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Abstract: Imidacloprid (IMI) is the first-generation neonicotinoid insecticide. But, the long-term use of
IMI as a pesticide has caused severe water pollution. Recently, the toxicity of IMI to aquatic organisms
has received increasing attention. This study aimed to investigate the absorption and distribution of
IMI in various tissues (gills, intestine, liver, muscle, brain and gonads) of goldfish through short-term
and continuous exposure tests over 28 days. The results of short-term exposure indicated that the
concentration of IMI and its metabolites in tissues at the transfer stage decreased steadily after 1 day of
40 mg/L IMI water treatment and was below the detection limit after 3 days. Continuous exposure for
28 days at various treatment concentrations showed that the concentrations of IMI and its metabolites
differed significantly among the different tissues of the goldfish. In the 20 mg/L treatment group (S1),
the highest concentration of IMI was found in the liver (12.04 µg/gtissue), followed by the intestine
(9.91 µg/gtissue), muscle (6.20 µg/gtissue), gill (6.11 µg/gtissue), gonads (5.22 µg/gtissue) and brain
(2.87 µg/gtissue). In the 40 mg/L treatment group (S2), the order of the tissue concentrations was
similar to that of the S1 group, with the highest concentration observed in the liver (12.04 µg/gtissue),
followed by the intestine (9.91 µg/gtissue), muscle (6.20 µg/gtissue), gill (6.11 µg/gtissue), gonads
(5.22 µg/gtissue) and brain (2.87 µg/gtissue). Furthermore, the study detected 5-hydroxy-IMI, IMI
urea and 6-chloronicotinic acid in IMI metabolites in all tissues, while IMI was detected only in
the intestine and liver. Overall, the results of this study contribute to a better understanding of the
metabolic behavior of IMI in organisms and provide new data to support the assessment of IMI
toxicity in fish.
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1. Introduction

Imidacloprid (IMI) is the first-generation neonicotinoid insecticide developed by Bayer
Crop Science, Leverkusen, Germany [1]. It is mainly used for the control of aphids, leaf
hoppers, thrips and other stinging mouthparts pests. The mechanism of its insecticidal
action is to act on the nicotinic acetylcholine receptors in the postsynaptic membrane of
the insect nervous system and its surrounding nerves so that the insects can maintain
continuous excitement, paralysis and then die [2,3]. The effect of IMI is relatively fast, and
it will have a strong control effect on pests 1 day after the drug. Compared with traditional
pesticides, IMI has the advantages of high efficiency, high selectivity and lasting effect on
target pests, and it was widely used all over the world soon after its launch.

However, in the application process of IMI, only a small amount of the effective
components is absorbed by crops (approximately 5%), most of which will enter the soil
and eventually enter the water environment with infiltration, runoff and other methods [4].
Because the water solubility, stability and persistence of IMI and their residues have been
detected in water bodies worldwide [5], Struger et al. conducted three consecutive years of
sampling and detection in the surrounding surface waters of 15 agricultural active areas in
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southwestern Ontario, Canada, from 2012 to 2014, and the results showed that the detection
rate of IMI exceeded 90% in more than half of the areas. In 75% of samples collected in two
regions, the concentration of IMI exceeded the local legal limit (230 ng/L) [6]. In California,
Starner Keith et al. collected and tested 75 surface water samples from rivers, creeks and
drains around farmland, and the results showed that IMI was detected in 67 samples,
with a maximum residue of 3.29 µg/L and an average concentration of 0.77 µg/L [7].
Similarly, IMI residues have been detected in water bodies of various basins in China, such
as the Yangtze River and the Yellow River, with detection concentrations ranging between
2.08 ng/L and 121.71 ng/L and an average detection concentration of 41.89 ng/L [8]. In
conclusion, IMI has been detected in lakes, rivers, groundwater and other water bodies at
home and abroad to varying degrees, and some areas even seriously exceed the standard.
The contamination of IMI in aquatic environments may cause potential health hazards to
aquatic organisms. Fish are an important part of aquatic life, so it is necessary to assess the
potential harm of IMI to fish.

Researchers previously believed that IMI had low toxicity to nontarget organisms and
lacked teratogenic, carcinogenic and mutagenic effects [9]. Whitehorn et al. discovered that
the use of IMI could significantly inhibit the reproductive ability of bumblebee populations,
bringing attention to the safety of IMI on nontarget organisms [10]. Subsequently, more
studies have shown that IMI has certain effects on nontarget organisms. For example, low
concentration of IMI can induce intestinal histological damage and intestinal oxidative
stress in zebrafish, significantly increase the levels of superoxide dismutase (SOD) and cata-
lase (CAT), and slightly induce intestinal flora imbalance and specific bacterial changes [11].
Topal et al. studied the neurotoxicity of IMI on the brain tissue of rainbow trout. The
results showed that under the treatment of 10 mg/L and 20 mg/L IMI, the activity of
acetylcholinesterase (AChE) decreased and the activity of 8-hydroxy-2-deoxyguanosine
(8-OHdG) (a marker related to cellular oxidative stress) increased in the brain tissue of
rainbow trout. Moreover, oxidative stress parameters of rainbow trout were changed, thus
showing neurotoxicity to rainbow trout [12]. In addition, studies have shown that IMI
can also slow down the growth rate [13], reduce activity [14], damage DNA [15] and other
effects on nontarget organisms.

Goldfish (Carassius auratus) is a kind of carp fish and an aquatic organism with Chinese
characteristics, so this study selected golden crucian carp as the experimental organism.
According to the preliminary test, when the concentration of IMI is greater than 40 mg/L,
golden crucian carp will die. It can be seen that 40 mg/L is the maximum tolerance
concentration of golden crucian carp to IMI. The maximum tolerance concentration is the
highest dose that an animal can tolerate without causing death in the animal. Therefore, two
exposure concentrations (maximum tolerance concentration and 1/2 maximum tolerance
concentration (40 mg/L and 20 mg/L)) were set, respectively, to study the metabolic
distribution of IMI in golden crucian carp. These findings will help to understand the
metabolism of IMI in fish and its effect on fish health, and they will provide new data
support for the toxicity study of IMI.

2. Materials and Methods
2.1. Chemicals, Instruments and Animals

The reagents used in the experiment included IMI (purity 95.00%) from Yuanye
Biotechnology Co., Ltd., Shanghai, China; IMI standard (purity 98.00%) from Anpu Ex-
perimental Technology Co., Ltd., Shanghai, China; and IMI-urea methanol standard solu-
tion (100.00 mg/L), IMI-olefin methanol standard solution (100.00 mg/L), 5-hydroxy-IMI
methanol standard solution (100.00 mg/L), and 6-chloronicotinic acid methanol standard
solution (100.00 mg/L) from Alta Technology Co., Ltd., Tianjin, China. Chromatographic-
grade methanol and ethyl acetate were obtained from Millipore, and purified water was
provided by Watson Co., Ltd., Hong Kong, China. Anhydrous magnesium sulfate (analyt-
ical grade) was sourced from Pharmaceutical Group Co., Ltd., Shanghai, China and the
diatomite was from McLean Biochemical Technology Co., Ltd., Shanghai, China.
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The instruments utilized in the experiment included an Albrecht sciex5500+ high-
performance liquid-phase triple quadrupole tandem mass spectrometer, a Sartorius BSA124S
one ten-thousandth scale from Sedolis, Göttingen, Germany, and an LC-DCY-12SF water bath
nitrogen blowing instrument from Lichen Instrument Technology Co., Ltd., Shanghai, China.

The test organism for the experiment was 3-month-old goldfish purchased from
Hangzhou Fengqi Flower and Bird Market. The goldfish were domesticated in the labo-
ratory for over a week prior to the formal experiment with tap water treated by aeration
dechlorination and meeting the provisions of the fishery water quality standard (GB11607-
1989) used as the test water [16]. The domestication conditions were maintained at a
pH of 7.0–8.5, temperature of 20.9 ± 0.4 ◦C, and dissolved oxygen of 6.9 ± 0.2 mg/L. In
addition, a random sample of goldfish was taken according to the instrument condition 2.4
before exposure began, and it was found that IMI and its metabolites were not present in
their bodies.

2.2. Exposure Experiment

The test was divided into two parts: short-term exposure and long-term sustained exposure.
Short-term exposure test: 60 domesticated goldfish were placed into a 20 L culture

barrel with 15 L of test water containing 40 mg/L IMI. The goldfish in the control group
were cultured with fully aerated and chlorinated tap water. After 1 day of exposure, the
golden crucian carp were transferred to clean water for feeding. During feeding, the
breeding density was maintained at 4 fish/L, and the test water was updated daily to check
for abnormal behavior and mortality. They were fed twice a day, and soon after feeding, the
uneaten food and feces were sucked out of the culture bucket to avoid food absorption and
adsorption. At 0 h, 0.5 d, 1 d, 1.5 d and 3 d after transfer, 5 fish were randomly selected from
the experimental group (each fish was an independent sample), and the liver, intestine,
muscle, gill tissue, brain tissue and gonads of the golden carp were dissected in an EP tube.
The collection method for the golden crucian carp tissues refers to the collection method
for the cyprinid fish in Zheng’s study [17]. After collection, the tissue weight was recorded,
ground into a chymous shape with a tissue grinder, and stored at −80 ◦C until analysis.

The exposure experiment lasted for 28 days. The control group was treated with
fully aerated dechlorinated tap water, and the exposure group was treated with aerated
dechlorinated tap water containing IMI; the exposure concentration of IMI was 20 mg/L
and 40 mg/L. The feeding conditions were the same as in the short-term exposure tests.
The golden crucian carp were sampled and dissected before the experiment and exposed
for 2 h, 6 h, 1 d, 3 d, 5 d, 7 d, 14 d and 28 d, and the sampling process was the same as
that for the short-term exposure test. Three parallel groups were set up, and each group
included a control group and 2 exposed groups.

2.3. Sample Pretreatment

Goldfish tissue samples were placed into a 20 mL centrifuge tube and mixed with
12 mL ethyl acetate aqueous solution (v/v = 2/1). The mixture was vortexed for 1 min,
and then 1 g anhydrous MgSO4 and 0.5 g diatomite were added, followed by another
vortex and mixing for 1 min. The sample was sonicated at room temperature for 10 min
and then centrifuged at 4000 r/min at 4 ◦C for 10 min. The upper layer supernatant was
collected, dried using nitrogen gas, reconstituted with 1 mL of methanol, and subjected to
membrane analysis.

2.4. Instrument Conditions

The HPLC column used was an Eclipse C18 column (1.8 µm, 3.0 × 100 mm, Agilent,
Santa Clara, CA USA) with a column temperature of 40 ◦C, injection volume of 2 µL,
and flow rate of 5 µL/s. The mobile phase consisted of 0.1% formic acid water (aqueous
phase) and methanol (organic phase) using gradient elution. The elution procedure was as
follows (Table 1).
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Table 1. Gradient elution procedure.

Time/min Aqueous Phase/% Organic Phase/%

0–5 80 20
5 60 40
6 40 60
7 80 20
8 80 20

The mass spectrometry was performed using an electrospray ion source (ESI) in
the positive ion mode, and the select ion reaction monitoring mode (SRM) was used for
scanning. The spray voltage was set at 4000 V, and the temperature was maintained at
200 ◦C. High-purity nitrogen was used as both the sheath gas and auxiliary gas at a pressure
of 60 psi, while the ion transport capillary temperature was set at 450 ◦C. The collected
fragments are summarized below (Table 2).

Table 2. Fragment parameters were collected using mass spectrometry.

Detection Object Structural Formula Parent Ion Daughter Ion

IMI
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2.5. Detection Limit, Precision and Recovery

The method used in this study was evaluated for its detection limit, limit of quantifica-
tion, precision, and recovery, and the results showed that it met the detection requirements
with good reproducibility and high precision (Table 3).

Table 3. Detection limit, precision and recovery of IMI and its metabolites.

Object LOD (Limit of Detection) (µg/L) LOQ (Limit of Quantitation) (µg/L) Precision/% Recovery/% RSD/%

IMI 0.001 0.00334 3.41 96.08 6.523
IMI-urea 0.0099 0.032907 1.98 99.77 4.172

IMI-olefin 0.0011 0.003519 3.79 85.25 7.355
5-Hydroxy-IMI 0.0068 0.022718 2.84 87.24 8.825

6-Chloronicotinic acid 0.0056 0.018682 2.64 100.23 2.805

2.6. Data Analysis

Microsoft Excel software (V2019, Microsoft, Redmond, WA, USA) was used to pro-
cess the data, calculate the mean value and standard deviation of the data, and conduct
t-test analyses. (p < 0.05 indicated a significant difference). The results of each group are
displayed by means of ±standard error (SEM) and error bars.
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3. Results
3.1. Concentration Changes of IMI and Its Metabolites in Goldfish under Short-Term Exposure

Figure 1 illustrates the concentration changes of IMI and its metabolites in goldfish
tissues under short-term exposure. IMI accumulated in goldfish after one day of exposure,
with the highest concentration in the liver (23.411 µg/gtissue), followed by the intestine
(16.20 µg/gtissue), muscle (8.61 µg/gtissue), gill (7.36 µg/gtissue), gonads (7.41 µg/gtissue)
and brain (7.15 µg/gtissue). After transfer to clean water, the concentration of IMI and its
metabolites in all tissues showed a decreasing trend, and after 3 days, the content in all
tissues was lower than the detection limit.
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Figure 1. Concentration changes of IMI and its metabolites in goldfish under short-term exposure 

(treatment concentration: 40 mg/L): (A) IMI; (B) IMI-urea; (C) 6-chloronicotinic acid; (D): 5-hydroxy-

IMI. 

  

Figure 1. Concentration changes of IMI and its metabolites in goldfish under short-term ex-
posure (treatment concentration: 40 mg/L): (A) IMI; (B) IMI-urea; (C) 6-chloronicotinic acid;
(D): 5-hydroxy-IMI.

3.2. Concentration Changes of IMI in Goldfish under Continuous Exposure

The changes in the IMI concentration in different tissues of goldfish with exposure
time are presented in Figure 2 during the continuous exposure treatment test. There
were significant differences in the distribution of IMI in the muscle, liver, intestine, brain
tissue, muscle and gonad (p < 0.05). In the high concentration treatment group, the IMI
accumulation increased rapidly in each tissue at the beginning of the treatment, reaching
a peak on day 5. Subsequently, from day 5 to day 28, the accumulation rate of IMI
in each tissue declined and eventually reached a steady state. The intestinal tract and
muscle even showed a downward trend between days 5 and 14. Finally, after 28 days
of exposure, the accumulation of IMI in goldfish tissues from high to low was the liver
(12.040 µg/gtissue), intestine (9.91 µg/gtissue), muscle (6.20 µg/gtissue), gill (6.11 µg/gtissue),
gonads (5.22 µg/gtissue) and brain (2.87 µg/gtissue). In the low concentration treatment
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group, the accumulation of IMI was similar to that in the high concentration treatment
group. In the low concentration treatment group, the accumulation of IMI was similar to
that in the high concentration treatment group, with rapid accumulation in the tissue at
0–5 d, and then the accumulation at 5–28 d was still in an upward trend, but the rising
speed gradually decreased. The amount of IMI accumulated in various tissues from high
to low was the intestine (6.93 µg/gtissue), liver (6.10 µg/gtissue), muscle (4.20 µg/gtissue),
gonads (3.93 µg/gtissue), gill (2.81 µg/gtissue) and brain (2.30 µg/gtissue).
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Figure 2. Concentration changes of IMI in goldfish under continuous exposure (treatment concentra-
tion: (S1) 20 mg/L; (S2) 40 mg/L).

3.3. Dynamic Changes in IMI Metabolites in Different Tissues of Goldfish under
Continuous Exposure
3.3.1. Concentration Changes in IMI Metabolites in Gill Tissues

Figure 3 illustrates the presence of IMI-urea, 6-chloronicotinic acid and 5-hydroxy-
IMI in the gill tissue of goldfish following exposure to IMI. In the high concentration
treatment group, the concentration of IMI-urea increased in the gill tissue, ultimately
reaching 435.59 ng/gtissue at 28 days. The accumulation of IMI-urea was relatively gradual
over the first 3 days, with a rapid increase to 374.30 ng/gtissue at day 5, followed by a
slow increase to its maximum concentration between days 5 and 28. The concentration
of 6-chloronicotinic acid initially decreased, subsequently increased, and then decreased
again in the gill tissue. At days 0–3, its concentration declined from 6.85 ng/gtissue to
3.40 ng/gtissue, followed by an increase to a maximum of 10.92 ng/gtissue at day 5, which
then decreased to 4.47 ng/gtissue by day 28. The maximum accumulation of 5-hydroxy-IMI
was observed at 761.24 ng/gtissue at 6 h, followed by a downward trend until day 28, with
a final concentration of 140.48 ng/gtissue.
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Figure 3. Concentration changes in IMI metabolites in gill tissues (treatment concentration:
(S1) 20 mg/L; (S2) 40 mg/L): (a) IMI-urea; (b) 6-chloronicotinic acid; (c) 5-hydroxy-IMI.

In the low concentration treatment group, the accumulation of IMI-urea exhibited a
similar trend as observed in the high concentration group, with a slight increase from 0 to 3 d,
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followed by a decline after peaking at 278.26 ng/gtissue in 3–7 d. The accumulation of IMI-
urea was 167.51 ng/gtissue at 28 d. In the 0–28 d period, the content of 6-chloronicotinic acid
exhibited two peaks at 6 h and 5 d post-treatment, with concentrations of 3.18 ng/gtissue
and 8.37 ng/gtissue, respectively. The final accumulation was 1.57 ng/gtissue at 28 d. The
maximum accumulation of 5-hydroxy-IMI reached 148.22 ng/gtissue at 6 h and showed a
downward trend from 6 h to 5 d. Once it decreased to a certain concentration, the content
of 5-hydroxy-IMI suddenly increased on the 7th day and then began to decline. Ultimately,
the concentration of 5-hydroxy-IMI was 37.69 ng/gtissue on the 28th day.

3.3.2. Dynamic Changes in IMI Metabolites in the Intestine

Figure 4 illustrates that, in addition to IMI-urea, 5-hydroxy-IMI and 6-chloronicotinic
acid, IMI was detected in the intestine after IMI exposure. The maximum accumulation
of these metabolites, from high to low, was observed for 5-hydroxy-IMI, IMI-urea, 6-
chloronicotinic acid and IMI-olefin. In the high concentration treatment group, IMI-urea
showed an increasing trend until 1 day, reaching a maximum value of 422.77 ng/gtissue,
followed by a gradual decline, and it finally stabilized at a concentration of 249.23 ng/gtissue.
The dynamics of accumulation of 6-chloronicotinic acid were more complex, with an initial
increase and subsequent decrease observed in 2 h–1 d, 1–7 d and 7–28 d. The maximum
accumulation was observed at 14 d (30.37 ng/gtissue), while the final concentration was
2.67 ng/gtissue at 28 d. The content of 5-hydroxy-IMI peaked at a value of 999.02 ng/gtissue
at 6 h, followed by a declining trend, reaching a certain level at 3 d, then increasing to
461.78 ng/gtissue at 3–5 d, and finally stabilizing at a concentration of 149.23 ng/gtissue at
28 d. The content of IMI-olefin increased until 3 days, then decreased to 6.05 ng/gtissue
on the 5th day, and then gradually increased again. Finally, the content of IMI-olefin was
9.23 ng/gtissue at 28 d.
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Figure 4. Concentration changes in IMI metabolites in the intestine (treatment concentration:
(S1) 20 mg/L; (S2) 40 mg/L): (a) IMI-urea; (b) 6-chloronicotinic acid; (c) 5-hydroxy-IMI; (d) IMI-olefin.

In the low concentration treatment group, the accumulation of IMI-urea was comparable
to that in the high concentration treatment group, with an accumulation of 183.54 ng/gtissue
observed at 28 days. The concentration of 6-chloronicotinic acid demonstrated an overall
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increase within the first 5 days, with a maximum of 12.24 ng/gtissue on day 5, followed by
a decline. The final concentration of 6-chloronicotinic acid was 5.49 ng/gtissue at 28 days,
which was higher than that observed in the high concentration treatment group. The
concentration of 5-hydroxy-IMI was similar to that in the high concentration treatment
group, with a maximum accumulation of 488.64 ng/gtissue and a final concentration of
83.54 ng/gtissue at 28 days. The accumulation dynamics of IMI were similar to those of
6-chloronicotinic acid, with a maximum accumulation of 3.53 ng/gtissue.

3.3.3. Dynamic Changes in IMI Metabolites in the Liver

The results depicted in Figure 5 indicate that the metabolites of IMI in the liver are con-
sistent with those in the intestine. In the high concentration treatment group, the maximum
content of each metabolite was in the following order: IMI-urea, 5-hydroxy-IMI, IMI-
olefin and 6-chloronicotinic acid. The accumulation dynamics of IMI-urea and 5-hydroxy-
IMI were similar, with their concentrations reaching a maximum at 6 h after exposure,
952.38 ng/gtissue and 653.13 ng/gtissue, respectively, and then reaching a relative equilib-
rium state from 6 h to 28 d. Finally, the concentration distribution was 206.33 ng/gtissue and
156.27 ng/gtissue at 28 d. The content of 6-chloronicotinic acid showed a zigzag upward
trend within 0–7 d, reached a maximum accumulation of 18.79 ng/gtissue at 7 d, and began
to decline. The final concentration was 12.24 ng/gtissue at 28 d, which was lower than that
of the low concentration treatment group. The concentration of IMI increased from 0 to
3 days, reaching a maximum of 49.65 ng/gtissue at 3 days and remaining relatively stable
after the concentration decreased at 5 days.
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In the low concentration treatment group, the metabolites of IMI in the liver were
found to follow the same pattern as that of the high concentration treatment group. The
maximum accumulation amounts of each metabolite in the low concentration group were
5-hydroxy-IMI, IMI-urea, IMI-olefin, and 6-chloronicotinic acid, in descending order. The
concentration changes of IMI-urea and 5-hydroxy-IMI were similar to those in the high
concentration group, with maximum accumulation amounts of 271.29 ng/gtissue and
423 ng/gtissue, respectively, at 6 h. The content of 6-chloronicotinic acid showed an in-



Toxics 2023, 11, 619 9 of 15

creasing trend before 14 days, reaching a maximum of 13.76 ng/gtissue at 14 days and
then decreasing at 28 days. The concentration of IMI showed an upward trend in the first
day, accumulated to the maximum value of 28.32 ng/gtissue, and began to decrease in the
following 1–5 days. The concentration then stabilized at 24.32 ng/gtissue from 7–28 days.

3.3.4. Dynamic Changes in IMI Metabolites in Muscle

Figure 6 illustrates the accumulation dynamics of three metabolites of IMI in goldfish
brain tissue. The metabolites’ maximum content in the brain tissue was 5-hydroxy-IMI, IMI-
urea, and 6-chloronicotinic acid, in descending order. In the high concentration treatment
group, the concentration of IMI-urea in goldfish muscle tissue fluctuated, with a maximum
accumulation of 289.50 ng/gtissue at 28 d. The concentration of 6-chloronicotinic acid in
muscle tissue ranged between 3.06 and 18.86 ng/gtissue. The concentration of 5-hydroxy-
IMI reached its maximum of 650.35.45 ng/gtissue at 6 h, then decreased to a certain level and
remained relatively stable, with a final concentration of 189.50 ng/gtissue at 28 d. In the low
concentration treatment group, the accumulation dynamics of IMI-urea and 5-hydroxy-IMI
were similar to those in the high concentration treatment group. However, in the low
concentration treatment group, the concentration of 6-chloronicotinic acid first increased
and then decreased, reaching a maximum accumulation of 14.03 ng/gtissue.
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Figure 6. Concentration changes in IMI metabolites in muscle (treatment concentration: (S1) 20 mg/L;
(S2) 40 mg/L): (a) IMI-urea; (b) 6-chloronicotinic acid; (c) 5-hydroxy-IMI.

3.3.5. Dynamic Changes in IMI Metabolites in Brain Tissue

Figure 7 presents the accumulation dynamics of IMI metabolites in goldfish brain
tissue. Three metabolites of IMI were detected in the brain tissue, with 5-hydroxy-IMI, IMI-
urea, and 6-chloronicotinic acid being the metabolites with the highest accumulation. In
the high concentration treatment group, IMI-urea showed an increasing trend within 0–5 d,
reaching a maximum accumulation of 314.76 ng/gtissue at 5 d, and then decreased to a lower
level at 14 d and 28 d. The concentration of 6-chloronicotinic acid peaked at 10.51 ng/gtissue
on the first day and then decreased to a stable level. The maximum accumulation of 5-
hydroxy-IMI was 640.83 ng/gtissue at 6 h, and its concentration then decreased with a final
concentration of 249.21 ng/gtissue at 28 d. In the low concentration treatment group, the
three metabolites showed a trend of increasing first and then decreasing. The maximum
content of IMI-urea was 121.91 ng/gtissue on the 7th day, after which its concentration
decreased. 6-Chloronicotinic acid reached a maximum of 5.28 ng/gtissue on the 5th day,
and the maximum accumulation of 5-hydroxy-IMI was 386.76 ng/gtissue at 6 h.
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3.3.6. Dynamic Changes in IMI Metabolites in Gonads

Figure 8 presents the accumulation dynamics of IMI metabolites in Gonads. In the
gonads of the goldfish, the concentration of IMI-urea was significantly lower than that of
the other tissues, with its maximum content amounting to only one-tenth of that observed
in the other tissues. In the high concentration treatment group, IMI-urea exhibited a steady
rise before 0–5 d, followed by a sharp increase to a maximum value of 37.97 ng/gtissue on
the 7th day and, subsequently, returned to normal levels between the 14th and 28th days.
6-Chloronicotinic acid showed two peaks of 15.98 ng/gtissue and 17.98 ng/gtissue at 6 h
and 7 d, respectively. The concentration of 5-hydroxy-IMI increased initially and then
decreased, reaching a maximum accumulation of 385.21 ng/gtissue at 7 days. In the low
concentration treatment group, the concentrations of IMI-urea, 6-chloronicotinic acid and
5-hydroxy-IMI reached their maximum levels at 6 h, with concentrations of 12.22 ng/gtissue,
12.22 ng/gtissue and 183.07 ng/gtissue, respectively. Subsequently, the concentrations of
these three metabolites decreased from 6 h to 28 d.
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4. Discussion

With the rapid growth of IMI applications, its own advantages have attracted wide
attention. Previous studies have shown that IMI can cause various negative effects on
nontarget aquatic organisms. However, in past studies, researchers often only paid attention
to the toxicity of IMI in itself, and the metabolite toxicity of IMI is still less studied. Studies
have shown that the toxicity of IMI to organisms is closely related to its metabolism. After
the detoxification of IMI, the bioactivity of its metabolites is reduced, but in some cases,
more active metabolites may be produced. When studying the toxic effects of IMI, not only
IMI itself but also the toxicity of its metabolites should be considered. Therefore, this study
preliminarily investigated the accumulation of IMI and its metabolites in goldfish through
short-term and long-term exposure experiments.

In the short-term exposure experiment, it was observed that the content of IMI and its
metabolites in all tissues was below the detection limit three days after transfer, which is
consistent with the degradation rate of IMI in rats. After oral administration of IMI to rats,
it was found that the initial half-life of IMI was approximately 3 h, while the final half-life
ranged from 26 to 118 h, and the residual amount of IMI in tissues was less than 1% after
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48 h [18]. Similarly, Poliserpi et al. reported that the concentration of IMI in the tissues
of grayish baywing (Agelaioides baduis) was below the detection limit after 48 h of oral
administration of IMI in the United States [19]. These findings suggest that IMI undergoes
rapid degradation in organisms. The accumulation of chemicals in organisms is often
dependent on their solubility, where better water solubility leads to poorer accumulation
ability [20]. Because of its better water solubility, IMI and its metabolites have a faster
degradation rate in goldfish. In contrast, the concentration of IMI in gills increased at
1–1.5 days. The gill is the primary sensing organ of fish for pollutants in water, and because
of the lack of metabolic enzymes around it, the concentration of IMI in gill tissue should
increase with an increasing exposure time [21]. Subsequently, water samples were collected
at 1–1.5 days, and a certain amount of IMI was detected in the water samples at 1.5 days
(unpublished data). This could be due to the IMI absorbed by goldfish being excreted
through the intestine and then reabsorbed by the gills, resulting in a transient rise in the
concentration in IMI in the gills.

The continuous exposure test revealed that goldfish accumulated the highest concen-
tration of IMI in their intestine and liver. This result is consistent with previous studies, such
as Yi Yang et al.’s research (2022), which found that after thiamethoxam exposure, zebrafish
had the highest concentration of thiamethoxam in their liver and intestine, suggesting that
the hepatointestinal system is a primary site of accumulation for exogenous drugs [22].
Similarly, Yang et al.’s study (2006) reported that the highest accumulation of IMI in crucian
carp was found in the liver [23]. Therefore, it can be inferred that the accumulation pathway
through hepatointestinal recycling may play an important role in IMI absorption in fish.
Furthermore, the accumulation dynamics of IMI in the intestine, liver, gill tissue and brain
tissue were relatively straightforward, with their content increasing with the duration of
exposure. In contrast, the accumulation in muscle and gonad was more complex. Previous
research has indicated that IMI accumulates in the muscle tissue of Procambarus clarkii,
likely due to the high lipid content of the muscle composition and IMI’s lipophilicity.
The presence of metabolic enzymes in muscle tissue leads to the degradation of IMI into
low-toxicity metabolites, which enter the bloodstream and are excreted from the body [21].
The gonad is located on the dorsal wall of the body cavity of goldfish, near the end of
the intestine. The accumulation of IMI in the gonad may be affected by multiple factors,
including the intestine and blood, resulting in complex accumulation dynamics.

Subsequently, we analyzed the timing of the maximum accumulation of IMI metabo-
lites in each tissue and the ratio between the maximum accumulation and absorbed IMI.
The results are presented in Table 4. It is evident that 5-hydroxy-IMI had the highest con-
centration in all tissues, followed by IMI-urea. Only a small amount of IMI was detected as
6-chloronicotinic acid and IMI-olefin, with the latter only present in the liver and intestine.
This differs from Suchail et al.’s research on the distribution and metabolism of IMI in bees,
where IMI-urea and 6-chloronicotinic acid were the main metabolites, especially in the
midgut and rectum. IMI-olefin and 4,5-dihydroxy-IMI were preferentially produced in the
head, chest and abdomen, which are rich in acetylcholine receptors [24]. The differences
in this experiment’s distribution may be attributed to the concentration of IMI used in
the treatment and the differences in metabolic pathways between vertebrates and inverte-
brates. Byren and Nishiwaki’s research showed that the primary metabolites of IMI after
metabolism in houseflies and bees were 5-hydroxy-IMI, 4,5-dihydroxyIMI, 6-chloronicotinic
acid, IMI-olefin and IMI-urea. See Figure 9 for the metabolic pathways [25,26].
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Table 4. The metabolites of IMI.

Metabolite Maximum Accumulation Time Ratio

Intestine

IMI-urea 432.34 24 h 7.47%
IMI-olefin 9.37 28 d 0.10%

6-Chloronicotinic acid 31.27 14 d 0.32%
5-Hydroxy-IMI 1021.25 6 h 35.64%

Liver

IMI-urea 952.38 6 h 25.81%
IMI-olefin 38.28 28 d 0.32%

6-Chloronicotinic acid 18.79 14 d 0.18%
5-Hydroxy-IMI 653.13 6 h 23.60%

Gill
IMI-urea 430.67 28 d 9.72%

6-Chloronicotinic acid 10.97 5 d 0.23%
5-Hydroxy-IMI 784.34 6 h 42.68%

Muscle
IMI-urea 298.39 28 d 3.99%

6-Chloronicotinic acid 18.85 1 d 0.16%
5-Hydroxy-IMI 758.45 6 h 19.34%

Brain
IMI–urea 319.24 5 d 7.30%

6-Chloronicotinic acid 10.74 1 d 0.06%
5-Hydroxy-IMI 654 6 h 21.80%

Gonad
IMI-urea 38.92 7 d 0.41%

6-Chloronicotinic acid 18.34 6 h 0.59%
5-Hydroxy-IMI 389.56 7 d 5.58%
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Figure 9. Metabolic pathways of IMI: (a) housefly: (b) honeybee.

In this study, the highest ratio of the total content of metabolites detected in the liver
to IMI was observed at 6 h after exposure, indicating that the liver is likely the earliest
metabolic site for IMI in goldfish. The intestine was also found to be an important site for
IMI metabolism. These findings are consistent with a previous study by Yang et al., which
showed that the metabolism of thiamethoxam in zebrafish occurred in both the liver and
intestine and that its metabolic pathway involved N-demethylation and nitro reduction [23].
After exogenous drugs enter the organism, phase I and phase II metabolism occur under the
action of catalytic enzymes in the body. Phase I metabolism mainly involves hydroxylation,
desaturation, dealkylation and nitro reduction, among other reactions. The cytochrome
CYP450 enzyme, which exists in the liver, is an important oxidative metabolic enzyme that
catalyzes these reactions [27]. The structure of IMI, shown in Figure 10, contains chemical
reaction sites located on the methylene bridge chain (i structure), the pharmacophore
nitroimine (ii structure), and the six-membered ring (iii structure), which can undergo
a series of metabolic reactions under the action of catalytic enzymes in vivo. Based on
these observations, we speculate that the possible metabolic pathway of imidacloprid in
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goldfish is shown in Figure 11. After IMI is absorbed into the liver through the intestine,
and under the action of the cytochrome CYP450 enzyme in the liver, it first dehydrogenates
to produce IMI-olefin in structure (i). Because of the unstable chemical properties of IMI-
olefin, metabolic reactions such as hydroxylation and nitro reduction, respectively, produce
5-hydroxy-IMI, and IMI-urea and 6-chloronicotinic acid. These metabolites enter tissues
through the circulatory system for enrichment or exclusion.
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Upon detoxification and metabolism, the biological activity of IMI metabolites will
decrease, but in some cases, IMI may produce more active metabolites. For instance,
Suchail’s study revealed that the two secondary metabolites of IMI in bees, IMI-olefin
and 5-hydroxy-IMI, may have a greater relationship with the toxicity of IMI. The toxicity
of IMI-olefin is twice that of IMI and 10 times that of 5-hydroxy-IMI [28]. Additionally,
studies have reported that the toxicity of IMI-olefin to Bemisia tabaci and Myzus persicae
is approximately 10 times and 16 times higher than that of IMI, respectively, indicating that
IMI alkenyl has higher toxicity than the parent compound [29]. In this study, a small amount
of IMI-olefin was detected in the intestine and liver of goldfish, and further exploration of
its subsequent effects on the intestine and liver can help clarify the toxicity mechanism of
IMI-olefin. Moreover, metabolites with nitroimine pharmacophores, such as hydroxylated
IMI and IMI-olefin, are toxic to bees, while IMI urea and 6-chloronicotinic acid, which are
metabolites without pharmacodynamic groups, are nontoxic to bees [30]. The biological
activities of IMI and its metabolites, from high to low, are olefinic IMI, IMI-urea, 4-hydroxy-
IMI, 5-hydroxy-IMI and 4,5-dihydroxy-IMI. Thus, the biological activity of IMI is produced
by the interaction of the parent and metabolites. In-depth studies on the differences in
the metabolic pathways of IMI in target and nontarget organisms, as well as its metabolic
differences in different parts of the same organism, can provide a better understanding of
its toxic mechanism and provide ideas and references for the standardized use of IMI.

5. Conclusions

In this study, HPLC–MS was used to investigate the tissue distribution of IMI and its
metabolites in goldfish after short-term and continuous exposure. The results of the short-
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term exposure experiments indicated that after transferring the exposed goldfish to an
IMI-free aqueous solution, the concentrations of IMI and its metabolites in various tissues
decreased and were below the detection limit after 3 days. The concentrations of IMI and
its metabolites varied among different treatment concentrations in the continuous exposure
experiments. Among the IMI metabolites, 5-hydroxy-IMI and IMI-urea accumulated in
equivalent amounts in various tissues, followed by 6-chloronicotinic acid. IMI-olefin was
detected only in the intestine and liver. These results allow us to propose a possible
metabolic pathway of IMI in goldfish. This study contributes to our understanding of the
metabolic behavior of IMI in organisms and provides new data to support the investigation
of its toxicity.
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