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Abstract: The associations between urinary phenol concentrations and markers of thyroid function
and autoimmunity among potentially susceptible subgroups, such as subfertile women, have been
understudied, especially when considering chemical mixtures. We evaluated cross-sectional associa-
tions of urinary phenol concentrations, individually and as a mixture, with serum markers of thyroid
function and autoimmunity. We included 339 women attending a fertility center who provided one
spot urine and one blood sample at enrollment (2009–2015). We quantified four phenols in urine using
isotope dilution high-performance liquid chromatography–tandem mass spectrometry, and biomark-
ers of thyroid function (thyroid-stimulating hormone (TSH), free and total thyroxine (fT4, TT4), and
triiodothyronine (fT3, TT3)), and autoimmunity (thyroid peroxidase (TPO) and thyroglobulin (Tg)
antibodies (Ab)) in serum using electrochemoluminescence assays. We fit linear and additive models
to investigate the association between urinary phenols—both individually and as a mixture—and
serum thyroid function and autoimmunity, adjusted for confounders. As a sensitivity analysis, we
also applied Bayesian Kernel Machine Regression (BKMR) to investigate non-linear and non-additive
interactions. Urinary bisphenol A was associated with thyroid function, in particular, fT3 (mean
difference for a 1 log unit increase in concentration: −0.088; 95% CI [−0.151, −0.025]) and TT3 (−0.066;
95% CI [−0.112, −0.020]). Urinary methylparaben and triclosan were also associated with several
thyroid hormones. The overall mixture was negatively associated with serum fT3 concentrations
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(mean difference comparing all four mixture components at their 75th vs. 25th percentiles: −0.19,
95% CI [−0.35, −0.03]). We found no evidence of non-linearity or interactions. These results add to
the current literature on phenol exposures and thyroid function in women, suggesting that some
phenols may alter the thyroid system.

Keywords: phenols; mixtures; BKMR; thyroid function

1. Introduction

Endocrine disrupting chemicals (EDCS) such as bisphenol A (BPA), benzophenone-3,
parabens, and triclosan may interfere with the endocrine system, leading to detrimental
health effects in both humans and wildlife [1]. BPA is found in synthetic polymers, building
materials, thermal paper, toys, dental products, and food packaging [2]. Benzophenone-3
is widely used in cosmetic products as a sunscreen agent that absorbs and dissipates ultra-
violet radiation [3]. Parabens, including methylparaben, butylparaben, and propylparaben,
are used as food preservatives and shelf stabilizers [4,5] and in personal care products such
as shampoos, creams [6], and pharmaceutical products [7,8]. Triclosan is an antimicrobial
agent [9] that has been used in personal hygiene products such as mouthwashes, tooth-
pastes, and hand sanitizers [10]. Despite these environmental phenols’ short elimination
half-life (<24 h), exposures are repeated, episodic, and chronic [11–13]. Urine has been
shown to be the optimal biological matrix for assessing exposure to these chemicals [14].
BPA, benzophenone-3, parabens, and triclosan have been detected in almost 100% of urine
specimens from representative samples of the U.S. general population from the National
Health and Nutrition Examination Survey (NHANES) [15], confirming that exposure to
these chemicals is ubiquitous.

Animal studies have demonstrated an alteration of thyroid biomarkers after expo-
sure to some environmental phenols. For example, exposures to methyl-, ethyl-, propyl-,
isopropyl-, and isobutylparaben were associated with lower total thyroxine (TT4) concen-
trations in rat models [16]. In addition, benzophenone-3 was associated with higher levels
of free T4 (fT4) and triiodothyronine (T3) and lower levels of thyroid-stimulating hormone
(TSH) in female rats [17]. Additionally, exposure to triclosan decreased TT4 [18] and TT3
concentrations [18] in rats. Epidemiologic studies on BPA, benzophenone-3, parabens, and
triclosan in relation to thyroid hormones in humans, however, have shown inconsistent
findings [19–24]. Importantly, previous studies have not investigated these exposures as a
mixture. Evaluating chemical mixtures is of public health importance because humans are
exposed to multiple synthetic chemicals simultaneously, each of which may themselves be
correlated or act synergistically [25,26]. To address this knowledge gap, we evaluated the
urinary concentrations of BPA, benzophenone-3, parabens, and triclosan, individually and
as a mixture, in relation to thyroid function and autoimmunity biomarkers among women
attending a fertility center.

Human biomonitoring and environmental studies have demonstrated the presence
of multiple chemical exposures, and thus it is of interest to evaluate the health effects of
a group of chemicals that can biologically interact or share sources of exposure. As such,
we analyzed phenol biomarkers as a chemical mixture. This may be problematic for a risk
assessment, however, because some of the examined phenols may have different sources of
exposure (e.g., parabens are mainly found in personal care products and bisphenol A, is,
for example, found in food packaging, among others). Consequently, we also examined
associations between individual phenol biomarkers and thyroid function, which is also
important from a toxicological perspective.
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2. Materials and Methods
2.1. Study Participants

Women in this study were enrolled in the Environment and Reproductive Health
(EARTH) study, a prospective cohort designed to study environmental and dietary determi-
nants of fertility among couples seeking fertility care at the Massachusetts General Hospital
(MGH) Fertility Center [27]. Women aged 18–45 were eligible to participate. Among the
N = 956 women enrolled in EARTH, this cross-sectional analysis included 339 women en-
rolled between 2009 and 2015 who provided a spot urine and a blood sample. We excluded
219 women without phenol data and 398 women lacking serum thyroid and autoimmunity
biomarker data; as previously described, this included 133 women using thyroid-interfering
medication (predominantly levothyroxine, methimazole, propylthiouracil, amiodarone,
antipsychotics, anticonvulsants, or high-dose steroids) at study entry [28].

Each participant’s date of birth was collected at entry. Trained study staff measured
weight and height, and body mass index (BMI) was computed as the ratio of weight
to height squared (in kilograms per meter squared). After giving informed consent,
participants completed questionnaires that were administered by study staff assessing
their sociodemographic, lifestyle, and medical history at enrollment. Participants further
completed a take-home questionnaire regarding their family, medical, reproductive, and
occupational history, consumer products use, smoking history, and physical activity. Infer-
tility was diagnosed according to the definitions of the Society of Assisted Reproductive
Technology [29]. The study was approved by the Human Subject Committees of the Har-
vard T.H. Chan School of Public Health, MGH, and the Centers for Disease Control and
Prevention (CDC).

2.2. Exposure Assessment

At enrollment, participants collected one spot urine sample in a sterile polypropylene
specimen cup. Specific gravity (SG) was measured at room temperature using a handheld
refractometer (National Instrument Company, Inc., Baltimore, MD, USA) calibrated with
deionized water before each measurement. Rather than correcting for SG, we used un-
adjusted urinary phenol biomarker concentrations and adjusted for SG as a covariate in
all statistical models to avoid bias [30,31]. The urine samples were stored at −80 ◦C and
shipped frozen on dry ice overnight to the CDC for analysis. As previously described [32],
we used online solid-phase extraction coupled with isotope dilution high-performance
liquid chromatography–tandem mass spectrometry to measure urinary concentrations of
six phenol biomarkers: BPA, benzophenone-3, triclosan, methylparaben, propylparaben,
and butylparaben. Limits of detection (LOD) ranged from 0.1 to 1.0 µg/L, depending
on the biomarker, and changed over the course of study. We excluded urinary butyl-
paraben from the analysis because of the relatively low detection rate (57%), and we also
excluded urinary propylparaben because it was highly correlated with methylparaben
(r = 0.87) and had a lower detection rate. To accommodate concentrations below the
LOD, we used a left-censored normal multiple imputation strategy (with m = 10 impu-
tations), as described by Lapidus et al. [33], and implemented it via the mice doMIsaul
“https://github.com/LilithF/doMIsaul (accessed on 1 April 2022) and multiLODmice
(https://github.com/glenmcgee/multiLODmice (accessed on 1 April 2022)) packages in R.

Each analytical run included the following, in addition to study samples: a set of cali-
brators (prepared in methanol with commercially available analytical standards of the target
analytes), reagent blanks (prepared in HPLC grade water), and high- and low-concentration
quality control (QC) materials (made from urine spiked with known concentrations of
the target analytes). Commercial sources of the analytical standards as well as details
about the preparation of standards, blanks, and QCs have been reported before [34]. QC
concentrations were evaluated using standard statistical rules [35]. If the QC samples failed
statistical evaluation, all study samples in the run were re-extracted. The CDC’s analytical
methods are public knowledge [34] and have been used to analyze tens of thousands of
specimens since the early 2000s. These include samples collected as part of NHANES,

https://github.com/LilithF/doMIsaul
https://github.com/glenmcgee/multiLODmice
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which has provided the most comprehensive assessment of Americans’ exposure to phenols
to date [36,37].

2.3. Outcome Assessment

From each participant, a single non-fasting blood sample was collected via venipunc-
ture on the same day that the urine sample was collected. Serum samples were centrifuged,
stored at −80 ◦C, and shipped on dry ice to the Department of Clinical Chemistry, Máxima
Medical Center (Veldhoven, The Netherlands), to assess biomarkers of thyroid function
and autoimmunity. The six outcomes of interest included serum concentrations of thyroid-
stimulating hormone (TSH), free and total thyroxine (fT4, TT4), free and total triiodothyro-
nine (fT3, TT3), thyroperoxidase antibody (TPOAb), and thyroglobulin antibodies (TgAb).
Each concentration was quantified via electrochemoluminescence assays (Cobas® e601
platform; Roche Diagnostics, Mannheim, Germany). Between-run coefficients of variation
2.1% for TSH, 3.5% for fT4, 3.8% for TT4, 3.8% for fT3, and 7.7% for TT3. Coefficients of
variation were 12.4% for TPOAb at 33 IU/L and 7.1% at 100 IU/L, and 10.9% for TgAb at
76 IU/L and 8.6% at 218 IU/L. Clinical reference values were as follows: 0.4–4.0 mU/L
for TSH, 10–24 pmol/L for fT4, 58–161 nmol/L for TT4, 3.5–6.5 pmol/L for FT3, and
0.9–2.8 nmol/L for TT3. TPOAb and TgAb concentrations were dichotomized to 1 (posi-
tive) if they were >35 IU/mL or >115 IU/L, respectively, and 0 otherwise (corresponding to
manufacturer cutoffs).

2.4. Statistical Analysis

We summarized participants’ demographic and baseline reproductive characteristics
via median and interquartile ranges (IQRs) or via counts and proportions (in %). We
summarized distribution of urinary concentrations of phenol biomarkers via percentiles
as well as geometric means and standard deviations (SDs). Due to right skewness, we
loge-transformed urinary concentrations of phenol biomarkers and assessed pairwise
correlations of urinary biomarker concentrations via Spearman correlation coefficients.

We assessed potential confounders using prior knowledge about biological relevance
and descriptive analysis of the study sample. Variables were considered potential con-
founders if they were associated with urinary phenols biomarker concentrations and
thyroid biomarkers but were not believed to lie on the causal pathway between exposure
and outcome. All models—single-exposure and mixture models alike—were adjusted for
age (years), BMI (kg/m2), and race (white vs. other), and were further adjusted for specific
gravity (SG) to account for urine dilution.

We fit both single-exposure models (one model per exposure-outcome pair) as well as
multi-exposure mixture models (one model per outcome that adjusted for all four phenols).
We first fit linear models, regressing each continuous thyroid outcome on the natural log
of phenol concentration(s), and we reported estimates and 95% confidence intervals (CIs)
for mean difference in outcome for a 1 log unit (µg/L) increase in exposure biomarker
concentration. We then fit additive models, in which the functional relationship between
each phenol concentration and the thyroid outcome was allowed to be non-linear and
was estimated non-parametrically via penalized splines. For additive models, we plotted
estimated mean differences along with 95% CIs corrected for smoothness selection via
restricted maximum likelihood. In the multi-exposure mixture models, we also estimated
overall mixture associations, defined as mean differences in thyroid biomarkers for a
simultaneous increase from 25th to 75th percentiles of all mixture exposures simultaneously.
For the binary outcomes (TgAb and TPOAb), we fit generalized linear and additive models
with a logit link, and we reported all associations on the odds ratio scale.

While the (generalized) additive models allowed for non-linear relationships, we
further investigated non-additive interactions via Bayesian Kernel Machine Regression
(BKMR) [26,38,39] in sensitivity analyses, and we plotted estimated exposure–response
curves for component-wise associations and for pairwise interactions. Statistical analyses
were performed using the mgcv [40] and mice [41] packages in R v4.0.2 (The R Foundation
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for Statistical Computing Platform). We reported 95% intervals and two-tailed 0.05 level
tests where appropriate, but we emphasized consistency of findings across analyses rather
than statistical significance.

3. Results

Among the 339 women in this study, the median (IQR) age was 34.0 (32.0, 38.0) years
and the median BMI (IQR) was 23.2 (21.2, 26.2) kg/m2. Participants were predominantly
white (83%), and 26% had ever smoked (Table 1). Median (IQR) serum concentrations of TSH,
fT4, TT4, fT3, TT3, TgAb, and TPOAb were 1.85 (1.40, 2.60) mU/L, 15.5 (14.1, 16.7) pmol/L,
96.8 (86.5, 110) nmol/L, 4.80 (4.47, 5.21) pmol/L, 1.79 (1.58, 2.06) nmol/L, 15.9 (11.1,
23.3) IU/mL, and 12.0 (9.83, 16.0) IU/mL, respectively. TPOAb positivity and TgAb
positivity were detected in 37 (11%) and 35 (10%) women. Serum thyroid function and au-
toimmunity biomarker concentrations were within normal ranges for healthy adult women.
Detection frequencies for BPA, benzophenone-3, methylparaben, and triclosan were greater
than 79% (Supplementary Table S1), and were similar to those reported in U.S. females from
the general population [37]. The median urinary concentrations of these phenol biomarkers
were also similar to those reported for females from the general U.S. population, except for
benzophenone-3, which was higher in this study, as previously described [42]. The four
urinary phenols were weakly correlated with one another (Spearman r = 0.17–0.32).

Table 1. Demographics and reproductive characteristics as well as thyroid biomarkers (median (IQR)
or N (%)) among 339 women in the Environment and Reproductive (EARTH) study.

Demographics

Age, years 34.0 (32.0, 38.0)
White (race), N (%) 281 (83)
Body Mass Index, kg/m2 23.2 (21.2, 26.2)
Ever smoked, N (%) 90 (26)
Education, N (%)

High school/some college 67 (20)
College graduate 99 (29)
Graduate degree 173 (51)

Reproductive history
Initial infertility diagnosis, N (%)

Male factor 80 (24)
Female factor 151 (44)
Unexplained 107 (32)

Thyroid biomarkers
TSH (mU/L) 1.85 (1.40, 2.60)
Free T4 (pmol/L) 15.5 (14.1, 16.7)
Total T4 (nmol/L) 96.8 (86.5, 110)
Free T3 (pmol/L) 4.80 (4.47, 5.21)
Total T3 (nmol/L) 1.79 (1.58, 2.06)
TgAb positivity (>115 IU/mL), N (%) 37 (11)
TPOAb positivity (>35 IU/mL), N (%) 35 (10)

Results for the continuous thyroid biomarkers were similar between the linear single-
exposure and multi-exposure mixture models (Figure 1; also see Supplementary
Tables S2 and S3), although CIs were wider in the mixture models. Urinary BPA was
consistently associated with thyroid hormone biomarkers; there was a positive association
with TSH and a negative association with fT4, TT4, fT3, and TT3 concentrations in the
single-component analyses. Associations with fT3 (estimated mean difference per 1 log
unit increase: −0.088; 95% CI [−0.151, −0.025]) and TT3 (−0.066; 95% CI [−0.112, −0.020])
remained significant in the mixture models. Urinary methylparaben was positively asso-
ciated with TSH, fT4, and fT3 in the single-component analyses, but the evidence from
mixture models was weaker. Urinary triclosan was weakly negatively associated with TSH,
fT3, and TT3, but only the association with fT3 remained significant in mixture models
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(estimated mean difference per 1 log unit increase −0.041; [−0.067, −0.014]). Urinary
benzophenone-3 was not related to any of the examined outcomes.
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Figure 1. Associations between exposures and thyroid function in linear models. Estimates and
corresponding 95% confidence intervals of mean differences (for continuous outcomes) and odds
ratios (for binary outcomes) for a 1 log unit increase in concentration. Univariate corresponds to
analyses with a single mixture component; multiple corresponds to mixture models with all four
components. Models were adjusted for age (years), BMI (kg/m2), race (white vs. other), and specific
gravity (SG).

The additive models (Figure 2 and Supplementary Figure S1) largely echoed the
results of the linear models, with a few exceptions: BPA was only associated with fT3
and TT3; methylparaben was only associated with fT3 and fT4 in the mixture models;
and triclosan was only associated with fT3. We observed no significant evidence of non-
linear associations. The results of the BKMR models were similar to those of the additive
models, albeit with more uncertainty (Supplementary Figure S3); we found no evidence of
interactions among mixture components (Supplementary Figures S4 and S5).

Considering the entire mixture simultaneously (Table 2), we found some evidence
of a negative overall mixture association with serum fT3 concentrations. Specifically,
the estimated mean difference for an increase from the 25th to 75th percentiles of all
exposures was −0.19 (95% CI (−0.35, −0.03)) in the linear mixture model, but there was
more uncertainty in the additive mixture model (−0.26, 95% CI (−0.94, 0.41)).

Table 2. Estimates of overall mixture association, comparing 75th to 25th percentiles of all mixture
components simultaneously. Overall associations shown for multiple (generalized) linear models and
(generalized) additive models. Est is estimated mean difference (or odds ratio for binary outcomes)
comparing 75th to 25th percentiles of exposure biomarker concentration; 95% CI is corresponding
confidence interval.

Linear Additive
Est 95% CI Est 95% CI

TSH 0.11 (−0.20, 0.42) 0.13 (−0.70, 0.97)
fT4 −0.09 (−0.68, 0.49) −0.13 (−1.36, 1.11)
TT4 −3.57 (−9.25, 2.12) −3.14 (−6.72, 0.44)
fT3 −0.19 (−0.35, −0.03) −0.26 (−0.94, 0.41)
TT3 −0.09 (−0.21, 0.02) −0.09 (−0.58, 0.39)

TgAb 0.97 (0.37, 2.54) 0.90 (0.20, 4.07)
TPOAb 0.84 (0.33, 2.17) 1.29 (0.27, 6.25)
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Figure 2. Mixture analysis: Additive model results for continuous outcomes. Curves represent
estimated mean differences and corresponding 95% confidence intervals, compared to median log
concentration. Each row corresponds to a different model. Models were adjusted for age (years),
BMI (kg/m2), race (white vs. other), and specific gravity (SG).
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In analyses for serum antibodies evaluated as binary outcomes, we observed a positive
association between TgAb and methylparaben and a negative association between TgAb
and triclosan in the single-component linear analyses (Figure 1). However, the results
from the mixture models were not significant (Supplementary Table S3): ORs for 1 log
unit increase in urinary concentration of 1.265 (95% CI [0.975, 1.641]) and 0.892 (95% CI
[0.757, 1.051]), respectively, and no statistically significant associations were found in the
generalized additive models (Figure 3 and Supplementary Figure S2).
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Figure 3. Mixture analysis: Generalized additive model results for binary outcomes. Curves represent
estimated log odds ratios and corresponding 95% confidence intervals, compared to median log
concentration. Each row corresponds to a different model. Models were adjusted for age (years),
BMI (kg/m2), race (white vs. other), and specific gravity (SG).

4. Discussion

We assessed the cross-sectional relationship between urinary concentrations of four
phenol biomarkers and serum markers of thyroid function and thyroid autoimmunity
among 339 subfertile women seeking fertility care in Boston (MA). In models assessing phe-
nols individually, we observed that BPA was positively associated with TSH and negatively
associated with fT4, TT4, fT3, and TT3 concentrations. Furthermore, methylparaben was
positively associated with serum concentrations of TSH, fT4, fT3, and TgAb, and triclosan
was negatively associated with TSH, fT3, TT3, and TgAb concentrations. Multi-exposure
mixture models yielded similar estimates of individual associations, albeit with increased
uncertainty, and we also observed a negative association for the mixture with serum
fT3. These results contribute to the epidemiologic literature on gestational environmental
exposures as determinants of thyroid function and autoimmunity.

In a subset of 317 women in this study cohort, we previously observed that urinary
triclosan concentrations were negatively associated with specific serum thyroid function
biomarkers [24]. Among 454 pregnant California women included in the Center for the
Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, researchers
found a negative association between urinary triclosan and serum total T4, although this
association did not remain after controlling for other chemicals. In a nested case–control
sample of 439 pregnant women in Boston (MA), Aker et al. found lower plasma total T3
levels with higher urinary benzophenone-3, butylparaben, and triclosan [20]. The authors
also reported a positive association between urinary methylparaben and plasma T3, as
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well as a negative association between urinary propylparaben and plasma-free T4. Among
602 pregnant women in the Puerto Rico Testsite for Exploring Contamination Threats
(PROTECT) cohort, urinary bisphenol S was positively associated with serum fT4, whereas
triclocarban was positively associated with serum TT3 and negatively associated with
serum TSH [21]. Though no associations were found for other bisphenols and triclosan,
urinary BPA was negatively associated with TT4 concentrations among 1996 women in
the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy study
(SELMA), a population-based prospective pregnancy cohort [23]. However, triclosan was
positively related to serum TSH in 3360 women from the second (2012–2014) Korean
National Environmental Health Survey [22]. Among 181 pregnant women participating in
the Health Outcomes and Measures of the Environment (HOME) study, researchers found
no associations between urinary BPA and circulating thyroid hormones, including TSH,
fT4, TT4, and TT3 [43]. Discrepancies in results between our study and the aforementioned
studies evaluating phenol exposures individually in relation to thyroid function biomarkers
may, in part, be due to the lack of consideration of other phenols when evaluating the
associations. Other reasons may include different study populations and urinary phenol
biomarker concentrations.

Among women in this study, exposure to selected phenols was associated with al-
terations in thyroid function, and some of them were suggestive of thyroid diseases. For
example, urinary concentrations of BPA were associated with higher TSH and lower thyroid
hormones, which is indicative of hypothyroidism [44]. Additionally, urinary methylparaben
was positively associated with TSH, fT3, and fT4, which are observed when there is altered
negative feedback and/or thyroid hormone resistance at the pituitary level. Finally, urinary
triclosan was associated with lower TSH and lower T3. Increased circulating levels of
both hormones are indicative of a non-thyroidal illness pattern or upregulation of type 3
deiodinase in peripheral tissues, including the pituitary.

This study includes women seeking fertility care, who are an important study pop-
ulation, as subfertile women have been demonstrated to be at a higher risk for thyroid
disease [28,45,46]. A strength of this study is the use of several statistical methods to evalu-
ate biomarker mixtures. While linear models are powerful, they make strong assumptions
(i.e., no interactions and no non-linearity). By contrast, BKMR allows for non-linearity as
well as high-order interactions among mixture components, but this flexibility decreases
power. As a compromise, we also fit GAMs, which allow the estimation of flexible, non-
linear relationships without committing to a fully non-parametric approach that allows for
high-order interactions, which are difficult to estimate in small samples. Another strength is
the multiple imputation strategy, which uses information about all observed data to impute
non-detectable biomarker concentrations. Potential confounding bias was limited because
all the participants attended a single medical center and were enrolled in an established
cohort study with homogenous demographics. All serum and urine samples were collected
and processed under a common protocol before determining thyroid function and thyroid
autoimmunity biomarkers, and urinary phenol biomarker concentrations were quantified
at the CDC using the analytical approach used in other studies including NHANES.

This study is not without limitations. First, the generalizability of the results to
women in the general population is limited because this study is restricted to women
attending a fertility center. Second, causality cannot be established given the cross-sectional
nature of this study. Third, unmeasured confounding by factors affecting both phenol
biomarkers and the thyroid system could cause spurious results. Fourth, non-differential
exposure misclassification—because of the episodic exposure to the phenols examined
and their relatively short biological half-lives, especially when only including one urine
sample per woman—could bias estimates to the null [47,48]. However, we previously
demonstrated in the EARTH study that a single urine sample can effectively reflect one’s
exposure to BPA, triclosan and other short half-lived chemicals such as phthalates over
several months [49,50].
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5. Conclusions

In a sample of women attending a fertility center, we found that urinary phenols—
specifically BPA, methylparaben, and triclosan—were associated with several serum mark-
ers of thyroid function and autoimmunity in both single- and multi-exposure mixture
analyses. These findings contribute to the epidemiologic literature on environmental expo-
sures during reproductive years as determinants of thyroid function and autoimmunity.
As the thyroid system is strictly regulated and any effects on serum biomarker concen-
trations may have relevant physiological consequences, further studies should evaluate
the long-term consequences as well as biological mechanisms (e.g., omics) to explain the
observed findings.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/toxics11060521/s1. Table S1: Distribution of urinary concentrations
(µg/L) of phenol biomarkers among women in the Environment and Reproductive (EARTH) study.
Table S2: Linear single-exposure model results in EARTH Study. Each column/row pair corresponds
to a separate model fit. Table S3: Linear mixture model results in EARTH Study. Each row corresponds
to a single model fit. Figure S1: Single-component analysis: additive model results for continuous
outcomes. Curves are estimated mean differences and corresponding 95% confidence intervals,
compared to median log concentration. X-axis indicates log concentration. Each plot corresponds to
an individual model. Models were adjusted for age (years), BMI (kg/m2), race (white vs. other), and
specific gravity (SG). Figure S2: Single-component analysis: generalized additive model results for
binary outcomes. Curves are estimated log odds ratios and corresponding 95% confidence intervals,
compared to median log concentration. X-axis indicates log concentration. Each plot corresponds to
an individual model. Models were adjusted for age (years), BMI (kg/m2), race (white vs. other), and
specific gravity (SG). Figure S3. Mixture analysis: BKMR results for continuous outcomes. Curves
are estimated mean differences and corresponding 95% credible intervals. Each row corresponds
to a different model. Models were adjusted for age (years), BMI (kg/m2), race (white vs. other),
and specific gravity (SG). Figure S4. Mixture analysis: pairwise interaction plots for in the BKMR
analyses for (a) TSH, (b) fT4, (c) fT3, (d) TT4 and (e) TT3. Curves are estimated mean differences
and corresponding 95% credible intervals, holding y-axis component at 10th, 50th or 90th percentile,
and other components set to their median. Models were adjusted for age (years), BMI (kg/m2), race
(white vs. other), and specific gravity (SG).
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