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Abstract: The prevalence of antiviral drugs (ATVs) has seen a substantial increase in response to the
COVID-19 pandemic, leading to heightened concentrations of these pharmaceuticals in wastewater
systems. The hydrophilic nature of ATVs has been identified as a significant factor contributing to
the low degradation efficiency observed in wastewater treatment plants. This characteristic often
necessitates the implementation of additional treatment steps to achieve the complete degradation of
ATVs. Semiconductor-based photocatalysis has garnered considerable attention due to its promis-
ing potential in achieving efficient degradation rates and subsequent mineralization of pollutants,
leveraging the inexhaustible energy of sunlight. However, in recent years, there have been few com-
prehensive reports that have thoroughly summarized and analyzed the application of photocatalysis
for the removal of ATVs. This review commences by summarizing the types and occurrence of ATVs.
Furthermore, it places a significant emphasis on delivering a comprehensive summary and analysis
of the characteristics pertaining to the photocatalytic elimination of ATVs, utilizing semiconductor
photocatalysts such as metal oxides, doped metal oxides, and heterojunctions. Ultimately, the review
sheds light on the identified research gaps and key concerns, offering invaluable insights to steer
future investigations in this field.
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1. Introduction

Antiviral drugs (ATVs) are a distinct category of therapeutic agents utilized to treat
various viral infections, encompassing both specific and broad-spectrum activity [1]. In
recent years, there has been a persistent global rise in the occurrence of viral infections,
resulting in epidemic and pandemic outbreaks. The outbreaks of influenza and recent
global pandemics, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
have underscored the substantial impact of viral infections as a leading cause of mortality
worldwide [2–4]. The development of ATVs has been a critical endeavor in the realm of
scientific research, driven by the pressing global challenge of viral infections. By dedicat-
ing focused efforts to disease control and mitigation, these pharmaceutical interventions
possess immense potential in curbing the morbidity and mortality associated with viral
outbreaks. In 1963, the United States Food and Drug Administration (FDA) recognized
idoxuridine as the first antiviral compound for the treatment of herpes simplex virus (HSV)
keratitis [5,6]. Subsequently, a diverse range of ATVs emerged as therapeutic interventions
for the treatment of various viral infections, encompassing influenza, herpes simplex virus
(HSVs), hepatitis, human immunodeficiency virus (HIV), and coxsackievirus [7–9]. Never-
theless, the extensive use of ATVs in medical settings and their discharge into wastewater
systems have led to growing concern regarding their potential as emerging anthropogenic
pollutants capable of entering water environments [10]. The presence of diverse ATVs
in aqueous environments has sparked growing apprehension regarding their potential
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adverse effects on human health [11–16]. It has been observed that these compounds
exhibit limited degradation efficiency in wastewater treatment plants (WWTPs) due to their
hydrophilic nature [17]. Consequently, the contamination of aquatic systems with ATVs
through effluents from WWTPs is a plausible occurrence [18]. Thus, there is an urgent
need to develop efficient methods for the treatment of ATV-contaminated waters, aiming
to reduce or completely eliminate pollutants.

Among various methods, advanced oxidation processes (AOPs), such as ozone-based,
Fenton/Fenton-like, electrochemical, and photocatalytic processes, have shown promise
for the efficient elimination of ATVs [19–22]. AOPs are known for their ability to effi-
ciently remove persistent and toxic contaminants that are challenging to eliminate using
conventional treatment methods. These approaches are based on the in situ generation
of a potent oxidizing agent, such as hydroxyl radicals (•OH), at a concentration sufficient
to effectively decontaminate water systems. Heterogeneous photocatalysis, in particular,
has been the subject of extensive research owing to its inherent advantages, such as the ab-
sence of additional chemicals, low energy consumption, straightforward equipment, mild
operating condition, and cost-effectiveness [23–25]. Harnessing the potential of photocatal-
ysis, a multitude of photocatalytic materials have been developed, exhibiting remarkable
photocatalytic activity. This progress holds great promise for the efficient degradation of
ATV-contaminated waters. Although there are numerous reviews on the photocatalytic
degradation of antibiotics and pharmaceuticals, there is a limited amount of research on
the photocatalytic degradation of ATVs.

This review begins by providing an overview of the types and occurrence of ATVs
in aqueous environments. Subsequently, it emphasizes the provision of a comprehensive
summary and analysis of the characteristics associated with the photocatalytic degradation
of ATVs. Specifically, it highlights the influential role of bandgap on photocatalytic activity,
explores the intricate mechanism of free radical degradation, and examines the kinetics
involved in heterogeneous photocatalysis. By elucidating their interplay and implications,
valuable insights are gained for the optimization of photocatalytic processes in the context
of AVT degradation. Furthermore, this review comprehensively discusses the primary
challenges and future directions regarding the application of photocatalysis in the practical
advanced wastewater treatment of ATVs.

2. Types of ATVs

ATVs assume a pivotal role in curbing infectivity, ameliorating clinical manifestation,
and curtailing the duration of illness. ATVs exert their effects by interrupting the intricate
viral replication cycle at distinct stages [26]. Although many antiviral infections tend to
resolve spontaneously due to the proficient immune system of the host, there has been a
steady increase in mortality rates attributed to these pathogenic agents despite ongoing
efforts to enhance our understanding of viral infections and their management [27–29].
Thus, the imperative for the development of ATVs therapeutics to effectively control and
combat viral infections remains evident. Presently, ATVs are classified into three principal
viral cohorts, encompassing herpesviruses, hepatitis viruses, and influenza viruses, along-
side additional agents specifically designed for the treatment of HIV and coxsackievirus
infections [30]. The notable ATVs are presented in Table 1. The ATVs are classified into
13 distinct functional groups, each exhibiting specific mechanism that effectively impede
viral replication and propagation [9,31,32].

Antiretroviral drugs (ARVs) encompass a class of pharmaceutical agents specifically
designed to combat retroviral infections, with a primary focus on human immunodefi-
ciency virus type 1 (HIV-1) [33,34]. The administration of these ARVs confers substantial
extensions on the lifespan of individuals afflicted with HIV, thereby yielding profound
impacts on disease management. Categorized into six principal subdivisions encompassing
nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse
transcriptase inhibitors (NNRTIs), integrase inhibitors, protease inhibitors, and entry and
fusion inhibitors, as well as p450-3A inhibitors, these pharmaceutical interventions exem-
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plify the multifaceted approaches employed to combat HIV infection [35,36]. Abacavir,
zidovudine, lamivudine, stavudine, and nevirapine stand out as the prevailing antiretro-
viral agents employed in the treatment of retroviral infections, exhibiting widespread
utilization within clinical practice [37]. Their synergistic administration serves to augment
the therapeutic efficacy, further enhancing the potential for achieving viral clearance in
individuals afflicted with HIV.

HSVs, belonging to the herpesviridae family, represent prevalent human pathogens
characterized by their enveloped, double-stranded DNA viral genome [38,39]. Predomi-
nantly manifesting in the oral and genital regions, HSVs exhibit distinct clinical presenta-
tions. In children, certain strains contribute to the development of chickenpox, potentially
leading to complications such as encephalitis and pneumonia, while in adults, specific
HSVs types can induce neuralgia and nerve palsy [40,41]. The HSVs encompass a spectrum
of viral agents, including the highly susceptible herpes simplex virus type 1 (HSV-1), herpes
simplex virus type 2 (HSV-2), varicella-zoster virus, cytomegalovirus, and Epstein-Barr
virus [42]. Acyclovir, classified as an antiherpetic antiviral agent, plays a pivotal role as a
therapeutic intervention for the management of herpes simplex viruses, including HSV-1,
HSV-2, and varicella-zoster virus (VZV) infections [43,44]. The therapeutic efficacy of
acyclovir may be compromised due to its physicochemical characteristics, characterized
by low water solubility, limited membrane permeability, and modest oral bioavailability
ranging between 15 and 30% [44]. Famciclovir (FCV), a prodrug designed to enhance the
bioavailability of penciclovir, represents an important addition to the armamentarium of
antiviral therapeutics. Both penciclovir and famciclovir exhibit potent antiherpetic activity,
effectively targeting HSV-1, HSV-2, and VZV infections [45–47].

Influenza, a respiratory infectious disease, assumes a prominent position among the
most lethal illnesses within the realm of infectious diseases, owing to its swift transmis-
sion dynamics. Influenza viruses are categorized into distinct types, namely A, B, and C,
based on their matrix proteins and nucleoproteins, delineating their molecular characteris-
tics [48,49]. While influenza can present as a relatively benign ailment in certain instances,
it carries the potential for severe outcomes, including hospitalization and mortality, under-
scoring the variable clinical spectrum of this infectious disease [50]. The global burden of
influenza epidemics is strikingly evident, with an estimated annual transmission of approxi-
mately 3 to 5 million severe infections, culminating in 290,000 to 650,000 respiratory-related
fatalities worldwide [51]. While vaccination stands as a pivotal measure in mitigating
influenza, its efficacy is comparatively limited in special populations, including children,
the elderly, and individuals with compromised immune systems [52]. Moreover, given
the time-intensive nature of vaccine production, which typically spans a minimum of six
months, ATVs emerge as a valuable adjunct to complement the preventive strategies. Two
distinct classes of antiviral agents, namely adamantanes (amantadine and rimantadine) and
neuraminidase inhibitors (NAIs) (oseltamivir and zanamivir), have emerged as therapeutic
options for the management of influenza infection [53].

In 2019, a novel coronavirus (COVID-19) associated with respiratory diseases in
humans was discovered [54,55]. In March 2020, the World Health Organization (WHO)
officially designated the newly identified COVID-19, also referred to as SARS-CoV-2, as
a global pandemic due to its significant morbidity and mortality impact [56,57]. While
no specific pharmaceutical intervention has been identified for the targeted treatment of
COVID-19, clinical investigations have been conducted to evaluate the potential efficacy of
several drugs, including favipiravir, remdesivir, hydroxychloroquine, azithromycin, and
chloroquine [58]. Favipiravir, a potent RNA virus polymerase inhibitor, exhibits notable
antiviral efficacy against a range of RNA viruses [59]. Remdesivir, an adenosine nucleotide
analog, has emerged as a therapeutic agent for the management of COVID-19 in the United
States, specifically indicated for individuals aged 12 years and above [60].
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Table 1. Main types of ATVs.

Virus ATVs CAS Number Formula Chemical Structure Molecular Weight
(MW) (g/mol)

HIV

abacavir 136470-78-5 C14H18N6O
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Table 1. Cont.
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3. Occurrence of ATVs in Aqueous Environments

ATVs have been detected in various aquatic environments, including untreated
wastewater, effluents from wastewater treatment plants, surface water, and groundwater.
The release of ATVs into the environment can occur through three principal pathways: dis-
charge from pharmaceutical industry effluents, the improper disposal of medical waste, and
the discarding of expired, unused, or unwanted medications [61]. In particular, the elimina-
tion of ATVs within WWTPs is often incomplete, leading to their potential dissemination
throughout the environment via a hierarchical cascade of pathways.

Given the escalating usage of ATVs, their release into the environment has become an
unavoidable consequence. The significant removal of acyclovir, lamivudine, and abacavir
was observed in WWTPs, indicating their efficient elimination during the treatment pro-
cess. Conversely, nevirapine, zidovudine, and oseltamivir were detected in comparable
concentrations in both raw and treated wastewater, suggesting their persistence throughout
the treatment stages [62]. The global contamination of ATVs in WWTPs is documented
in Table 2, providing comprehensive information on their presence and levels. Prasse
et al. conducted a comprehensive study in Germany, unveiling the presence of various
ATVs such as acyclovir, abacavir, lamivudine, nevirapine, oseltamivir, penciclovir, ribavirin,
stavudine, zidovudine, and oseltamivir carboxylate in influent and effluent streams of
WWTPs, as well as in the surface water of the Ruhr River [62]. Their investigation further
revealed the presence of antiviral drug contamination in river waters, with concentrations
ranging from lower ng/L levels to a maximum of 190 ng/L for acyclovir and 170 ng/L
for zidovudine. ATVs were detected in both raw and treated water samples from various
countries, including Germany [63,64], South Africa [65–67], and China [16], indicating a
global occurrence of contamination. The presence of ATVs in diverse water matrices under-
scores the urgent need for comprehensive studies and the innovative design of advanced
treatment strategies to effectively remove or eliminate these contaminants.

Table 2. Occurrence of ATVs in WWTPs influents and effluents worldwide.

ATV
Concentration ng/L (Min–Max) Country References

Influent Effluent

acyclovir 1780–1990 27–53

Germany [62]

lamivudine 210–720 ND
nevirapine 4.8–21.8 7–32
oseltamivir 0–11.9 9–16
zidovudine 310–380 98–564
stavudine 11.6–22.8 ND
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Table 2. Cont.

ATV
Concentration ng/L (Min–Max) Country References

Influent Effluent

acyclovir ND ND

Germany

[63]emtricitabine ND 130
emtricitabine carboxylate ND 120–1000

abacavir 60–140 ND

[64]
abacavir carboxylate 180–500 100–280

emtricitabine 100–980 59–170
emtricitabine carboxylate 24–25 140–480

acyclovir 520–4980 0–270

abacavir 0–14,000 ND

South Africa [65]
zidovudine 6900–53,000 87–500
nevirapine 670–2800 540–1900
lamivudine 840–2200 0–130
efavirenz 24,000–34,000 20,000–34,000

acyclovir 0–406 0–205
China [16]ribavirin ND ND

zidovudine ND ND

ND, not detected.

4. Photocatalytic Degradation of ATVs

ATVs, a category of emerging contaminants, play a critical role in combating a wide
spectrum of viral infections, encompassing HIV, hepatitis, influenza A and B, herpes, Ebola,
and a plethora of other viral pathogens [68]. ATVs can potentially enter the environment
through various sources, including effluents from WWTPs, hospital waste streams, and
pharmaceutical industrial discharges [61]. Scientific documentation reveals that prevailing
treatment technologies employed in conventional WWTPs exhibit limited efficacy in elimi-
nating ATVs from wastewater streams. Thus, it is imperative to investigate and develop
advanced source treatment methods in order to effectively mitigate the presence of ATVs in
environmental water sources. Heterogeneous photocatalysis emerges as a highly promising
approach, offering an excellent opportunity for the efficient elimination of ATVs and other
emerging contaminants through the synergistic interplay between catalyst materials and
light irradiation. Heterogeneous photocatalysis holds notable advantages, prominently
encompassing the absence of necessitating supplementary chemicals, low energy demand,
operation under mild conditions, and overall cost effectiveness [69–71]. Harnessing the
capabilities of photocatalysis, numerous photocatalytic materials have been meticulously
developed, demonstrating substantial potential in manifesting robust photocatalytic activ-
ity.

4.1. Principle of Photocatalytic Degradation

The progression of events typically observed in heterogeneous photocatalysis com-
mences with the excitation of the catalytic materials. Upon irradiation, the activation
process involves the promotion of electrons (e−) from the valence band (VB) to the con-
duction band (CB), resulting in the formation of e−–hole (h+) pairs, as shown in Equation
(1) [23]. The e−–h+ pairs exhibit an exceedingly brief lifespan, typically on the order of a
few nanoseconds, necessitating their prompt separation to prevent recombination. The
separation of the e−–h+ pairs can be achieved through the presence of e− donors and
acceptors, facilitating the migration of e− and h+ to the surface of the catalyst, where they
actively engage in redox reactions. In a majority of instances, the h+ readily engage with
water molecules, giving rise to the generation of •OH (Equation (2)), while e−, if oxygen is
present, can be captured to yield superoxide radicals (•O2

−) (Equation (3)). Subsequently,
these radicals effectively initiate the decomposition of the organic pollutants (OPs) through
reactive interactions, as illustrated in Equation (4), or alternatively, they may propagate
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a cascade of reactions, generating an increased abundance of radicals (Equations (5) and
(6)). In certain instances, the adsorbed pollutant molecules can undergo direct reduction
facilitated by the presence of CB e− (Equation (7)). In addition to the reactions described by
Equations (2) and (3), the degradation of organic pollutants via photocatalysis can involve
the generation of radical species through indirect pathways, as shown in the subsequent
Equations (8)–(10).

Catalyst hv→e−CB +h+VB (1)

h+VB +H2O →•OH + H+ (2)

e−CB + O2 → •O2
− (3)

•OH + OPs→ OPsox (4)

2•O2
− + 2H2O→ H2O2 + O2 + 2OH− (5)

H2O2 → 2•OH (6)

e−CB + OPs→ OPsred (7)

•O2
−+ H+ → •HO2 (8)

2•HO2 → H2O2 + O2 (9)

H2O2 → 2•OH (10)

4.2. Semiconductor-Based Photocatalytic Degradation of ATVs
4.2.1. Metal Oxide Semiconductors

Among the vast array of metal oxide photocatalysts, TiO2 emerges as a highly favored
candidate, renowned not only for its efficacy in degrading organic pollutants but also for its
potential in addressing the challenge of contamination related to ATVs [72,73]. In the field
of photocatalytic decomposition of ATVs, extensive research in the literature indicates that
all conducted studies have consistently utilized P25 TiO2 obtained from diverse suppliers,
along with visible range irradiation as the predominant experimental approach [74,75].
Remarkable degradation efficiencies exceeding 95% were consistently achieved across all
experimental cases employing P25 TiO2, underscoring the efficacy of this photocatalyst in
the degradation process. Nevertheless, the literature revealed significant heterogeneity in
the observed mineralization efficiencies during the photocatalytic degradation of ATVs.
For instance, the mineralization of acyclovir [76] and oseltamivir [77], in contrast to the
nearly complete degradation of the parent compounds, exhibited minimal to negligible
levels (<10%). These findings indicated the inherent resistance of the intermediates to
photocatalytic decomposition, as demonstrated in the reported studies. In another study,
An et al. reported a mineralization efficiency of approximately 20% alongside the complete
degradation of lamivudine within a duration of 1 h, under the specified experimental
conditions [75]. The optimization of conditions involved setting the TiO2 concentration
to 1.00 g/L, maintaining a pH value of 6.7, and utilizing an initial lamivudine concen-
tration of 60 µM. The escalation in TiO2 concentration leads to an increased excitation of
TiO2 particles by UV light, consequently yielding higher amounts of reactive species and
subsequently higher rate constants. Nevertheless, as the TiO2 concentrations are further
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increased from 1.00 g/L to 3.00 g/L, there is a rapid decline in light penetration, leading to
reduced excitation and deactivation of TiO2 particles, likely due to TiO2 particle–particle
collisions. The plausible photocatalytic degradation mechanism of lamivudine in TiO2
suspension is shown in Figure 1. In the case of oseltamivir, although more than 95% of the
compound was degraded within the initial 50 min of the experiment, after 6 h of irradiation,
46% to 57% of the total organic carbon (TOC) still persisted in the solution, suggesting the
presence of numerous intermediate species during the photocatalytic process. The ATVs,
including 1-amantadine, 2-amantadine, rimantadine, and acyclovir, exhibited high degrees
of mineralization (>80%), indicating their susceptibility to degradation and mineralization
through photocatalysis [74,78]. In the presence of AEROIXE TiO2 P25, zanamivir under-
went complete degradation within 1 min [79]. The dependence on the amount of TiO2 was
investigated. The findings clearly demonstrate that an increase in the initial amount of
TiO2 leads to a correspondingly higher transformation rate. Subsequently, increasing the
TiO2 amount to 10 mg does not lead to further acceleration of zanamivir degradation. An
increase in the TiO2 amount results in elevated suspension turbidity, leading to subsequent
scattering effects. On the other hand, its primary degradation product, guanidine, dis-
played remarkable resistance to degradation under the same experimental conditions. The
response of ATVs to photocatalytic treatment is highly dependent on the specific experimen-
tal conditions employed. For example, the light-activated PMS demonstrated the capability
to reduce the concentration of maraviroc by half within 7 min of irradiation [80]. However,
when combined with TiO2, the half-life was reduced to 0.47 min, a remarkable decrease of
over 67,000 times compared to direct photolysis. Therefore, direct comparisons between
studies are currently challenging due to the lack of similarities among the investigations
conducted. A summary of the photocatalytic degradation of different ATVs using doped
metal oxides can be found in Table 3.
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Table 3. Metal oxide semiconductors photocatalytic degradation of ATVs reported in the literature.

ATV
Initial

Concentration
(µM)

Catalyst Catalyst
Dose (mg/L)

UV
Range
(nm)

Removal
(%)

Rate
Constant
(min−1)

References

oseltamivir 24 P25 20 365 96 0.040 [78]
acyclovir 50 P25 500 365 100 – [75]

lamivudine 100 P25 1000 365 >95 0.0542 [76]
1–amantadine 100 P25 1000 365 100 0.076 [79]
2–amantadine 100 P25 1000 365 100 0.084 [79]
rimantadine 100 P25 1000 365 100 0.102 [79]

zanamivir 0.3 AEROIXE
TiO2 P25 17.7 380–420 100 – [80]

4.2.2. Doped Metal Oxide Semiconductors

Doping and sensitization techniques offer the potential for shifting the light absorption
response of semiconductors towards the visible light range [81]. Additionally, this process
prolongs the lifetime of e− and h+ within the semiconductor materials. The metal ion dop-
ing or co-doping of metals and non-metals, along with metal oxide modification through
the use of capping agents, represent highly promising approaches to mitigate charge carrier
recombination [82]. For instance, Pazoki et al. reported that a TiO2/Ag photocatalyst was
investigated for its effectiveness in degrading and removing dexamethasone from aqueous
matrices under both visible and UV light irradiation [83]. Under the optimal dosage of
operational parameters, the maximum degradation efficiency of 82.3% was achieved under
UV irradiation, while a degradation efficiency of 71.5% was attained under visible-light
irradiation. Similarly, (Ag,Cu) co-doped TiO2 photocatalysts were prepared using the
sol–gel method, and the removal efficiency of acyclovir reached 98%, which is 2.34 times
higher than TiO2 [84].

4.2.3. Heterojunction Semiconductors

Heterojunction semiconductors have emerged as a promising strategy in the quest
for efficient photocatalytic systems, particularly in harnessing the potential of visible
light [85–87]. Graphene oxide (GO) holds great promise in the field of photocatalysis
owing to its unique characteristics, including its two-dimensional geometry, expansive
surface area, and excellent conductivity, which enable it to effectively engage all three
mechanisms of photocatalytic enhancement, namely (i) heightened adsorptivity towards
pollutants, (ii) facile separation of charge carriers, and (iii) an extended range of light
absorption [88–90]. Considering the aforementioned factors, Evgenidou et al. synthesized
GO-TiO2 nanocomposites and evaluated their effectiveness in degrading abacavir [91].
They demonstrated remarkable photocatalytic efficiency in degrading abacavir. Signif-
icantly, the composite containing 2% GO content exhibited superior degradation rates,
completely eliminating the target compound within a mere 20 min of treatment. Subse-
quently, an investigation was conducted into the photocatalytic reaction mechanism, along
with the identification of transformation products generated during the reaction process
(Figure 2). In addition, a composite photocatalyst consisting of TiO2 nanoparticles and
multi-walled carbon nanotubes (TNPs–MWCNTs) was synthesized using a straightfor-
ward soft-template hydrothermal method, and its composition was optimized using a
center-composite design (CCD) approach [92]. The effects of these components on the
photocatalytic activity of the resulting composites towards acyclovir degradation in water
were investigated. Based on the combined theoretical and experimental findings (Figure 3),
the TNPs–MWCNTs composite photocatalyst synthesized under optimized conditions,
including a hydrothermal temperature of 240 ◦C, 0.06 g of MWCNTs, 1.10 g of TBT, and
0.10 g of Pluronic P123, demonstrated the highest photocatalytic degradation efficiency for
acyclovir, reaching up to 98.6%.
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Graphitic carbon nitride (g-C3N4) has gained considerable research interest for its
potential in degrading organic pollutants. This attraction arises from its low cost, appro-
priate electronic structure, and high chemical stability, making it a promising materials
in the field [93,94]. Li et al. employed TiO2, g-C3N4, and a hybrid of g-C3N4 and TiO2 (g-
C3N4/TiO2) for the degradation of acyclovir [76]. As a result, the degradation of acyclovir
under TiO2 photocatalysis exhibited minimal advancement even after 5 h of irradiation.
However, the incorporation of g-C3N4 significantly enhanced the degradation efficiency.
Notably, the implementation of the g-C3N4/TiO2 hybrid as a photocatalyst achieved the
complete degradation of acyclovir within a remarkable 4 h. As shown in Figure 4, it is
evident that the hybrid catalyst displayed a significantly reduced bandgap, facilitating
efficient charge carrier separation. Furthermore, Ag2MoO4 nanoparticles encapsulated in g-
C3N4 (Ag2MoO4/g-C3N4) were synthesized with a facile in-situ precipitation method [95].
The band structure of Ag2MoO4 facilitated a synergistic effect with g-C3N4, leading to
enhanced solar light absorption and a reduced recombination rate of photo-induced e−–h+

pairs. Therefore, under sunlight irradiation, the Ag2MoO4/g-C3N4 samples demonstrated
markedly superior photocatalytic activity in the degradation of acyclovir, surpassing the
performance of pristine g-C3N4 (Figure 5). In order to remove arbidol hydrochloride
(ABLH), a novel photocatalyst composed of Ti3C2 MXene and supramolecular g-C3N4
(TiC/SCN) was prepared via a self-assembly method [96]. The 0.5TiC/SCN photocatalyst
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achieved an impressive ABLH removal efficiency of 99% within 150 min under visible-light
illumination. Moreover, in the presence of real sunlight illumination, the 0.5TiC/SCN pho-
tocatalyst demonstrated a remarkable ABLH removal efficiency of 99.2% within a shorter
duration of 120 min, surpassing the performance of the commercial P25 TiO2. The elucida-
tion of the potential mechanism associated with the TiC/SCN Schottky junction is presented
in Figure 6. The calculated CB potential of SCN was determined to be −0.99 V versus
NHE, exhibiting a higher negative value compared to the redox potential of O2/•O2

−

(−0.33 V versus NHE). This suggested the feasibility of O2 reduction to generate •O2
−

and H2O2. The determined VB potential of SCN was found to be more negative than the
redox potentials of OH−/•OH (1.99 V versus NHE) and H2O/•OH (2.37 V versus NHE),
suggesting that the direct generation of •OH was not feasible. Consequently, the establish-
ment of a space charge layer occurred on the SCN side, leading to the upward curvature
of the energy band and the creation of a Schottky barrier [97]. The generation of reactive
oxygen species (ROS) was facilitated, thereby enhancing the photocatalytic performance
of 0.5TiC/SCN. Subsequently, following four consecutive cycles, the removal efficiency
of ABLH by 0.5TiC/SCN decreased from 99.1% to 96.3% within 150 min. These findings
provide additional evidence of the stability via 0.5TiC/SCN, suggesting its suitability for
practical applications. In addition, a novel nanocomposite, CuSm0.06Fe1.94O4@g-C3N4,
exhibiting exceptional magnetic, electrochemical, and optical properties, was success-
fully synthesized through a hydrothermal method. Significant removal efficiencies were
achieved in the photodegradation of various dyes, including congo red, tartrazine, and
metanil yellow, as well as pharmaceutical compounds such as carbamazepine, zidovudine,
and acetaminophen [98]. About 71.5% of zidovudine was removed in 140 min.
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Hu et al. successfully synthesized a novel nanoscale photocatalyst, Bi4VO8Cl, using a
hydrothermal synthesis method [99]. The synthesized material was thoroughly character-
ized to gain insights into its structural and functional properties. The catalytic performance
of this photocatalyst was evaluated by investigating its effectiveness in the degradation of
six pharmaceutical compounds, namely metronidazole, aciclovir, levofloxacin hydrochlo-
ride, sulfonamide, adrenaline hydrochloride, and ribavirin, in aqueous solutions under
visible-light irradiation. Among them, aciclovir achieved complete mineralization within
10 h under visible-light irradiation. Ayodhya et al. reported the synthesis of a novel
Z-scheme catalyst, a ternary composite of CuO@Ag@Bi2S3, by homogeneously precipi-
tating Ag particles onto CuO and Bi2S3 using an ultrasonication method [100]. The CuO
nanoparticles were fabricated through the reduction of a Cu(II)-Schiff base complex. The
remarkable catalytic activity of the CuO@Ag@Bi2S3 ternary composite in the degradation
of HIV drugs, such as stavudine and zidovudine, is clearly demonstrated in Figure 7.
Upon the incorporation of Ag NPs into the CuO@Bi2S3 composite, a notable increase in
intensity was observed, accompanied by the broadening of the absorption band in the
visible region. For stavudine, the CuO@Ag@Bi2S3 composite achieved a remarkable max-
imum removal efficiency of approximately 92.14% within a reaction time of 30 min. In
the case of zidovudine, the maximum removal efficiency was found to be 87.42%. The
CuO@Ag@Bi2S3 exhibited a significantly higher removal efficiency compared to CuO,
Bi2S3, Ag@Bi2S3, Ag@CuO, and CuO@Bi2S3 in both scenarios. This notable enhancement
could be attributed to the relatively-low-molar absorption coefficients of the drugs and the
exceptional adsorption capacity of the composite in aqueous media [101]. The investigation
revealed that •O2

− and h+ emerged as the prevailing active species during the photocat-
alytic process. Additionally, the X-ray diffraction (XRD) patterns from the first and fifth
cycles of the prepared CuO@Ag@Bi2S3 ternary composite displayed a consistent structure
and intensity, providing robust evidence for its favorable stability. In a subsequent study,
the synthesis of cost-effective multiphase photocatalysts via a straightforward calcination
process utilizing industrial waste obtained from ammonium molybdate production (re-
ferred to as WU photocatalysts) combined with WO3 (referred to as WW photocatalysts)
was reported by Hojamberdiev et al. [102]. The multiphase photocatalysts demonstrated a
remarkable efficiency of 95% in the photocatalytic degradation of ritonavir under 15 min
of visible-light irradiation. In contrast, a longer irradiation time of 60 min was required
to achieve a 95% efficiency in the photocatalytic degradation of lopinavir. According to
the results of the recyclability test conducted using WU6, the synthesized multiphase
photocatalyst exhibited a slight decrease in efficiency after the third cycle, underscoring
its notable stability. Moreover, the investigation on the ecotoxicity of photocatalytically
treated ritonavir-containing wastewater using zebrafish (Danio rerio) embryos revealed
no signs of toxicity. However, a contrasting trend was observed for photocatalytically
treated lopinavir-containing wastewater, indicating potential adverse effects. During the
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photocatalytic removal of lopinavir, the intermediates or by-products generated exhibited
certain levels of toxicity (Figure 8). In another study, Bhembe et al. successfully synthesized
a FL-BP@Nb2O5 photocatalyst and evaluated its performance in the photodegradation of
nevirapine, comparing its degradation efficiency with that of pristine Nb2O5 [103]. The
FL-BP@Nb2O5 exhibited an augmented light-harvesting capacity owing to the reduction in
bandgap, attributable to the synergetic effects occurring at the BP and Nb2O5 interface. The
degradation parameters were systematically optimized, revealing that the most optimized
conditions to achieve the highest degradation efficiency for nevirapine were found when
using its lowest concentration of 5 ppm, with a catalyst loading of 15 mg at a working
pH of 3 for 3%FL-BP@Nb2O5. Subsequently, the p-n junction formed in the composite
material (absent in pristine Nb2O5) was elucidated to facilitate the cross-flow of e− and h+,
promoting e− migration to the surface of the photocatalyst and their active participation
in the degradation process (Figure 9). The performances of different heterojunction semi-
conductors for ATV degradation are summarized in Table 4. Typically, single-component,
semiconductor-based photocatalysts demonstrate a limited light absorption range and
relatively low redox ability. Hence, considerable research efforts have been directed to-
wards the exploration of modified semiconductor-based compounds, particularly through
heterojunction construction, and they have exhibited superior performance in the photocat-
alytic degradation of ATVs. In summary, high ATV photocatalytic degradation efficiency is
demonstrated by the heterojunction semiconductors, owing to their large specific surface
area, enhanced visible light absorption, and accelerated interfacial charge transfer and
separation.
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Table 4. Heterojunction semiconductors photocatalytic degradation of ATVs reported in the litera-
tures.

ATVs
Initial

Concentration
(µM)

Catalyst Catalyst
Dose (mg/L)

UV
Range
(nm)

Removal
(%)

Rate
Constant
(min−1)

References

abacavir 10 GO-TiO2 100 solar
spectrum 99.4 0.2610 [91]

acyclovir 10 TNPs-MWCNTs 400 365 98.6 - [92]
acyclovir 10 g-CN/TiO2 300 >420 100 0.0076 [76]
acyclovir 10 Ag2MoO4/g-C3N4 250 >420 100 - [95]
arbidol

hydrochloride 10 Ti3C2 MXene/g-C3N4 100 >420 99.2 0.0295 [96]

zidovudine 10 CuSm0.06Fe1.94O4@g-
C3N4

1200 >420 71.5 0.0081 [98]

acyclovir 10 Bi4VO8Cl 50 200–780 100 - [99]
ribavirin 10 Bi4VO8Cl 50 200–780 100 - [99]

stavudine 10 CuO@Ag@Bi2S3 20 365 92.1 - [100]
zidovudine 10 CuO@Ag@Bi2S3 20 365 87.4 - [100]
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Table 4. Cont.

ATVs
Initial

Concentration
(µM)

Catalyst Catalyst
Dose (mg/L)

UV
Range
(nm)

Removal
(%)

Rate
Constant
(min−1)

References

lopinavir 10
ammonium molybdate

(WU and
WWphotocatalysts)

400 500–550 95 - [102]

ritonavir 10
ammonium molybdate

(WU and
WWphotocatalysts)

400 500–550 95 - [102]

nevirapine 5 FL-BP@Nb2O5 100 >420 68 0.0152 [103]

5. Challenges and Future Perspectives

During each epidemic, pandemic, or outbreak, a substantial volume of medications
are administered to control the disease among the affected or susceptible population. As a
result, a significant proportion of these drugs, either in their parent form or as metabolites,
find their way into the aquatic environment. ATVs have been extensively detected in
various water matrices, such as influents and effluents of WWTPs, groundwater, surface
water, and even drinking water, as evidenced by the available scientific literature. The
observed concentrations range from ng/L to mg/L, indicating the limited effectiveness of
conventional or advanced treatment methods in adequately removing these compounds
from wastewater and ensuring the quality of drinking water. The collective efforts of
the scientific community are required to establish a comprehensive database in this field,
encompassing the occurrence and fate of ATVs in environmental water sources. The
current COVID-19 pandemic serves as a stark reminder of the pressing need to address
the inadequacy in treating wastewater and preventing the dispersion of contaminants in
diverse environmental matrices, thereby mitigating potential adverse impacts.

Semiconductor-based photocatalysis holds significant promise as an environmentally
sustainable approach for the effective removal of pollutants from both water and air, gar-
nering considerable attention in the field of green chemistry. Nevertheless, the widespread
implementation and commercialization of this technique face notable challenges, including
the limited efficiency of photocatalysts under natural light conditions, the need for catalyst
reusability, the optimization of operating conditions, and the development of suitable
reactor designs [104–106]. Prior to establishing on large-scale implementation, it is impera-
tive to amass a comprehensive body of research data elucidating the behavior of ATVs in
photocatalytic treatment systems, with the ultimate aim of attaining complete degradation
and mineralization efficiencies. A comprehensive and rigorous investigation of degrada-
tion kinetics, mechanisms, treatment parameters, and interaction dynamics is essential to
enhance the efficacy of treatment systems, enabling the achievement of superior levels of
efficiency and performance. More research is needed on the photocatalytic degradation
of ATVs. Researchers have shown particular interest in oseltamivir, followed by acyclovir,
lamivudine, zidovudine, and amantadine among the wide range of available ATVs. Photo-
catalysis has demonstrated high efficiency in the degradation of hydrophilic compounds
like ATVs, which are likely to selectively adsorb onto the relatively polar catalytic surfaces.
Given the susceptibility of ATVs to degradation by •OH, heterogeneous photocatalysis
within AOPs emerges as a highly favorable option. A comprehensive research effort is
necessary to investigate the varied responses of different ATVs, as their behavior and degra-
dation pathways may exhibit significant variations, necessitating individualized studies
for each drug. Secondly, it is worth noting that the majority of existing investigations have
primarily concentrated on the degradation of the parent compound, yielding impressive
results in terms of achieving notable degradation efficiencies. Nevertheless, it is crucial to
highlight that these same reports caution about the potential persistence of photocatalytic
degradation intermediates or byproducts within the system, which may exhibit equal or
even higher toxicity compared to the parent compound. This serves as a reminder that
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achieving complete mineralization should be the primary objective in the degradation of
ATVs. Thirdly, there is a dearth of research examining the photocatalytic degradation of
ATVs in actual wastewater systems, as evidenced by the limited literature available in this
area.

6. Conclusions

The progress in the field of ATVs has been primarily driven by the need to effectively
combat viral infections and mitigate their impact on human health. Nevertheless, the
presence of ATVs as emerging contaminants in the environment has garnered significant
attention. Therefore, there is a pressing need to devise a highly efficient method for the
complete elimination of ATVs. The majority of this review is focused on the categorization,
occurrence and semiconductor-based photocatalytic degradation of ATVs. Semiconductor-
based photocatalysis presents a promising option for the degradation of ATVs. A wide
range of photocatalytic materials have been developed, demonstrating significant potential
for photocatalytic activity. Extensive investigation is required to optimize the treatment
system considering the significant impact of operational conditions on photocatalytic
treatment. Semiconductor-based photocatalysis utilizing TiO2 for the degradation of ATVs
has demonstrated cost-effectiveness, taking into account energy requirements and the
overall process efficiency. The construction of heterojunction semiconductor systems
exhibits intriguing prospects due to their synergistic effects and potential for enhanced
performance. Further investigations are recommended to expand the existing knowledge
on the photocatalytic degradation of ATVs and contribute to the growing body of research
in this field. Overall, additional research is necessary to develop effective treatment design
strategies and scale them up for practical implementation at operational levels.
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