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Abstract: Organophosphate pesticides (OPs) are toxic substances that contaminate aquatic envi-
ronments, interfere with the development of the nervous system, and induce Neurodevelopmental
Toxicity (NDT) in animals and humans. The canonical mechanism of OP neurotoxicity involves the
inhibition of acetylcholinesterase (AChE), but other mechanisms non-AChE are also involved and not
fully understood. We used network toxicology and molecular docking to identify molecular targets
and toxicity mechanisms common to OPs. Targets related to diazinon-oxon, chlorpyrifos oxon, and
paraoxon OPs were predicted using the Swiss Target Prediction and PharmMapper databases. Targets
related to NDT were compiled from GeneCards and OMIM databases. In order to construct the
protein–protein interaction (PPI) network, the common targets between OPs and NDT were imported
into the STRING. Network topological analyses identified EGFR, MET, HSP90AA1, and SRC as
hub nodes common to the three OPs. Using the Reactome pathway and gene ontology, we found
that signal transduction, axon guidance, cellular responses to stress, and glutamatergic signaling
activation play key roles in OP-induced NDT.

Keywords: aquatic contamination; ecotoxicology; environmental contamination; enrichment analysis;
network biology; neurodevelopmental disorders; neurotoxicity of pesticides

1. Introduction

The widespread use of organophosphate pesticides (OPs) in agriculture still raises con-
cerns about their ecological impact and human health implication [1]. Surface waters and
sediments can be contaminated by OPs from rainfall, runoff, improper disposal, or leaching
from groundwater. This contamination can affect a wide range of aquatic organisms, such
as fish, invertebrates, and algae, as well as non-target terrestrial organisms [2].

There are numerous toxic effects associated with OPs in fish, including hematological
disturbances, gill, kidney, and liver alterations [3], oxidative stress, immune disorders,
alteration of the intestinal microbiota [4], and behavioral disorders including a reduced
predator escape response [5]. In humans, exposure to OPs during pregnancy and post-
natal periods increases the risk of autism spectrum disorder [6], impaired IQ, and verbal
comprehension [7].

Exposure to OPs poses a high risk of neurotoxicity, especially for the developing ner-
vous system. The effects of this type of exposure can include cognitive, motor, and memory
impairments, as well as changes in brain morphology, referred to as Neurodevelopmental
Toxicity (NDT) [8].
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Acute exposure to high doses of OPs, such as self-poisoning, can significantly in-
hibit the activity of the acetylcholinesterase (AChE) enzyme. As a result, acetylcholine
accumulates in the synaptic cleft, and cholinergic receptors in the nervous system and
neuromuscular junction are overactivated, leading to a cholinergic crisis. The symptoms of
human poisoning include respiratory depression, cardiovascular complications, gastroin-
testinal problems, and mental confusion, and the mortality rate is 15–30% [9].

When environmental contamination occurs, OPs concentrations are typically low and
may not significantly inhibit AChE activity. However, these low concentrations can still
cause behavioral alterations and neurological damage, particularly during developmental
stages [10]. Therefore, it is important to emphasize that non-AChE mechanisms are also
involved in the NDT of OPs [8]. These non-AChE mechanisms may include glutamatergic
excitotoxicity, apoptosis [11], disturbances in intracellular Ca2+ homeostasis, neuronal
activity [12], the modulation of BDNF expression, and effects on the GABAergic and
serotonergic systems [13].

Even though AChE inhibition is a common mechanism of action for OPs, there is
evidence that the non-AChE effects can vary among different OP types. For instance,
chlorpyrifos (CP) and malathion exhibited contrasting effects on zebrafish larvae. While
malathion treatment led to morphological abnormalities in the brains of larvae, no such ef-
fect was observed with CP. Furthermore, CP-exposed larvae exhibited decreased swimming
speed and increased resting time, whereas malathion-exposed larvae showed increased
swimming speed and decreased resting time [14].

A comparative analysis of seven OPs (acephate, CP, dichlorvos, diazinon, malathion,
parathion, and profenofos) in planarians revealed shared toxicological endpoints among
the OPs (except for acephate and parathion), such as abnormal body forms, increased
viscosity, writhing behavior, and alterations in swimming speed during exposure to blue
light. However, other toxicological endpoints differed between the OPs [15].

This study was motivated by the following question: Do OPs share non-AChE mech-
anisms that contribute to NDT? This information can be valuable in enhancing toxicity
testing protocols, establishing more precise safety margins, and providing targets for more
effective treatments in cases of exposure to these compounds.

Computational tools can enhance toxicity studies by providing fast and comprehensive
results. Network toxicology, a branch of network pharmacology, is one of these tools.

Network pharmacology, an emerging approach in the pharmaceutical industry, al-
lows the analysis of molecular and protein interactions, as well as the mechanisms of
action, prediction of therapeutic targets and signaling pathways in drug development [16].
However, the applications of these methodologies have expanded beyond pharmaceutical
research, encompassing diverse fields such as ecotoxicology, where network toxicology can
be employed to assess the impact of exposure to environmental contaminants. For example,
Iida and Takemoto (2018) performed gene alteration predictions related to human diseases
to assess the risk of exposure to seven categories of environmental contaminants [17].
Sohrabi et al. (2020) utilized similar approaches to predict key regulatory genes associated
with hepatotoxicity that were common among various pesticides [18]

Combining network toxicology and molecular docking can reveal interactions between
the investigated compounds and their predicted targets, thereby helping to determine their
toxicological properties [19]. Thus, network toxicology emerges as a powerful tool for
evaluating exposure to environmental pollutants, providing a greater understanding of the
effects on biological systems.

The aim of this study was to predict non-AChE targets that are shared among OP
pesticides that contribute to NDT using network toxicology and molecular docking.

2. Materials and Methods
2.1. Chemical Structures of OPs

The 2D structures of the oxon metabolites of the OP pesticides diazinon (DZ), CP, and
parathion were retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov)

https://pubchem.ncbi.nlm.nih.gov
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accessed on 28 February 2023. We chose the oxon metabolites over of the original compounds
due to their direct association with NDT [20,21]. The images of the chemical structures of the
organophosphates were generated using Marvin JS [22] and are shown in Figure 1.
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Figure 1. Chemical structure of oxon metabolites: (a) diazinon-oxon (CAS 962-58-3), (b) chlorpyrifos
oxon (CAS 5598-15-2) and (c) paraoxon (CAS 311-45-5).

2.2. Acquisition of OP Targets

The 2D chemical structures of paraoxon (PO), chlorpyrifos oxon (CPO), and diazinon-oxon
(DO) were submitted to the Swiss Target Prediction database (http://www.swisstargetprediction.
ch) accessed on 28 February 2023 and PharmMapper (http://www.lilab-ecust.cn/pharmmapper/)
accessed on 28 February 2023 to predict target genes. We then entered the predicted target genes
into the UniProt database (https://www.uniprot.org/) accessed on 28 February 2023 to retrieve
the standard gene names, and duplicate entries were eliminated.

2.3. Prediction of NDT Targets

The GeneCards database (https://www.genecards.org/) accessed on 28 February
2023 and Online Mendelian Inheritance in Man (OMIM, http://omim.org/) accessed
on 28 February 2023 were used to predict potential NDT targets. In February 2023, the
related targets were collected using the keywords “neurodevelopmental abnormalities”,
“neurotoxicity”, and “neurodevelopmental disorders”, along with the Homo sapiens species.
The UniProt database was utilized to retrieve the standard gene names, and after merging
the predicted targets for the three keywords from both databases, duplicate entries were
removed.

2.4. Venn Analysis and Construction of Protein–Protein Interaction (PPI) Network

In order to identify the intersection genes as potential targets of each OP related to NDT,
a Venn diagram was created by using Draw Venn Diagram tool (http://bioinformatics.psb.
ugent.be/webtools/Venn/) accessed on 28 February 2023.

Protein–protein interaction (PPI) networks were constructed using the STRING database
(https://string-db.org/) accessed on 28 February 2023. A minimum score of 0.7 was set,
indicating a high level of confidence, and only experimental data were selected as the source of
active interaction. The PPI network analyzes direct interactions between the inputted proteins
and generates a network of interactions where proteins are represented as nodes and the
interactions between them are represented as edges.

2.5. Topological Analysis of PPI Networks

The PPI networks were imported into Cytoscape 3.9.1. The cytoHubba plugin was utilized
to compute the top 10 hub nodes using the Maximal Clique Centrality (MCC) method. The
Analyze Network tool was used for topological analyses of the network, including degree
(k), betweenness centrality (BC), clustering coefficient, closeness centrality (CC), and average
shortest pathway (ASPL).

The measure k represents the number of connections a node has with other nodes in the
network, i.e., it quantifies the number of edges that connect to it. Nodes with a high k value
are important for information transmission in the network as they have more control over
the flow of information. On the other hand, BC is a measure that indicates a node’s ability to
connect other nodes in the network. A high BC value indicates that the node is important for

http://www.swisstargetprediction.ch
http://www.swisstargetprediction.ch
http://www.lilab-ecust.cn/pharmmapper/
https://www.uniprot.org/
https://www.genecards.org/
http://omim.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org/
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communication between different parts of the network. In turn, the CC measure indicates how
many direct neighbors of a node are interconnected, and a high CC value for a node indicates
its involvement in a strongly connected cluster. Lastly, the ASPL measure indicates the average
shortest path length between a node and all other nodes in the network [23].

2.6. Enrichment Analysis

An enrichment analysis was performed using the Consensus PathDB database (http:
//cpdb.molgen.mpg.de/) accessed on 28 February 2023 to explore the Gene Ontology (GO)
and Reactome Pathway. The Biological Process (BP), Molecular Function (MF), and Cellular
Component (CC) categories of GO were chosen. GO terms and Reactome Pathways with a
p-value < 0.01 were considered statistically significant. The top 15 GO terms for BP, MF, and
CC, as well as the top 30 Reactome pathways, were selected for each OP. Additionally, terms
common to all three OPs that were directly related to the Nervous System superpathway,
as classified by Reactome.org, were examined. GO and Reactome pathway graphs were
generated with the ggplot2 package in RStudio.

2.7. Molecular Docking

A molecular docking analysis was conducted to explore the potential interactions between
OPs and their hub nodes. The analysis followed the following steps:

(a) Macromolecule preparation: The 3D structures of the proteins were obtained from the PDB
database (https://www.rcsb.org/) accessed on 28 February 2023 in PDB format. Discovery
Studio 2021 was used to remove water molecules and ligands, add polar hydrogen bonds,
and obtain the x, y, z coordinates for constructing the grid box. Energy minimization was
performed using Swiss-PDB Viewer 4.1.0 software.

(b) Ligand preparation: The 3D structures of the ligands were retrieved from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) accessed on 28 February 2023 in SDF
format and converted to PDB format using Open Babel.

(c) Docking simulation was performed using Autodock Vina [24], using a grid box with
dimensions of 25 × 25 × 25 Å. The xyz coordinates obtained from Discovery Studio
were used to select the center of mass for each macromolecule (Table 1). The poses were
selected based on the lowest root-mean-square deviation (RMSD) values, with a maximum
threshold of 2.0 Å.

(d) The analysis of the binding and generation of images was carried out using Discovery
Studio 2021. The distance criterion between ligands and amino acid residues was es-
tablished as <3.3 Å for hydrogen bonds [25] and <6.0 Å for π-π, π-alkyl and π-sigma
interactions [26].

Table 1. Grid box xyz coordinates for molecular docking between organophosphates DZO, CPO and
PO and their respective hub nodes.

Molecule Center Grid Box (xyz Coordinates)

HSP90AA1 6.63, 11.34, 24.85
HSPA8 17.27, −0.84, 2.30
ESR1 106.73, 15.02, 96.61
EP300 33.20, 9.43, −14.73

PIK3R1 −20.86, 10.90, 28.28
MET 61.53, 13.21, 117.38

MAPK1 −12.97, 13.19, 40.56
EGFR 22.01, 0.25, 52.79

APH1A 121.91, 88.97, 129.43
PTPN11 31.69, 2.17, 8.03
PTPN1 44.80, 14.03, 2.22
CALM1 3.70, 26.66, 105.09
STAT3 13.12, 55.60, 0.10
ERBB2 −21.17, 86.36, 138.72

SRC 19.73, 23.31, 21.53
NCSTN 113.91, 136.83, 145.71

PSENEN 184.59, 192.05, 152.23

http://cpdb.molgen.mpg.de/
http://cpdb.molgen.mpg.de/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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3. Results
3.1. Candidate Targets for OP-Induced NDT

After removing the duplicates, 388 targets were found for DZO, 343 for CPO, and 387 for
PO in the Swiss Target Prediction and PharmMapper databases. Additionally, 3060 NDT-related
targets were obtained from the Gene Cards and OMIM databases after removing the duplicates.
Using a Venn diagram to identify the intersections of targets for each OP and NDT, we found 187,
121, and 181 targets for DZO, CPO, and PO, respectively. These targets were used to construct
a PPI network using the STRING database, and the data were imported into Cytoscape for
visualization and analysis of the hub nodes.

The analysis of PPI networks revealed 81 nodes and 113 edges for the DZO-NDT network,
37 nodes and 50 edges for the CPO-NDT network, and 71 nodes and 103 edges for the PO-NDT
network (Figure 2). The top 10 hub nodes for each network were identified using the MCC
algorithm in the cytoHubba plugin of Cytoscape. Topological measurements were obtained
using the Network Analyzer tool. HSP90AA1, SRC, MET, and EGFR were hub nodes that were
common among the three OPs. All hub nodes are listed in Table 2, along with their topological
measurements. The measurements for the entire network are available in the supplementary
materials (Tables S1–S3).
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Figure 2. PPI Networks of organophosphate-induced developmental neurotoxicity: (a) diazinon-oxon,
(b) chlorpyrifos oxon, (c) paraoxon. Each node represents a gene, and edges represent the interactions
between them. The size of the node is directly related to the degree, and the color intensity represents the
betweenness centrality of the nodes.

Table 2. Topological measurements of hub nodes in the PPI networks of organophosphate-induced
developmental neurotoxicity, identified using the MCC algorithm in the cytoHubba plugin of Cy-
toscape. k: degree; BC: Betweenness centrality; ASPL: Average shortest path length; CC: Closeness
centrality.

Protein Node k Clustering
Coefficient BC ASPL CC

Diazinon-oxon
Proto-oncogene tyrosine kinase SRC SRC 13 0.218 0.154 2.286 0.438

Epidermal growth factor receptor EGFR 14 0.165 0.275 2.143 0.467
Phosphatidylinositol 3-kinase regulatory

subunit alpha PIK3R1 9 0.250 0.238 2.408 0.415

Tyrosine-protein phosphatase non-receptor
type 11 PTPN11 7 0.4286 0.0164 2.7143 0.368

Heat shock protein HSP 90-alpha HSP90AA1 11 0.109 0.154 2.429 0.412
Gamma-secretase subunit APH-1A APH1A 4 0.8333 0.0667 1.5000 0.667

Nicastrin NCSTN 4 0.833 0.067 1.500 0.667
Gamma-secretase subunit PEN-2 PSENEN 4 0.8333 0.0667 1.5000 0.667
Signal transducer and activator of

transcription 3 STAT3 8 0.179 0.142 2.327 0.430

Hepatocyte growth factor receptor MET 4 0.8333 0.0002 2.9184 0.343

Chlorpyrifos oxon
Heat shock protein HSP 90-alpha HSP90AA1 11 0.109 0.382 2.034 0.492
Epidermal growth factor receptor EGFR 8 0.179 0.276 2.172 0.460

Proto-oncogene tyrosine kinase SRC SRC
Estrogen receptor ESR1 7 0.143 0.269 2.103 0.475

Tyrosine-protein phosphatase non-receptor
type 1 PTPN1 4 0.500 0.017 2.759 0.363

Hepatocyte growth factor receptor MET 3 1.000 0.000 2.793 0.358
Mitogen-activated protein kinase1 MAPK1 5 0.100 0.095 3.172 0.315

Calmodulin 1 CALM1 5 0.000 0.158 2.414 0.414
Histone acetyltransferase p300 EP300 5 0.000 0.308 2.552 0.392

Heat shock cognate 71 kDa protein HSPA8 3 0.667 0.008 2.379 0.420
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Table 2. Cont.

Protein Node k Clustering
Coefficient BC ASPL CC

Paraoxon
Proto-oncogene tyrosine kinase SRC SRC 14 0.220 0.264 1.875 0.533

Epidermal growth factor receptor EGFR 14 0.198 0.312 1.800 0.556
Tyrosine-protein phosphatase non-receptor

type 11 PTPN11 9 0.361 0.059 2.225 0.449

Phosphatidylinositol 3-kinase regulatory
subunit alpha PIK3R1 10 0.289 0.180 2.150 0.465

Steroid hormone receptor ERR2 ERRB2 6 0.667 0.026 2.100 0.476
Heat shock protein HSP 90-alpha HSP90AA1 15 0.095 0.378 1.925 0.519

Gamma-secretase subunit APH-1A APH1A 4 0.833 0.067 1.200 0.833
Nicastrin NCSTN 4 0.833 0.067 1.200 0.833

Hepatocyte growth factor receptor MET 4 0.833 0.001 2.450 0.408
Gamma-secretase subunit PEN-2 PSENEN 4 0.833 0.067 1.200 0.833

3.2. GO and Reactome Pathway Analysis
3.2.1. GO Analysis

To analyze the predicted NDT targets for each OP, we conducted a GO analysis for BP,
CC and MF (p-value < 0.01). We found 169 GO terms for DZO, with 102 in BP, 20 in MF,
and 47 in CC. For CPO, we identified 143 GO terms, with 89 in BP, 18 in MF, and 36 in CC.
PO had 155 GO terms, with 98 in BP, 18 in MF, and 39 in CC. For each OP, we selected the
Top 15 processes for each term based on their p-values (Figure 3).

We observed that the top 15 GO terms for BP, MF, and CC were similar for DZO, CPO,
and PO. The results indicated that the BP terms were mainly related to cellular response to
stress, which could be a result of chemical exposure, as well as cellular processes such as
communication, signal transduction, and cell death, along with processes involved in the
development of an anatomical structure or organism.

Regarding the MF terms, we found that most targets for the three OPs were associated
with binding, which refers to the interaction between one molecule and specific sites of
another molecule. The results of the CC terms suggested most targets were found within
the intracellular milieu, organelles, plasma membrane, and neurons.
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3.2.2. Reactome Pathway Analysis

Based on Reactome pathway analysis, 419 pathways were identified for DZO, 254 for
CPO, and 358 for PO (p-value < 0.01). Figure 4 shows the top 30 Reactome pathways for
each OP based on the p-value.
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Reactome pathway is a database that encompasses 2546 pathways organized into
28 superpathways (e.g., signal transduction, disease, immune system, and developmental
biology) and their subdivisions [27]. According to the analyses, signal transduction was
identified as the most important superpathway for DZO, CPO, and PO, which included
pathways related to signaling by receptor tyrosine kinases, MAPK family signaling cascades,
and intracellular signaling by second messengers. Additionally, all three OPs shared
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the axon guidance pathway, which is directly related to nervous system development,
suggesting that OPs interfere with neurogenesis.

We also evaluated the Reactome pathways for DZO, CPO and PO that showed signifi-
cant values (p-value < 0.01) and were classified under the Neuronal system superpathway
to identify the key processes in the nervous system affected by OP exposure. Activation of
NMDA receptors and postsynaptic events was the common pathway for all three OPs, indi-
cating the activation of N-methyl-D-aspartate receptors (NMDAR), an ionotropic glutamate
receptor.

3.3. Molecular Docking

We used molecular docking to predict the interactions between each OP and their
respective hub nodes (presented in Table 2). A lower binding energy between the compound
and the target indicates a higher affinity. The binding energies between the OPs and
macromolecules ranged from −7.2 to −4.2 kcal/mol (Figure 5). Among the targets shared
by the OPs, HSP90AA1 had the lowest binding energy with the OPs, followed by MET,
EGFR, and SRC.
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The interactions between the OPs and the common hub nodes, EGFR, HSP90AA1,
MET, and SRC, are shown in Figure 6. The OPs interacted with the ATP-binding site
within the N-terminal domain of HSP90AA1. The ligands established π–sigma, π–alkyl and
π–π interactions with specific amino acid residues. Similarly to PU3, an HSP90 inhibitor,
the three OPs interacted with LEU107 and PHE138, and PO also formed hydrogen bonds
with TRP162 [28]. The interactions between OPs and EGFR occurred in the ATP-binding
cleft, positioned between the amino-terminal and carboxi-terminal lobes—an allosteric site.
These interactions involved the formation of π-sigma, π-alkyl and hydrogen bonds with
the amino acid residues. Similar to erlotinib, an EGFR inhibitor, the OPs interacted with
MET769 and THR766 residues, as well as LYS721, recognized as one of the key residues for
EGFR biological activity. Furthermore, all three OPs exhibited attractive forces with ASP813

residue of the catalytic loop [29,30].
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OPs established multiple π-alkyl interactions with MET, in addition to forming π-
sigma and π–π bonds. Interactions with residues at the ATP binding site were observed,
including PHE1089 and VAL1092 in the N-lobe, and LEU1157 in the hinge region of the bind-
ing pocket. This region engages with non-competitive ATP inhibitors like Tivantinib [31,32].
The interactions between the OPs and the SRC SH2 domain occurred through hydrogen
bonding, π-sigma, and π-alkyl interactions. DZO and CPO established hydrogen bonds
with the LYS62 residue. Furthermore, DZO formed a hydrogen bond with ARG14 at the
phosphotyrosine binding site. PO engaged in hydrogen bonding with the Leu96, Gly95, and
Tyr89 residues within the specificity pocket [33].

Detailed results of the molecular docking analysis can be found in the Supplementary
Materials (Tables S4 and S5 and Figure S1).

4. Discussion

The classic mechanism of neurotoxicity of organophosphates is the inhibition of
the AChE activity, leading to the accumulation of the neurotransmitter acetylcholine in
the synaptic cleft and consequently, overstimulation of cholinergic receptors. However,
numerous studies have provided evidence that multiple mechanisms can contribute to the
neurotoxicity of organophosphates, particularly during neurodevelopment [12].

Reactome pathway and Gene ontology enrichment analyzes were performed to iden-
tify potential mechanisms in the NTD of OP. The results indicate that these compounds
impair signal transduction and axon guidance, disrupt cellular responses to stress, and
activate NMDAR. In the OP-induced NTD PPI network, HSP90AA1, EGFR, MET, and SRC
were identified as common hub nodes for DZO, CPO, and PO. For better understanding,
the discussion will be divided into several topics according to the mechanism of toxicity.
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4.1. Signal Transduction

Signal transduction is the process by which extracellular messengers bind to trans-
membrane receptors and provide information that triggers cellular responses, such as
biochemical and biological transformations, as well as gene expression alterations [34]. Ac-
cording to Reactome pathway enrichment analyses, the major signal transduction pathways
affected by organophosphates include the receptor Tyrosine Kinase (RTK) pathway, the
mitogen-activated protein kinase (MAPK) pathway and signaling by second messengers. It
is important to note that these pathways are interconnected, since RTK activation triggers
phosphorylation and the recruitment of effector proteins, initiating signaling cascades
involving MAPKs, PI3K/Akt, phospholipase C-PKC, and STAT [35].

In vitro studies have explored how OP exposure affects signaling pathways. For
instance, exposure of cell cultures to CP and monocrotophos activated the MAPK ERK1/2,
JNK, and p38 pathways, thereby inducing apoptosis. Activation of these pathways were
associated with reactive oxygen species (ROS) generation and oxidative stress, which
may contribute to mitochondrial damage and cell death [36–38]. It is plausible that these
pathways may also be influenced by the interaction of OPs with RTKs.

Based on our literature review, no experimental data were found, indicating that OPs
cause neurodevelopmental abnormalities via EGFR, MET, or non-receptor tyrosine kinase
protein SRC. However, CP has previously been shown to increase migration and invasion
of breast cancer cells through c-SRC pathway activation, amplifying downstream AKT
and p-38 signaling [39]. Additionally, CP has promoted the growth of human colorectal
adenocarcinoma H508 cells through increased EGFR/ERK1/2 signaling [40]. Although
activation of the EGFR/ERK1/2 pathway generally stimulates cell growth, it can also
promote neuronal cell death [41,42].

4.2. Axon Guidance

Axon guidance is the process by which neurons send their axons toward their correct
targets for synaptic formation, and it is crucial during neural circuit development. Growing
axons have a structure at their tips known as the growth cone, which contains receptors
that respond to extracellular messengers that attract or repel the axon, guiding them to
their destination [43]. The hub nodes EGFR, MET, and SRC play important roles in axon
guidance.

The EGFR (or ErbB1) belongs to the ErbB family, which includes three other mem-
bers: ErbB2, ErbB3, and ErbB4. Activation of EGFR initiates signaling pathways that are
important for neuronal proliferation, differentiation, migration, as well as neural circuit
development, including the Ras-Raf-MEK-ERK1/2, STAT3, and PI3K-Akt-mTOR path-
ways [44]. Additionally, activated EGFR interacts with SRC, forming a complex that
enhances EGFR phosphorylation, consequently amplifying downstream signaling [45].
SRC also interacts with other signaling pathways involved in axon guidance, such as
the Ephrin receptor (EphA) pathways [46], Sonic hedgehog (Shh) pathway [47], Netrin-1
pathway [48], and MET pathway [49]. Similar to EGFR, the activation of MET triggers
downstream signaling pathways of PI3K/Akt, Ras-Raf-MEK-ERK, and STAT3, which are
crucial for neurodevelopment and synaptogenesis [49].

Axonal growth is a fundamental process in the formation of neural circuits and the
development of neuronal connectivity. Previous studies have reported impairment of ax-
onal growth by OPs through noncholinergic mechanisms. For example, low concentrations
of CP and CPO inhibited axonal outgrowth in cultures of rat sympathetic neurons [50].
Moreover, exposure to CPO during neurodevelopment disrupted axonal outgrowth in
zebrafish [51]. These results showed that CP and CPO did not cause axon retraction or a
decrease in the number of axons, but rather reduced growth rate compared to the untreated
control group. Furthermore, no morphological changes in the axonal growth cone were
observed. Experimental data suggest that OPs altered axonal growth signaling [50], similar
to the findings in our study that OPs impair axon guidance.
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4.3. Cellular Response to Stress

Exposure to environmental contaminants during prenatal development can trigger
cellular response to stress that is closely related to heat shock and oxidative stress sys-
tems [52]. The HSP90AA1 gene encodes the Heat shock protein (Hsps) HSP90, which acts as
a chaperone to refold denatured proteins in the presence of stressors such as heat, oxidative
stress, hypoxia, and exposure to cytotoxic agents. In the absence of stress, chaperones
facilitate protein refolding, stabilization, translocation, and degradation, preventing protein
aggregation. In neurodevelopment, Hsps regulate pathways related to cell growth and
migration, such as the PI3K/Akt signaling pathway, and they are crucial mediators for
axon guidance [53].

Cellular stress increases the expression of HSP90 and diverts its functions to cope with
stress responses. This functional diversion or inhibition of HSP90 can alter the activity
of various proteins and result in increased mutations, leading to neurodevelopmental
disorders [54]. The increased expression of HSP90 has been observed in the liver, muscle,
kidneys, and spleen of fish exposed to CP, indicating that OPs exposure can induce cellular
response to stress [55,56]. Although these data were not obtained from nervous system
cells, common carp exposed to CP showed increased expression of HSP90 and hypoactivity,
which may indicate neurotoxicity [55].

There are several ways cells respond to stress, including activating of survival path-
ways or apoptosis [57]. There is still much to be clarified about the pathways by which OPs
induce apoptosis, but they are known to occur during vulnerable windows of neurodevel-
opment and is likely not related to AChE inhibition [58]. However, it has been observed
that the AKT pathway and oxidative stress are mechanisms by which OPs induce neural
apoptosis, but independently of each other [59]. Therefore, the relationship between OPs
and HSP90 may be a pathway to understanding how these processes occur.

4.4. Activation of NMDAR

The ionotropic glutamate receptors N-Methyl-D-Aspartate receptors (NMDAR) are
calcium-permeable channels. The synaptic activity of NMDAR contributes to axonal and
dendritic growth, as well as the maturation of glutamatergic synapses [60]. These processes
are crucial for the development of cognitive functions, neuronal plasticity, memory, and
learning [61]. Excessive activation of NMDAR can increase calcium influx, leading to
cellular damage and neuronal death, likely mediated by the PKC/ERK pathway [62,63].

During exposure to high concentrations of OPs, ionotropic AMPA and NMDA gluta-
mate receptors are activated due to increased excitatory signaling following AChE inhibi-
tion and excessive stimulation of muscarinic receptors, leading to seizures and neuronal
death [64]. However, the mechanisms related to low concentrations of these chemicals have
not been fully elucidated yet.

Studies indicate that glutamate-mediated excitotoxicity seems to be more related to the
toxicity effects of CP than DZ. An NMDAR antagonist, MK-801, attenuated CP toxicity, but
not DZ toxicity, in cortical neuronal and glial cultures [11]. Furthermore, in neonatal rats
exposed to CP and DZ, both substances upregulated the expression of NMDAR subunits,
but CP induced more significant changes than DZ [65].

In our study, we did not assess the direct activation of NMDAR by OPs, nor the genes
encoding the subunits of this receptor. However, the activity of NMDAR can be regulated
by SRC [66], EGFR [67], and MET [68], which have been identified as hub nodes in the PPI
network of OPs. Furthermore, studies with chronic exposure to low doses of OPs is a more
realistic way to assess environmental exposure, and further studies are needed to evaluate
the relationship between this exposure and NMDAR activity, considering other biomarkers
beyond the genes encoding the subunits of this receptor.

5. Conclusions

Using network toxicology and molecular docking analyses, this study identified the
hub nodes HSP90AA1, EGFR, MET, and SRC as potential targets for OPs. Additionally, sig-
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nal transduction, axon guidance, cellular response to stress, and the activation of NMDAR
were found to be key pathways involved in OP-induced NDT. These findings are important
for understanding the mechanisms of neurotoxicity of these substances at environmentally
relevant concentrations that do not involve cholinergic pathways.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11080710/s1, Table S1: Topological measurements of nodes
in the PPI network of diazinon oxon-induced developmental neurotoxicity, Table S2: Topological
measurements of nodes in the PPI network of chlorpyrifos oxon-induced developmental neurotoxicity,
Table S3: Topological measurements of nodes in the PPI network of paraoxon-induced developmental
neurotoxicity, Table S4: Binding energies of molecular docking between organophosphates and
their respective hub nodes, Table S5: Intermolecular interactions of complexes between HSP90AA1,
EGFR, MET, and SRC and the organophosphates, Figure S1: Protein-ligand interactions between
organophosphates and hub nodes generated using BIOVIA Discovery Studio Visualizer.
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