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Abstract: The biodegradation of paraquat was investigated using immobilized microbial cells on
nanoceramics fabricated from nanoscale kaolinite. Pseudomonas putida and Bacillus subtilis, which
degrade paraquat, were immobilized separately on nanoceramics (respectively called ICnc−P and
ICnc−B). The attachment of bacteria to nanoceramics resulted from electrostatic force interactions,
hydrogen bonding, and covalent bonding (between the cells and the support materials). The ini-
tial 10 mg L−1 concentration of paraquat in water was removed by the adsorption process using
nanoceramics at 68% and ceramics at 52%, respectively. The immobilized cells on the nanoceramics
were able to remove approximately 92% of the paraquat within 10 h, whereas the free cells could
only remove 4%. When the paraquat was removed, the cell−immobilized nanoceramics exhibited a
significant decrease in dissolved organic nitrogen (DON). ICnc−B was responsible for 34% of DON
biodegradation, while ICnc−P was responsible for 22%. Ammonia was identified as the end product
of ammonification resulting from paraquat mineralization.

Keywords: nanoceramic; nanoclay; biodegradation; cell immobilization; pesticide; mineralization

1. Introduction

Paraquat, widely used as a herbicide, is well−known as an extremely toxic chemical
with a human median lethal dose (LD50) of 3–5 mg kg−1 [1]. Environmental contamination
from paraquat, especially in Thailand’s soil and water has been reported [2]. Strong soil
binding makes paraquat comparatively immobile. Approximately 0.1% of the applied
paraquat will be present in the soil water. The half−life varies from 1.4 to 7.2 years,
depending on the soil composition [3]. Paraquat can inhibit culturable soil bacteria, reduces
hydrogenase activity, increases urease activity, and has a negative effect on soil fungi [4–6].
It can enter the food chain when animals forage for food [7]. Long−term exposure to
paraquat will result in detrimental biomagnification for both humans and animals [8].
Paraquat can enter the body via the respiratory system, digestive tract, and mucosal
absorption, causing varying degrees of toxicity [9].

Paraquat has been removed from the environment using a variety of techniques.
Physico−chemical processes, particularly adsorption and advanced oxidation processes,
are highly effective at removing toxic chemicals [10,11]. However, these techniques neces-
sitate a relatively high initial investment and material expense [10]. Bioremediation has
evolved into an attractive and effective method for removing toxic waste from polluted
environments. It is highly involved in the degradation, elimination, immobilization, or
detoxification of various chemical wastes and physical hazardous materials from the envi-
ronment via the all−encompassing action of microorganisms. Therefore, bioremediation is
the most efficient, cost−effective, and environmentally friendly method for managing a pol-
luted environment [12]. Cell immobilization as an advanced bioremediation technique has
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been introduced for degrading toxic chemicals, including paraquat [13]. Specifically, the im-
mobilization of microbial cells on adsorbent materials is well recognized as a combination
technology between adsorption and biodegradation [14].

To remove paraquat from polluted water, clay minerals such as montmorillonite,
nontronite, and kaolinite are among potent adsorbents [15–19]. Recently, many researchers
have gained attention from clay−based nanomaterials with specific chemical and biological
properties. Nanoclay is a very small dimension of a specific clay and has proven to
be an excellent adsorbent in removing heavy metals and organics [20–24]. Due to the
minute size and large amount of surface area per unit volume, and surface modification
potential, nanoclay is more efficient as a sorbent for water contaminants than traditional
clay [24]. Montmorillonite and kaolinite are the clays most used as nano−adsorbents. Taha
and Mobasser (2015) [25] reported that montmorillonite was an exceptional adsorbent in
dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyl (PCB) removal from
contaminated soil and solution. Ten percent of nanoclay (Cloisite® Na+, which is a natural
montmorillonite) adsorbed 75% of PCB after 16 h of equilibrium time [25]. Rezvani and
Taghizadeh (2018) [24] studied the adsorption of nitrate, lead, arsenic, and turbidity from
water using nanoclay granules. Comparatively, the investigated nanoclay materials (50%
of nanoclay and 50% clay by mass) have higher ion exchange capacity and contaminant
removal than the corresponding clay materials (100% clay). Yue et al. (2022) [26] also
reported an environmentally friendly nanoclay/sodium algenate washing agent that can
effectively decontaminate oiled sand.

To acquire a high efficiency in pollutant degradation and to maximize contaminant
bioavailability in cell immobilization, many materials, such as polyvinyl alcohol [27],
PVA–alginate–kaolin gel beads [15], alginate [28], and biochar [29,30], have been used to
support the microorganisms for biodegradation purpose. A novel environmentally friendly
risk−based remediation technology has emerged that uses clay minerals in integrating
microorganisms [14]. The use of clay or nanoclay in conjunction with cell immobilization
(i.e., PVA–alginate–kaolin gel beads) to enhance the removal of crystal violet (CV) in water
was studied [15]. Entrapping Burkholderia vietnamiensis C09V in the PVA–alginate–kaolin
gel beads provided 98% removal of CV, while the CV removal by the naked beads and free
cells was only 77% and 94%, respectively [15].

Immobilization of appropriate microorganisms could enhance paraquat degradation
efficiency [14]. The high biomass and strong resistance to toxic chemicals of the consortium
of immobilized cells contribute to the high metabolic activity of pollutant degradation [31].
According to Huang et al. (2019) [32], some bacterial and fungal species can degrade
paraquat in soils and slurry. These paraquat−degrading microbial strains are Pseudomonas
putida [33]; Agrobacterium tumefaciens, Aerobacter aerogenes, Pseudomonas fluorescens, and
Bacillus cereus [34]; Enterobacter cloacae PQ02 [35]; and Aeromonas veronii NK67 [36]. They
can effectively degrade paraquat and utilize it as a carbon and/or nitrogen source to
grow [34,37]. The biodegradation rate under controlled conditions is affected by multiple
variables, including temperature, pH, nutrients, initial concentration, inoculum size, and
bacterial or fungal strain characteristics [32].

To date, no study has reported on applying nanoclay in supporting microorgan-
isms on pesticide degradation, especially paraquat. From past works, the immobiliza-
tion of paraquat−degrading bacteria on nanoclay should enhance the paraquat removal
from contaminated water. This work demonstrates for the first time the paraquat re-
moval by nanoclay adsorption and the paraquat degradation by the immobilization of
paraquat−degrading bacteria onto the nanoclay.

In this work, the nanoclays were used innovatively to make ceramic rings (called
nanoceramics), and the paraquat−degrading microorganisms, Pseudomonas putida TISTR
1522 (or P. putida) and Bacillus subtilis TISTR 1248 (or B. subtilis), were individually im-
mobilized onto the nanoceramics (called bio−nanoceramics) for paraquat removal from
a synthetic medium. The nanoceramics played a role as an excellent adsorbent as well
as a cell support material. As far as we know, this is the first research study to report
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nanoceramics’ potential as immobilization supports for bacterial cells with a capability in
paraquat adsorption and biodegradation, simultaneously.

This work focused on paraquat degradation and mineralization by bio−nanoceramics
(cell−immobilized nanoceramics). The removal efficiency as well as the degradation
kinetics of paraquat in a synthetic medium was examined. In addition, the reduction of
dissolved organic nitrogen (DON) was used as a biomineralization efficiency indicator
of paraquat.

2. Materials and Methods
2.1. Chemicals, Materials, and Culture Media

Kaolinite, polystyrene foam, and clay minerals were obtained from a domestic market,
Thailand. Commercial grade paraquat was purchased from Ag−gro (Thailand) Co., Ltd.,
(Chiang Mai, Thailand). The active ingredients were 1,1′−dimethyl−4,4′−bipyridinium
dichloride at 27.6 percent weight−per−volume, water at 30 to 60 percent, emulsifiers
at 10 to 29 percent, and other non−hazardous ingredients at less than 1 percent. The
emetic and dye without percentage contribution were also listed as ingredients in the
paraquat chemicals. Potassium phosphate dibasic (K2HPO4) and magnesium sulfate
(MgSO4·7H2O) were analytical reagent (AR) grade and acquired from Loba Chemie Pvt.
Ltd., India. Sodium chloride (NaCl), ammonium fluoride (NH4F), and ammonium phos-
phate (NH4PO4) were AR grade and purchased from EMSURE®, Germany. Halloysite
nanoclay, 25% glutaraldehyde (C5H8O2), 4% osmium tetroxide (OsO4), ethanol, hexane,
and hexamethyldisilazane (HMDS) were obtained from Sigma−Aldrich, USA. The Thai-
land Institute of Scientific and Technological Research Culture Collection provided P. putida
strain TISTR 1522 and B. subtilis strain TISTR 1248, which are the paraquat−degrading
microorganisms [13,33]. Plate Count Agar (PCA) and Luria−Bertani broth (LB broth) were
purchased from HiMedia laboratory Pvt. Ltd., India.

2.2. Nanoceramic Synthesis

Nanoclay (kaolinite), biochar, and polystyrene foam were mixed at a weight ratio of
clay:biochar:foam of 6:0.5:0.5. The mixture (200 g total) was added to 70 mL of tap water,
mixed, then incubated at 28 ◦C overnight. Subsequently, the incubated mixture was slip
cast into a ring−shaped ceramic, 1.9 ± 0.15 cm in diameter and 2.5 ± 0.22 cm in length,
before drying under natural sunlight for 2–3 d. The ceramic rings were calcined at 800 ◦C
for 2 h and sterilized by autoclave at 121 ◦C for 15 min before use.

For ceramic surface modification, 32 g of the sterile ceramics were dipped into 200 mL
of 1M NH4F solution for 30 min, then washed with sterilized deionized (DI) water 3–4 times.
After that, they were dehydrated at 80 ◦C for 4 h in an oven and then stored in a sterile
box for further use. The obtained ceramics were called nanoceramics (labeled as Cnc).
Furthermore, the regular kaolinite (non−nano size) following the same procedure as Cnc
and also calcinated at 800 ◦C and labeled as Cc were used to produce the control ceramics.

2.3. Cell Immobilization on Ceramic Materials

The acclimatized cells with paraquat were used to prepare a cell suspension. The
freeze−dried bacterial cells (B. subtilis or P. putida) were activated in a synthetic medium
(0.057 g NH4PO4, 0.017 g K2HPO4, 0.043 g NaCl, and 0.043 g MgSO4.7H2O in 1 L of sterile
distilled water), mixed with 10% LB broth and 10 mg L−1 paraquat, and incubated−shaken
at 120 rpm, 28 ◦C, for 6 d. This cell solution was sub−cultured on a PCA plate that had
been mixed with 10 mg L−1 paraquat and then incubated at 37 ◦C for 24–48 h. Prior to
immobilization, 5 active colonies of the acclimated cells from the PCA were incubated in
500 mL of fresh LB broth on a shaker (120 rpm) at 28 ◦C for 18 h (called cell suspension).
The initial cell adhesion was measured by the plate count technique. Briefly, 1 mL of the
cell suspension was diluted in 9 mL sterile phosphate−buffered saline (PBS) and well
mixed (labeled as 10−1). A ten−fold serial dilution from 10−1 to 10−7 was conducted. After
that, 0.1 mL of the sample was put on a PCA plate. Dilutions were duplicated and three
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dilutions at 10−5 to 10−7 were further used. All the sample plates were incubated for 24 h
at 37 ◦C. The total number of colonies was counted, calculated, and reported (CFU mL−1)
as in Equation (1) [38].

For cell immobilization, a ratio of Cnc (g) and cell suspension (mL) of 1:10 was applied.
Briefly, the sterile ceramics were dropped into the cell suspension (approximately 107 CFU
mL−1 of the initial cell concentration) and incubated−shaken (100 rpm) at 28 ◦C for 2 h.
The cell−immobilized ceramics, called bio−nanoceramics (labeled as ICnc), were dried for
10 min at room temperature. Then, the first adhered cells on ICnc were enumerated using
the plate count technique and reported (CFU g−1) as in Equation (2). Briefly, one loaf of
sample (3.2 g) was mashed to powder. The powder sample was added to 9 mL sterile PBS
(labeled as 10−1). Then, a 10−fold serial dilution from 10−1 to 10−6 was performed and
spread on PCA plates in the same manner as the cell suspension as described above [38].

CFU/mL =
average colony

0.1mL
dilution factor (1)

CFU/g =
average colony

0.1mL
g of bio− nanoceramic

dilution factor (2)

2.4. Characterization of Nanoceramic and Bio−Nanoceramic

A scanning electron microscope (SEM) (Leo1455VP, Leo Electronics Co., Ltd., Tokyo,
Japan) was used to examine the morphology of the cells and ceramic surfaces (of ICnc).
Sample preparation followed a slightly modified method from [39]. The sample size was
1.5 to 2 mm in diameter and 0.4 to 0.6 mm in height. Three steps of the sample preparation
process are as follows. In the fixation step, 2.5% glutaraldehyde was dropped on the sample
for 1 h, followed with 1% osmium tetroxide for 2 h. In the dehydration step, 30% ethanol
was first dropped on the samples for 15 min prior, followed by a concentration of 50%,
70%, 90%, and 100%, respectively. Finally, for the drying step, the sample was soaked in
hexamethyldisilazane for 5 h. All the steps were conducted in a chemical fume hood. The
samples were mounted on stubs and coated with gold before being analyzed with the SEM.

A Zetasizer (Nano ZS90, Malvern Panalytical Malvern, UK) was used to measure the
point of zero charge (pHpzc) of the Cnc and bacteria. The cell solution was prepared by
mixing half of the colony in 5 mL of 10 mM NaCl solution [40]. The surface areas of the Cnc
and ICnc were examined using a Multipoint surface area analyzer (BET) (TriStar II 3020,
Micromeritics Inc., Norcross, GA, USA).

2.5. Adsorption and Paraquat Biodegradation Using Ceramic, Nanoceramic and Bio−Nanoceramic

An amount of 30 g of Cc (without cells), Cnc (without cells), or ICnc was experimented
on in a batch reactor, a 1500 mL beaker (Pyrex®) with an LED digital magnetic hotplate
stirrer (TOPTION Instruments, China) under 28 ◦C for 24 h. The 1 L of investigated
synthetic medium consisted of 0.057 g NH4PO4, 0.017 g K2HPO4, 0.043 g NaCl, and 0.043 g
MgSO4. 7H2O in distilled water with 10 mg L−1 paraquat (5.6 mg L−1 as C, 1.1 mg L−1 as
N). The liquid samples were withdrawn periodically during the 10 h experimental period.
The samples were put through a 0.22 µm pore−size membrane filter (MF−Millipore™),
and the filtrates were used for the residual paraquat concentration analysis. For dissolved
inorganic nitrogen (DIN) species analysis, i.e., ammonium nitrogen, nitrite nitrogen, nitrate
nitrogen, and total dissolved nitrogen, the solution samples were filtered using a 0.45 µm
pore−size nylon syringe (EZFlow®). All experiments were triplicated, and the minimum
and maximum values were reported. In addition, the amount of immobilized cells on ICnc
and leaching cells in the synthetic solution at the initial and final treatment time (24 h) of
the experiment were determined by the plate count technique [41].

% cell leaching =
final amount of free cells in solution× 100

initial amount o f immobilized cells on ICnanoceramic
(3)
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Paraquat biodegradation kinetics, which included zero−order, first−order, and
second−order kinetics (Equations (4)–(6)), were used for the kinetic parameter calcu-
lations [42].

Zero− order kinetics : [C] = −kt + [C0] (4)

First− order kinetics : ln
[

C
C0

]
= −kt (5)

Second− order kinetics : 1/[C] = kt + 1/[C0] (6)

where C0 is the initial concentration, C is the concentration at time t, and k is the biodegra-
dation rate constant.

2.6. DON Biodegradation Degree

The degradation experiment was conducted in the same manner as mentioned in
Section 2.5. Free cells, ICnc−P, and ICnc−B were performed. Liquid samples were with-
drawn periodically 30 mL/time for dissolved inorganic nitrogen (DIN) species analysis,
i.e., ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, and total dissolved nitrogen.
The solution samples were separated through a 0.45 µm pore−size nylon syringe filter
(EZFlow®, VWR, Atlanta, GA, USA). All experiments were in triplicate, and both the
minimum and maximum values are presented.

2.7. Analytical Methods

For the analysis of paraquat concentration, liquid chromatography−mass spectrome-
try, (LC−MS) (Agilent 6120, Santa Clara, CA, USA) was performed. Poroshell 120 HILIC−Z
(Santa Clara, CA, USA), 2.1 × 100 mm, 2.7 µm (Agilent No.685775−924) was used for the
chromatography column. The paraquat analysis was conducted following the USEPA
549.2 method from the U.S. Environmental Protection Agency for the analysis of paraquat
and diquat with reversed phase/ion−pair extraction C8 SPE cartridges followed by
ion−pair liquid chromatography. The paraquat retention time was 15 min and the detection
limit of the paraquat was 0.01 mg L−1.

Focusing on the concentrations of dissolved inorganic nitrogen (DIN) species, the cadmium
reduction method was performed to measure NO3−N [43], and NO2−N and NH3−N were
measured by the colorimetric and the phenate methods, respectively [44,45]. For TDN analysis,
the persulfate chemical wet oxidation method was used [45]. dissolved organic nitrogen (DON)
was calculated as the difference between measured total dissolved nitrogen (TDN) and the sum
of measured DIN species using Equation (7) [41]. The DON biodegradation degree through the
cell−immobilized ceramics was determined as in Equation (8) [41].

DON (mg L−1 as N) = TDN − [(NH3 − N) + (NO3 − N) + (NO2 − N)] (7)

DONt biodegradation degree (%) = [((DONi − DONt) − (DONbi − DONbt))/DONi] × 100% (8)

where DONi and DONt are DON before and after the paraquat treatment at time t, respec-
tively. DONbi and DONbt are DON before and after paraquat treatment at time t for the
control (sterile synthetic medium).

2.8. Statistical Analysis

To determine the reliability and significance of the findings, a statistical analysis was
performed on the experiment results. All experiments were conducted in triplicate, and
the results are presented as the mean standard deviation (SD). We used the coefficient of
determination (R2) and the residual sum of squares to evaluate the biodegradation kinetics
models’ fit (RSS). For the observed data, the model with the highest R2 and the lowest
RSS was deemed to be the best fit. The SPSS statistical software package was utilized for
statistical analysis. Excel was used to construct graphs.



Toxics 2023, 11, 638 6 of 16

3. Results and Discussion
3.1. Characteristics of Ceramic and Cell−Immobilized Ceramic

The SEM images of the surface morphologies for Cnc and ICnc are shown in Figure 1.
The bacilli or rod shape of both P. putida and B. subtilis is clearly observed on the surface of
the cell−immobilized nanoceramics with P. putida (labeled as ICnc−P) in Figure 1b, and
B. subtilis (labeled as ICnc−B) in Figure 1c. The rod−shaped bacteria do not appear in
Cnc, as shown in Figure 1a. The surface area of nanoceramics without cells or Cnc was
12.95 m2/g. In comparison with cell−immobilized nanoceramics, this value is lower due
to the bacteria coverage on the ceramic surface. The surface areas of the cell−immobilized
nanoceramics were 7.95 and 8.42 m2/g for ICnc−P and ICnc−B, respectively.

The pHpzc values of Cnc, P. putida, and B. subtilis were 1.5, 2.4, and 0.4, respectively
(Figure S1a,b). With the immobilization of P. putida and B. subtilis on the nanoceramic
surface, the pHpzc values of ICnc−P and ICnc−B are slightly changed to 2.6 and 1.0, respec-
tively (Figure S1c).

Apparently, at neutral pH (pH 7), the surface of Cnc was negatively charged (negative
zeta potential of −21.0 mV). Many negative charged sites are most likely caused by the
deprotonation of hydroxyl groups at the edges of the nanoceramic surface, for example
−Si−O−Al−O− [46]. This surface charge promoted a strong attachment between the
nanoceramic surface and the bacterial cells. The ceramic surface was negatively charged and
contained the hydroxyl group at the broken edges of the kaolinite clay [47]. The bacterial
surface was dominated by a negative charge and many functional groups, (i.e., hydroxyl,
carboxyl, phosphoryl, and amide groups) [48]. Thus, the attachment of immobilized cells on
ICnc likely arose from the interactions of the electrostatic force and hydrogen and covalent
bonding between the cells and nanoceramics.
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3.2. Paraquat Adsorption Using Nanoceramics

The efficiency of paraquat removal using Cnc at pH 7 is shown in Figure 2a. For
comparison, the removal performance using ceramic formed by the kaolinite clay (labeled
as Cc) was also investigated. The paraquat in the solution gradually decreased in both
cases. Apparently, the Cnc provided a higher performance in paraquat adsorption than Cc.
After 5 h, the paraquat removal reached 68% and 52% using Cnc and Cc, respectively. The
results clearly indicated that using the nanoclay to produce the ceramic matrices positively
influenced paraquat adsorption. Nanoclay made an excellent adsorbent to remove organics
and heavy metals [20–23]. Rezvani and Taghizadeh (2018) [24] demonstrated that the
nanoceramic granules provide excellent removal of several water pollutants such as lead,
arsenic, and nitrate, and turbidity. The superb ability in paraquat adsorption of Cnc
(12.95 m2/g) in this work is possibly due to a higher specific surface of this material than
that of the Cc (7.35 m2/g).
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Figure 2. (a) Residual paraquat (C/C0) in synthetic medium using nanoceramic (Cnc) and ceramic
(Cc) via adsorption at pH 7 and (b) adsorption capacity (qe) and residual paraquat (C/C0) in synthetic
medium with pH 1–pH 11.

In addition, the surface charge of Cnc and Cc as measured by pHpzc and negative zeta
potential was also another important factor influencing the adsorption efficiency of both
ceramics. From this work, the pHpzc values of Cnc and Cc were 1.5 and 2.5, respectively. At
experimented pH (pH 7) for paraquat adsorption, the negative zeta potentials of Cnc and Cc
were−21.0 mV and−12.34 mV, respectively. Apparently, the negatively charged surfaces of
nanoceramic can promote a stronger binding attachment between the nanoceramic surface
and the paraquat than those occurred on the ceramic surface. This surface chemistry
possibly resulted from the electrostatic force, and hydrogen and covalent bonding between
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paraquat and nanoceramics. To enhance the synergistic effect between adsorption and
biodegradation, the nanoceramic material was chosen as the microbial support for paraquat
degradation and mineralization by cell−immobilized nanoceramics, as discussed in the
next section.

The solution’s pH effect on the nanoceramics was also investigated. The residual
paraquat under the influence of pH using Cnc adsorbent is illustrated in Figure 2b. When
the solution pH increased from pH 1.0 to pH 11, paraquat removal performance obviously
increased and the highest removal of paraquat by Cnc occurred at a pH of 11.0. Because
the solution pH was much more than the pHpzc (at 1.5), the negatively charged sites of the
nanoceramic surface can lead to the electrostatic attraction with the positively charged sites
of paraquat molecules. The small fraction of paraquat removal with the acidic solution pH
could be ascribed by the electrostatic repulsion between the surface charge of the adsorbent
and the cation of paraquat surface. The adsorption capacity (qe) of paraquat from each
pH is also included in Figure 3b. Apparently, the paraquat adsorption capacity decreased
as the solution pH increased. At a high pH (in basic region), the increasing amount of
negatively charged sites of the nanoceramic caused an increase in the adsorbed paraquat.
This behavior was in good agreement with the previous work using modified bentonite
clay for paraquat removal from an aqueous solution [49]. The paraquat adsorption onto
the clay surface was an exothermic and a spontaneous process. The maximum value of the
equilibrium amount of adsorbed paraquat on the nanoceramic at pH 11 at 65.8 µmol/g
was slightly lower than the illite (72.3 µmol/g) and clay mineral (73.1 µmol/g) at the same
pH [19,50].
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3.3. Role of Nanoceramics and Immobilized Cells on Paraquat Degradation

Figure 3 shows paraquat removal in the synthetic medium by the ICnc. The paraquat
removal readily occurred by both ICnc−P and ICnc−B, while the Cnanoceramic (without cells)
could remove paraquat gradually. The 10 mg L−1 initial concentration of paraquat was
decreased to approximately 1 mg L−1 within 6 h by both ICnc−P and ICnc−B. In contrast,
after 6 h, the initial concentration of paraquat remaining in the synthetic medium treated
by Cnc was approximately 28%. Cell immobilization on nanoceramics enhanced paraquat
removal, compared to nanoceramics without immobilized cells (Cnc).

The paraquat removal efficiency of Cnc, ICnc−P, and ICnc−B reached 30%, 29%, and
28%, respectively, within 30 min. Results show that the adsorption plays a more important
role than biodegradation at the beginning of the paraquat removal. The adsorption process
could explain the instant removal of paraquat by the ICnc−P and ICnc−B at the early
stage of the experiment. The adsorption mechanism could refer to the attraction and
repulsion of the paraquat molecule and the surface charge of the nanoceramics during the
experiment. Recalling point of zero charge values of Cnc, ICnc−P, and ICnc−B were 1.5,
2.6, and 1.0, respectively; negatively charged surfaces of nanoceramics are observed when
the solution pH is higher than pHpzc. As the pKa of cationic paraquat was approximately
9–9.5 cationic [51], the positive charge of the molecule is prominent at neutral solution
(pH 7). Consequently, the positive paraquat molecule promptly adsorbed on the negatively
charged surface of the ceramic. Chen et al. (2013) [52] conducted cell immobilized on
the calcium alginate beads impregnated with activated carbon fiber and concluded that
the adsorption on the solid surface is associated with the removal of pollutant during the
beginning stage, and this is in good agreement with our results in this study. Nanoceramics
removed approximately 72% of paraquat within 10 h. The result echoes paraquat adsorption
onto a ceramic surface through electrostatic interaction. The efficiency of clay minerals,
such as kaolinite, zeolite, and montmorillonite, as an absorbent in removing paraquat from
an aqueous solution has been reported in many studies [15–19].

The synergistic effect between the adsorption and biodegradation was clearly observed
after 30 min (Figure 3). The paraquat concentrations in the reactors with ICnc–P and ICnc−B
were more rapidly reduced than that with Cnc. Interestingly, the immobilized cells on the
nanoceramics could subsequently degrade the absorbed paraquat. A similar occurrence
was observed in the removal of other pollutants by Lin et al. (2010) [53] and Massalha et al.
(2010) [54]. Lin et al. (2010) [53] reported that the immobilization technique significantly
enhanced the efficiency of pyridine degradation by Paracoccus sp. strain KT−5. The
mixture of clay and AC contributes to the cell immobilization and enhances phenol at high
concentrations, as shown by Massalha et al. (2010) [54].

To clearly illustrate the role of the microbial cells and nanoceramics in this process,
the sterilized cells of P. putida (ICnc−P) and B. subtilis (ICnc−B) were applied for paraquat
removal, as shown in Figures 3a and 3b, respectively. Among the three materials consisting
of Cnc, ICnc (Living cells), and ICnc (Sterilized cells), the sterilized cells provided the lowest
efficiency in paraquat removal. With the dead cells occupying the nanoceramic surface,
paraquat removal efficiency was less than that of the pristine nanoceramics. In addition, the
paraquat adsorption ability of the nanoceramic with sterilized cells was also lower than the
control nanoceramic (without cells). This result supports the significance of the synergistic
effect between the physical adsorption from the nanoceramics and the biodegradation from
the cell−immobilized nanoceramics.

The biodegradation performances of paraquat by the free cells of P. putida and B. subtilis
in comparison with the immobilized cells on nanoceramics of the same microbial species
are illustrated in Figure 3c. No biodegradation of free cells was clearly seen. Evidently, the
solid phase (e.g., the Cnc), microbial phase (e.g., the immobilized bacteria), and aqueous
phase (i.e., water or paraquat solution) influenced the degradation mechanism of ceramic–
bacteria–paraquat interaction. The nanoceramic was a superb support material, providing
a habitat for the immobilized microbial cells, in addition to being a superior adsorbent
for paraquat through the electrostatic force between the positive charge and negative
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charge of paraquat and nanoceramic surface, respectively. Thus, the paraquat−degrading
bacteria could release the extracellular enzymes to degrade the adsorbed paraquat into
smaller molecule(s). Kopytko et al. (2002) [33] also described paraquat degradation by
P. putida with an activated carbon (AC) support material and the addition of nutrient broth.
During 72 h, more than 95% and 47% of the paraquat was removed with and without
AC support, respectively. The results of this study are in line with the previous work by
Li et al. (2022) [55]. Li et al. (2022) [55] discovered that immobilized Stenotrophomonas
acidaminiphila Y4B cells degraded glyphosate more effectively than their free counterparts.
Initially, between 0 and 3 days, the glyphosate degradation rate of free cells was faster than
that of immobilized cells; however, after 3 days, immobilized cells degraded glyphosate
faster than free cells. Immobilized cells were unable to directly touch glyphosate at the
beginning of the breakdown process, resulting in a delay. However, the immobilized cells
were ultimately more effective than the loose cells [55].

3.4. Influence of Paraquat Toxic Stress on Immobilized Cells on Nanoceramic Surface

Toxic stress on the immobilized cells were obtained from the cell leaching test. The
initial numbers of immobilized cells on the nanoceramics and free cells in the aqueous
solution during the paraquat biodegradation experiments using ICnc−P are shown in
Table 1. The leaching of initial immobilized cells in the aqueous solution was evaluated 24 h
after the paraquat biodegradation experiment. Results showed that the initial amount of
immobilized cells on ICnc−P was 9.7× 106 CFU mL−1, and the residual amounts remaining
on the nanoceramics and the free cells in the paraquat aqueous solution after 24 h were
2.0 × 106 and 4.1 × 105 CFU mL−1, respectively. The cell leaching from the ICnc−P in the
aqueous solution (without paraquat) is also measured and compared in the same table. The
percentages of cell leaching from the ICnc−P were 4.23 ± 0.78% and 2.37 ± 0.98% for with
and without paraquat in aqueous solution, respectively.

Table 1. Amount of cells on ceramics (CFU g−1) and in aqueous solution (CFU mL−1) during the
paraquat biodegradation experiments.

Initial Stage of Experiment (0 h) Final Stage of Experiment (24 h)

Immobilized Cells on
Nanoceramics

Free Cells in Aqueous
Solution

Immobilized Cells on
Nanoceramics

Free Cells in Aqueous
Solution

ICnc−P in aqueous solution (without paraquat)
7.6 × 106 0 6.0 × 106 1.8 × 105

ICnc−P in paraquat aqueous solution
9.7 × 106 0 2.0 × 106 4.1 × 105

ICnc−B in paraquat aqueous solution
7.2 × 105 0 6.5 × 105 2.2 × 104

Leaching percentage
ICnc−P in aqueous solution (without paraquat) = 2.37 ± 0.98%
ICnc−P in paraquat aqueous solution = 4.23 ± 0.78%
ICnc−B in paraquat aqueous solution = 3.06 ± 1.12%

The paraquat toxic stress demonstrated in this work tentatively occurred from the
interaction between reducing agents such as ascorbic acid or oxidoreductase enzymes and
the paraquat (PQ2+). The paraquat−free radicals (PQ+•) generated from the reduction of
PQ2+ can react with O2 to form superoxide anion radicals (O2

•−), which can further be
transformed to hydroxyl radicals (OH•), as reported previously by Du (2005) [1]. These
generated radicals (O2

•− and OH•) induced the oxidative stress to bacteria and caused
microbial stress to the system. The toxic stress to the viable microbial cells (for both free
cells and immobilized cells) from paraquat at a concentration of 10 mg L−1 was shown in
this work. The presence of paraquat in the solution is greatly influenced by the biofilm
structure and the cellular stress response. The leaching percentage of P. putida cells from
nanoceramics was more pronounced from the effect of paraquat toxic stress. After 24 h of
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the paraquat biodegradation process, the leaching of initial immobilized cells of B. subtilis
(3.06 ± 1.12%) in the aqueous solution was also detected.

Both the P. putida and the B. subtilis strains are renowned for their metabolic capabilities
and environmental adaptability as well as their ability to degrade a wide variety of organic
contaminants [32]. From Figure 3, the free cells of both strains restrict the biodegradation
performance of paraquat. For the immobilized cells, the paraquat toxic stress affected
the leaching of immobilized cells to the aqueous solution; however, the efficiency in
paraquat biodegradation remained high. The superior biodegradation of paraquat using
immobilized cells, derived from the best adsorbent characteristics of the nanoceramic
surfaces, can minimize the direct interaction between paraquat and microbial cells. In
addition, the immobilized cell can provide continuous biodegradation, thereby overcoming
the disadvantage of limited adsorption capacity and enhancing the survival resilience of
bacteria protected from the application environment [30]. Based on the removal of herbicide
by immobilized cells by Li et al. (2022) [55], the immobilized cells are more effective in
degrading the herbicide due to the fact that they are more protected from the complexity
of the natural environment, which can inhibit their activity. Temperature, pH, and the
existence of indigenous microorganisms were among these environmental parameters.
Consequently, the immobile cells are less susceptible to being washed away by water and
attacked by predators.

The paraquat biodegradation using immobilized cells on nanoceramics from this
work is also in agreement with the phenol biodegradation using immobilized cells on
alginate, clay, and powdered activated carbon from a previous work by Massalha et al.
(2010) [54]. The tolerance of the immobilized microbial cells on these support materials
allows for excellent mineralization at a phenol concentration that was 2000 mg L−1 higher
than the maximum concentration mineralizable by the free cells. The biofilm adherence
to the nanoceramic surface can provide high metabolic activity and strongly resist toxic
compounds such as paraquat [31].

3.5. Kinetics for Paraquat Degradation Using Cell−Immobilized Nanoceramics

Three zero−, first−, and second−order kinetic models determined the trend of
paraquat degradation. As shown in Table 2, the second−order model potentially ex-
plained the degradation kinetics of paraquat by both ICnc−P and ICnc−B with R2 > 0.95.
In addition, the second−order model very well fitted the paraquat removal using Cnc
with R2 > 0.98. A reduction in the half−life of paraquat from 1.3 h to 0.5 h was observed
when cell−immobilized nanoceramics were applied for paraquat removal in compari-
son with the nanoceramics. The initial degradation rate (r) of paraquat using Cnc−B
(0.0092 mg L−1 min−1) was slightly higher than the Cnc−P (0.0090 mg L−1 min−1). Simi-
larly, the degradation rate constant (k) of paraquat with Cnc−B (0.2408 M−1 min−1) was
marginally greater than the Cnc−P (0.2126 M−1 min−1). The results show that both ICnc−P
and ICnc−B exhibited a higher performance in paraquat removal in comparison with the
same biodegradation kinetic models.

Table 2. Kinetic parameters for paraquat degradation by cell−immobilized nanoceramics.

Samples
Zero−Order Model First−Order Model Second−Order Model

Equation, R2 k
(M min−1)

Half−Life
(h) Equation, R2 k

(min−1)
Half−Life

(h) Equation, R2 k
(M−1 min−1)

Half−Life
(h)

Cnc
y = −0.1724x + 0.8387

R2 = 0.8018 0.1724 25.1 y = 0.3612x
R2 = 0.7610 0.3612 1.9 y = 0.0865x + 0.1133

R2 = 0.9872 0.0865 1.3

ICnc−P y = −0.2289x + 0.7904
R2 = 0.8072 0.2289 19.5 y = 0.5817x

R2 = 0.8931 0.5817 1.2 y = 0.2126x + 0.0696
R2 = 0.9566 0.2126 0.5

ICnc−B y = −0.2535x + 0.8287
R2 = 0.7879 0.2535 17.0 y = 0.6009x

R2 = 0.9051 0.6009 1.2 y = 0.2408x + 0.0575
R2 = 0.9606 0.2408 0.5
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3.6. Determination of DON Biodegradation Degree Using Cell−Immobilized Nanoceramics

The DIN concentrations (NO3–N, NO2–N, and NH3–N) during paraquat biodegrada-
tion using P. putida (free cells), B. subtilis (Free cells), ICnc−P, and ICnc−B are demonstrated
in Figure 4.
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Apparently, the DIN concentrations obtained from paraquat biodegradation between
the free cells and immobilized cells of P. putida are substantially different. The relatively
low performances in the transformation of paraquat to each inorganic nitrogen by the
free cells of P. putida are presented in Figure 4a,b for B. subtilis. Using cell−immobilized
nanoceramics (ICnc−P and ICnc−B), the predominant species of inorganic nitrogen from
paraquat biodegradation detected in the system was NH3−N. The appearance of NO3−N
was detected after 8 h of the treatment, while the NH3−N concentration continuously
decreased. The nitrification occurred in the system because both microbial cells (P. putida
and B. subtilis) are heterotrophic nitrifying bacteria [28,56]. Daum et al. (1998) [56] and
Wang et al. (2019) [28] previously demonstrated the ability of heterotrophic nitrifying
bacteria (P. putida) in oxidizing ammonia to nitrite, then into nitrate, thus these results agree
with this study.

The DON biodegradation degrees derived from paraquat degradation using the
cell−immobilized nanoceramics for both ICnc−P and ICnc−B are illustrated in Figure 5.
The DON biodegradation degrees using ICnc−P and ICnc−B were 22 ± 1.0% at 16 h and
34 ± 1.3% at 8 h, respectively. The ICnc−B provided a higher DON biodegradation degree
than the ICnc−P. These immobilized cells were able to convert the organic nitrogen in the
paraquat molecule to inorganic nitrogen (NH3−N and NO3−N) through the ammonifi-
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cation. The detection of inorganic nitrogen, especially ammonia, in this work is in good
agreement with Dinis−Oliveira et al. (2008) [57]. The intermediate products from paraquat
degradation were monoquat and 4−carboxy−1−methylpyridinium (MINA), which were
degraded further to smaller molecules, including methylamine, formate, and oxalate, before
carbon dioxide, ammonia, and water were obtained as the ultimate products [57]. Regard-
ing to the DON biodegradation degree and the detected inorganic nitrogen species during
the paraquat removal, both cell−immobilized nanoceramics (ICnc−P and ICnc−B) were
able to ammonify paraquat, oxidize the ammonia generated, and mineralize the paraquat.
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4. Conclusions

This study showed the synergy of nanoceramic surface paraquat adsorption and im-
mobilized cell biodegradation and mineralization. Two strains of P. putida (ICnc−P) and
B. subtilis (ICnc−B) immobilized on nanoceramics removed paraquat better than their free
cells. The second−order model accurately describes paraquat degradation kinetics for
ICnc−P and ICnc−B. ICnc−B degraded paraquat at 0.0092 mg L−1 min−1, slightly faster
than ICnc−P (0.0090 mg L−1 min−1). Paraquat with ICnc−B (0.2408 M−1 min−1) had a
slightly higher degradation rate constant (k) than ICnc−P (0.2126 M−1 min−1). Both het-
erotrophic nitrifying bacteria possibly convert paraquat into inorganic nitrogen species,
including NH3−N, NO3−N, and NO2−N. Approximately 20–35% of organic nitrogen in
paraquat was biologically ammonified, demonstrating the strength of the cell−immobilized
nanoceramics. For further research, the application of these cell−immobilized nanoce-
ramics is recommended for pesticide removal in wastewater. Organic loading, pH, and
dissolved oxygen concentration should be investigated to achieve the high capability of
paraquat degradation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11070638/s1, Figure S1: Zeta potential of (a) Cnc, (b) bacteria,
and (c) ICnc.
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