive analysis, correlation analysis and APCS-MLR model calculation was conducted with
SPSS 22.0. The analysis chart was drawn with Origin version 8.5. The source apportionment
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of heavy metals was determined with the PMF model (EPA PMF 5.0) and the UNMIX
model (EPA UNMIX 6.0).

3. Results and Discussion
3.1. Descriptive Statistical Analysis of Heavy Metals in Soil

Table 1 reveals the descriptive statistical analysis of heavy metals (Cu, Zn, Pb, Cd,
Cr and Ni) and physical–chemical properties of farmland soil in the study area. Soil was
acidic, as its pH ranged from 4.0 to 5.4. The mean contents of Cu, Zn, Pb, Cd, Cr and Ni
were 30.3, 271.5, 151.4, 0.4, 67.8 and 29.1 mg·kg−1, respectively. The average contents of
heavy metals in the study area were 1.7, 3.9, 6.4, 5.3, 1.3 and 1.2 times their background
values, respectively, compared with the background values of Zhejiang Province [34]. The
over standard rates of Cu, Zn, Pb, Cd, Cr and Ni in soil were 3.96%, 86.14%, 97.03%, 70.30%,
0.00% and 0.99%, respectively, compared with the screening values of agricultural soil
environmental risks in China (GB 15618-2018). The coefficient of variation (CV) reflects
the variability and dispersion of heavy metal elements in soil. The strong variability
indicates that the spatial distribution of heavy metals was seriously affected by external
factors [35,36]. The CVs of heavy metals can be classified as follows: CV ≤ 15% means
weak variation; 15% < CV < 36% means moderate variation; and CV ≥ 36% means high
variation. The CV of Pb, Cd and Ni in the study area were 38.5%, 40.17% and 39.03%,
indicating high variation. The elements of other heavy metals showed moderate variation.
This shows that external factors have a significant impact on the accumulation of heavy
metals in soil.

Table 1. Descriptive statistical analysis of soil heavy metals and soil properties (mg·kg−1).

Parameter/
Element Min Max Mean SD a CV b(%)

Background of
Zhejiang c

Screening
Value d

Standard Exceeding
Rate (%)

pH 3.94 5.37 4.74 0.29 6.21 —— —— ——
SOM e 16.76 66.06 41.65 9.52 22.85 —— —— ——

Cu 10.80 57.00 30.26 8.39 27.72 17.6 50.00 3.96
Zn 141.40 532.20 271.50 71.71 26.41 70.6 200.00 86.14
Pb 59.50 361.60 151.41 58.30 38.50 23.7 80.00 97.03
Cd 0.11 0.95 0.37 0.15 40.17 0.07 0.30 70.30
Cr 17.30 159.00 47.81 10.05 21.03 52.9 250.00 0.00
Ni 6.99 71.60 39.07 15.25 39.03 24.60 60.00 0.99

Notes: a SD stands for standard deviation. b CV stands for the coefficient of variation, which is the ratio of
standard deviation to mean. c Soil heavy metal background value of Zhejiang province [34]. d Soil environmental
quality risk control standard for soil contamination of agricultural land in China (GB15618-2018). e SOM means
soil organic matter (g·kg−1).

3.2. Heavy Metal Content in Soil Profile

For the collected soil profile samples, the diagnostic horizons of the four sections were
divided into tillage layer (A), plough bottom layer (P), percolation layer (W) and sediment
layer (B). In the upper layer, there were many roots with high porosity and the soil was
dark brown. In the lower layer, there was no root system. The soil layer was compact with
rust patterns and spots and a small amount of iron and manganese nodules. We further
analyzed the soil texture at different depth levels. There are significant differences among
the soil profiles (Table 2), likely affecting the migration of heavy metal elements. Figure 2
demonstrates the depth distribution of soil pH, organic matter (OM) and heavy metals
in the soil profiles. The pH value of surface (0–20 cm) soil was lowest compared with
highest of bottom (60–80 cm) soil. Excessive use of nitrogen fertilizer has led to serious
acidification of agricultural soil in China. Nitrogen fertilizer has been identified as the
main driving force of acidification in farmland soil by affecting the process of nitrogen
transformation [37,38]. The content of SOM decreased with the increase in depth. This was
mainly attributed to the application of fertilizer and animal manure in farmland soil, being
mainly accumulated in the surface layer and then transferred from the surface layer to the
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deeper soil after decomposition [39,40]. The contents of Cu, Zn, Pb, Cd and Ni in surface
soil were significantly higher than in deep soil (40–60 cm) and bottom soil (60–80 cm) soil,
which indicated that these heavy metals were greatly affected by the input of external
activities. The content of Cr in the bottom (60–80 cm) soil was significantly higher than
surface soil (0–20 cm), which indicated that Cr was mainly affected by soil parent material.
The content of SOM and Cu in P3 were enriched at 0–60 cm, which were significantly higher
than the other three profiles. Animal manure and its processed products (organic fertilizer)
were the important reasons for the significant increase in the content of organic matter and
Cu in soil, indicating that the region was greatly affected by agricultural activities [41].
However, the Zn and Pb contents in P1 were significantly higher than in the other three
sections, which has confirmed the sources of potential heavy metal pollution in this area.

Table 2. The percentage composition of soil texture (clay, silt and sand) at different depths.

Point P1 P2 P3 P4

Depth Clay Silt Sand Clay Silt Sand Clay Silt Sand Clay Silt Sand

0–20 cm 8.5 55.6 35.9 6.2 52.8 41 8.2 46.7 45.1 11.3 46.8 41.9
20–40 cm 10.2 52.4 37.4 8.5 50.4 41.1 5.3 43.1 51.6 13.6 54.2 32.2
40–60 cm 32.5 43.7 23.8 27.6 41.5 30.9 15.6 35.4 49.3 28.2 45.7 26.1
60–80 cm 35.3 45.2 19.5 32.4 43.2 24.4 24.8 38.4 36.8 22.4 38.4 39.2
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Figure 2. Distribution of heavy metals, pH and organic matter in soil profiles.

3.3. Results of Three Models

The source distribution of heavy metals in the study area was analyzed with the APCS-
MLR, UNMIX and PMF models. The APCS-MLR had extracted four factors, accounting
for 88.58% of the data variance. The explained variances were 25.13%, 25.0%, 20.91% and
17.6%. The PMF model had set the number of factors as four to seven and the number
of runs was 20. The optimal number of factors was finally determined to be four after
comprehensive trial calculation of the Q value. The UNMIX model resolved four factors,
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among which both Min Rsq = 0.95 and Min Sig/Noise = 2.03 met the minimum value
required by the system (Min Rsq > 0.8, Min Sig/Noise > 2).

Figure 3a–c exhibits the composition of factors as analyzed by the APCS-MLR, PMF
and UNMIX models. The factor components of the APCS-MLR and UNMIX models were
similar. In factor 1, Cu and Ni had higher loads. Factor 2 was Cd and Zn, factor 3 was Pb
and factor 4 was Cr. In addition, the fitted parameters with three models were described
in Table 2. The minimum value of r2 was Cu (0.79) in APCS-MLR, and the r2 of the other
heavy metal elements was greater than 0.8 both in APCS-MLR and UNMIX, revealing
the ideal fitness of the two models. In the PMF model, the factor composition was quite
different from APCS-MLR and UNMIX. Factor 1 was dominated by Cu, Zn, Pb, Cd and Ni;
factor 2 was Cu, Zn, Pb, Cr and Ni; factor 3 was Cd; and factor 4 was Cr. The r2 between
the predicted and observed values of Cu, Cd and Ni in PMF was close to 1 according to
the component fitting results (Table 3). The r2 of Zn, Pb and Cr were 0.402, 0.119 and 0.403,
respectively, whereas the fitness of the results was not ideal. The studies revealed that the
PMF model was abnormally sensitive to outliers and cannot acquire reasonable results
without the elimination of outliers.
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Table 3. Fitting degree r2 values of the three receptor models.

Element APCS-MLR UNMIX PMF-1 Full Data PMF-2 Eliminated Outliers

Cu 0.785 0.880 0.984 0.994
Zn 0.820 0.876 0.402 0.448
Pb 0.924 0.948 0.119 0.213
Cd 0.895 0.914 1.000 1.000
Cr 0.983 0.999 0.403 0.610
Ni 0.906 0.917 0.998 0.995

The 13 sampling points were deleted according to the unified residual value of each
point until Qrobust and Qture were in proximity to unreliable results of source analysis using
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the complete data in PMF. Four factors were obtained in PMF, and the factor composition
is presented in Figure 3d. The proportion of factor 1 in each heavy metal element increases
compared with complete data, whereas the proportion of factor 3 decreases after excluding
the abnormal values. The fitness of the model has improved the r2 values of Zn, Pb and
Cr and the observed r2 values were 0.448, 0.213 and 0.61, respectively. However, no more
reliable fitting results were obtained, which is consistent with results of Xue et al. [30].

3.4. Source Apportionment of Heavy Metals in Soil

The composition of pollution sources in the APCS-MLR and UNMIX models was
similar. In the composition spectrum of factor 1 (Figure 3), the load of Cu and Ni was higher
than other elements. The Zn, Pb, Cd and Cr were distributed in a small amount. Research
has reported that human activities could significantly change the spatial characteristics
of Ni in soil and diffusion of Ni in the environment was mainly affected by atmospheric
deposition and sewage irrigation [42,43]. In industrial enterprises, the iron and steel plant
was a significant source of heavy metal pollution. In the past few decades, due to lack
of environmental protection technology to address the dust and waste produced in the
iron and steel smelting process, the Cu content in the surrounding soil was five times
higher than the background value [44]. The study of heavy metal content in soil near a
steel plant in Serbia showed that concentrations of Cd, Cu, Ni, Pb and Zn were higher than
that reported in European soils and higher than the world average [45]. The abandoned
iron and steel plant was located in the north of the study area, in the upper reaches of
the river, and the terrain was higher than the farmland. Dust and sewage generated in
the process of steel smelting and processing were accumulated in soils with atmospheric
sedimentation, rain erosion and farmland irrigation. Therefore, factor 1 represented the
industrial pollution source.

In factor 2, the calculation results of the APCS-MLR and UNMIX models suggested
that Cd and Zn were marker elements (Figure 3a,b). Pearson correlation analysis results
among heavy metal content and physical–chemical properties in soils are reported in Table 4.
SOM had a significant correlation with Cd and Zn at p < 0.05, and its correlation coefficients
were 0.487 and 0.437, respectively. As discussed in the previous sections, Cd usually exists
in phosphate rock and as chemical fertilizers, especially phosphate fertilizers, brought to
farmland soil [46]. Zn is widely used in livestock feed as additives, which is excreted out of
the body with feces [47]. Long-term application of chemical fertilizer, organic fertilizer and
animal manure in agricultural activities will enhance the concentrations of Zn and Cd in
soil [48,49]. According to the field survey, the farmers bred livestock and poultry directly
on the farmland after harvest, which transferred heavy metals to soil from the manure of
the livestock. In addition, this was an important reason why the content of SOM in this
study was significantly higher than the average level of Zhejiang Province. In this regard,
factor 2 could be identified as an agricultural source.

Table 4. Correlation analysis of soil heavy metal content and properties in the study area.

Parameter/Element pH SOM Cu Zn Pb Cd Cr Ni

pH 1.000
SOM −0.228 * 1.000
Cu −0.020 0.430 ** 1.000
Zn −0.225 * 0.437 ** 0.422 ** 1.000
Pb −0.030 0.130 0.346 ** 0.405 ** 1.000
Cd −0.190 0.487 ** 0.170 0.546 ** 0.060 1.000
Cr 0.130 0.090 0.308 ** −0.080 0.010 −0.236 * 1.000
Ni 0.020 0.395 ** 0.567 ** 0.277 ** 0.090 0.266 ** 0.204 * 1.000

* Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level (two-tailed).

Factor 3 represents transportation, which is major cause of pollution due to Pb, Cu
and Zn. Due to the combustion of fuels and use of engine catalysts, Pb was main indicator
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of traffic emissions [50,51]. Although the production, sale and use of leaded gasoline has
been banned since 2000, the accumulation of Pb in soil has not been eliminated [52]. Cu
is usually used in the metal parts of automobiles. The Zn in surface soils is related to the
wearing of tires and corrosion of galvanized parts [53,54]. In this study area, a large number
of farms are distributed along the road. The major cause of Pb, Cu and Zn pollution in
farmland soil was due to road dust. Furthermore, in profile 1 (Figure 2), the Pb content in
topsoil was significantly higher than in the other three sections of soil. The heavy metal (Pb)
in the soil was enriched by intensive transportation. In factor 4, the ratios of Cr determined
by the APCS-MLR and UNMIX models accounted for 79.75% and 93.37% of the totals,
respectively. The concentration of Cr in the study area was significantly lower than the
background value. According to the soil profile analysis (Figure 2), Cr in the soil originated
from parent material, which has been verified in previous studies [55,56]. Therefore, factor
4 represents natural sources.

In the PMF-1 model, the main elements in factor 1 were Cr and Cu; however, Zn, Pb
and Ni have large loads. In PMF-2, the proportion of heavy metal elements in factor 1 was
significantly increased. These findings indicate that, due to calculation of PMF, natural
sources account for a large proportion, so that factor 1 is the natural source. In factor 2
PMF-1, Cu and Ni account for a large proportion, representing industrial pollution sources;
PMF-2 subdivides industrial pollution sources in factor 2 and factor 3. Factor 2 represents
atmospheric deposition pollution sources, and factor 3 represents irrigation water pollution
sources. Previous studies on the heavy metal input flux of farmland soil reported that
the input percentage of Cr from atmospheric deposition was highest and that this was
followed by irrigation. The percentage of Ni entering farmland through irrigation was the
highest [57]. In PMF-1, the main elements in factor 3 were Cd, Cu, Zn and Pb, in which Cd,
Cu and Zn were significantly correlated with SOM content and Pb was the main indicator
of traffic emission. Factor 3 was a mixed pollution source of organic fertilizer input and
traffic emissions. The main element of factor 4 was Cd, mainly from chemical fertilizer.
In PMF-2, the main elements in factor 4 were Cd and Zn, which were the comprehensive
sources of organic fertilizer and chemical fertilizer.

3.5. Source Contribution Analysis

The contribution of each pollution source as calculated by the three models, APCS-
MLR, PMF and UNMIX, is demonstrated in Figure 4. The proportions of industrial,
agricultural, traffic emission and natural sources in the APCS-MLR model were 32.41%,
31.65%, 21.51% and 14.42%, respectively. The proportions of the above four sources were
38.42%. 29.35%, 21.03% and 11.2% in the UNMIX model. The contributions of natural
sources, industrial sources, mixed sources of organic fertilizer and traffic emissions, and
chemical fertilizer sources were 41.88%, 27.7%, 20.35% and 10.06%, respectively, in PMF-1.
The contribution rates of natural sources, atmospheric deposition, irrigation and fertilizer
sources were 48.84%, 22.47%, 13.78% and 14.91%, respectively, in PMF-2.

According to contribution rate of the three models, the results of the APCS-MLR and
UNMIX models are consistent. The composition and contribution of pollution sources were
highly similar, indicating that the results of source apportionment are reliable. Natural
sources accounted for the largest proportion in the PMF model. Except for Cr, other
elements in factor 1 have a high loading. The correlation analysis indicated that Cr was
significantly correlated with Cu (p < 0.05) and correlated with Ni (p < 0.1). These findings
indicate that Cr, Cu and Ni have common sources. The Zn and Pb in factor 1 were from other
pollution sources. It was observed that the fitting effect of Zn and Pb is the worst in the PMF
model analysis process (Table 2), which may be due to the wide sources of Zn and Pb in the
study area and its high content in the soil. Several areas were interfered with by a variety
of pollution sources with a high intensity and long pollution time because the PMF model
was unable to accurately identify their pollution sources. The proportion of natural sources
in the PMF model increased significantly after the elimination of outliers, suggesting that
the PMF model is very sensitive to outliers. The contribution of corresponding pollution
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sources will be underestimated after the exclusion of outliers. The PMF model can minimize
the Q value of the objective function if outliers are retained. The model itself will give the
priority to the fitting of outliers. As a result, the factor contribution tends to outliers and
accurate source analysis data cannot be obtained. Therefore, the influence of outliers on
the analytical results of the PMF model should be carefully considered in the selection of a
receptor model.
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3.6. Evaluation of Potential Ecological Risk Index

The potential ecological risk index has evaluated the pollution of heavy metals in the
soil of the study area (Table 5). These analytical results show that the average risk index
of heavy metals in the soil of the study area was in the order of Cd (160.01) > Pb (31.94)
> Ni (10.69) > Cu (8.60) > Zn (3.85) > Cr (2.56). The mean value of Cd indicated a strong
ecological risk degree, and Cd showed a very strong risk degree in a few sampling points.
The comprehensive potential ecological risk index ranged from 92.37 to 489.68, with an
average value of 217.65. There was a large difference in the risk level, and the overall risk
level was medium. The contribution of Cd to the comprehensive potential ecological risk
was 73.52%, contributing the main source of the potential ecological risk of heavy metals in
the study area.

Table 5. Potential ecological risk index of heavy metals in soil.

Statistics
Ei

r
RI

Cu Zn Pb Cd Cr Ni

Min 3.07 2.00 12.55 47.14 0.65 2.57 92.37
Max 16.19 7.54 76.29 407.14 9.79 26.32 489.68

Mean 8.60 3.85 31.94 160.01 2.56 10.69 217.65
SD 2.37 1.01 12.24 63.96 1.24 3.38 67.89
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4. Conclusions

The pollution of heavy metals (Pb, Zn and Cd) in farmland soil is more serious due
to rapid development of industry and agriculture. Cu, Zn, Pb, Cd and Ni were enriched
in the topsoil, whereas Cr was mainly affected by the soil parent material. The potential
ecological risk index revealed that Cd was the main element causing the risk of heavy
metal pollution in the studied region. The sources of heavy metals in soil were analyzed
with the APCS-MLR, UNMIX and PMF models. In the PMF and APCS-MLR models,
the industrial sources, agricultural sources, traffic emission sources and natural sources
accounted for 32.41% (38.42%), 31.65% (29.35%), 21.51% (21.03%) and 14.42% (11.2%),
respectively. These two models were relatively consistent, which could better explain the
source and contribution of heavy metal pollution in soil and were more appropriate for this
kind of study. However, the PMF model could be easily affected by outliers and the fitting
effect of Zn and Pb was not ideal, leading to its high proportion in natural sources, which
reduces the credibility of the source apportionment results. The APCS-MLR and UNMIX
models were more appropriate for this study. According to the potential ecological risk
index, Cd has the greatest ecological risk. Therefore, in the process of soil pollution control,
priority should be given to control the harm of Cd to the local ecological environment.
The receptor model should be carefully selected in the source apportionment of soil heavy
metals. The comprehensive application of multiple models can facilitate the improvement
of the reliability of source apportionment results.
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