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Abstract: In silico (quantitative) structure–activity relationship modeling is an approach that provides
a fast and cost-effective alternative to assess the genotoxic potential of chemicals. However, one of
the limiting factors for model development is the availability of consolidated experimental datasets.
In the present study, we collected experimental data on micronuclei in vitro and in vivo, utilizing
databases and conducting a PubMed search, aided by text mining using the BioBERT large language
model. Chemotype enrichment analysis on the updated datasets was performed to identify enriched
substructures. Additionally, chemotypes common for both endpoints were found. Five machine
learning models in combination with molecular descriptors, twelve fingerprints and two data balanc-
ing techniques were applied to construct individual models. The best-performing individual models
were selected for the ensemble construction. The curated final dataset consists of 981 chemicals for
micronuclei in vitro and 1309 for mouse micronuclei in vivo, respectively. Out of 18 chemotypes
enriched in micronuclei in vitro, only 7 were found to be relevant for in vivo prediction. The ensemble
model exhibited high accuracy and sensitivity when applied to an external test set of in vitro data. A
good balanced predictive performance was also achieved for the micronucleus in vivo endpoint.

Keywords: micronucleus; in vitro; in vivo; prediction; ensemble; chemotypes analysis

1. Introduction

Evaluation of genotoxicity represents an integral part of the authorization of any
industrial or pharmaceutical substance due to the association with severe health hazards,
including cancer. A standard test battery is required by regulatory bodies for comprehen-
sive assessment of major genotoxicity endpoints, covering gene mutation and structural
(clastogenicity) and numerical (aneuploidy) chromosome damage [1]. The common strat-
egy for genotoxicity testing, with slight modifications among various industrial sectors,
includes in vitro mutagenicity testing by the reverse gene mutation (Ames) test, while
chromosome damage is usually evaluated by in vitro micronucleus (MN) or chromosomal
aberration (CA) assays, followed by in vivo tests. The choice of in vivo test largely depends
on the range of genotoxic events detected in the in vitro studies [2]. Thus, a positive in vitro
MN test is commonly followed by an in vivo MN assay.

The increasing number of chemicals under development represents a challenging
task for regulatory agencies as a significant backlog of chemical substances that have
either not undergone genotoxicity evaluation or have received insufficient assessment
has appeared [3,4]. On the other hand, developers of any industrial chemical are deeply
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interested in assessing the genotoxic potential of new candidates before investing significant
resources.

Thus, there is an urgent need for alternative high-throughput genotoxicity assess-
ment methods. One such approach is in silico (quantitative) structure–activity relationship
((Q)SAR) modeling [5]. (Q)SAR models aim to find the relationships between chemical
structural features and biological activity [6]. The cost-effective and time-saving nature
of (Q)SAR approaches, along with their ability to address the concerns associated with
the 3 Rs (replacement, refinement and reduction) principles of animal use, provide advan-
tages over conventional testing methods. These characteristics make the in silico approach
a valuable tool in early phases of product development, particularly for screening pur-
poses. In recent years, (Q)SAR models have also been gaining importance in the regulatory
frameworks [7–9]. The development of (Q)SAR models for genotoxicity prediction has
been boosted with acceptance of the ICH M7 guideline, which focuses on evaluating and
managing DNA reactive (mutagenic) impurities in pharmaceuticals and accepts in silico
models for their evaluation [7]. During recent years, various models both commercially
and publicly available for the prediction of the reverse gene mutation (Ames) test have
been developed. The performance of these models on average reaches 80% accuracy, which
is close to the reported inter-laboratory variation [5,10]. In contrast, models for predict-
ing other genotoxicity endpoints, such as chromosome damage, are relatively scarce and
less reliable [11]. One of the limiting factors appears to be the availability and quality of
experimental test results databases [10,11]. Another constraining element is the models’
ability to handle imbalanced data, which is a very common problem in biomedical datasets,
including genotoxicity data. In machine learning, imbalanced data represents a signifi-
cant challenge, leading to a bias in a model’s predictive performance towards a majority
class [12]. Thus, a classifier would have a good ability to predict samples that make up a
large proportion of the data but perform poorly in predicting the minority. The selection
of the algorithm and/or model architecture which is best suited for a particular task also
presents a significant challenge. Moreover, (Q)SAR models should be constantly updated
with new data to ensure broad chemical coverage, because models developed on small
datasets have low predictive ability for new compounds.

Taking these into account, in the present study:

• We constructed a database for both in vitro and in vivo MN assays. This was achieved
by searching through 35 million PubMed abstracts and extracting relevant data using
the BioBERT pretrained large language model, which is designed for biomedical
text mining [13]. The extracted data was subsequently reviewed and normalized by
human experts.

• Chemotypes enrichment analysis was performed to identify substructures enriched in
both datasets.

• Conventional and cutting-edge individual QSAR models were constructed based on
consolidated datasets.

• Finally, an ensemble model was developed by combining these individual models.

2. Materials and Methods
2.1. Data Collection and Curation

In the present study two approaches were adopted for in vitro and in vivo MN dataset
collection. First, data were retrieved from non-proprietary, publicly available databases
which included:

• ISSMIC database on in vivo MN test results, which includes Toxnet, the National
Toxicology Program and the Leadscope FDA CRADA Toxicity Database [6,14];

• EURL ECVAM Genotoxicity and Carcinogenicity dataset of Ames positive and Ames
negative chemicals, which includes data on both in vitro and in vivo MN compiled
from various sources [15,16];

• Chemical Carcinogenesis Research Information System [17];
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• CHEMBL database (version 29), which contains data on chemical compounds’ struc-
ture and bioactivity extracted mainly from scientific literature [18].

Next, to extract data from publicly available literature we employed a pipeline based
on the BioBERT model [13]. BioBERT (Bidirectional Encoder Representations from Trans-
formers for Biomedical Text Mining) is a state-of-the-art biomedical language representation
model based on BERT architecture and pretrained on large-scale biomedical corpora. In the
present study we used BioBERT-Base v1.0 (+PubMed 200K) with the named entity recog-
nition (NER) mode freely available at https://github.com/dmis-lab/biobert (accessed
on 5 December 2022). Since BioBERT fine-tuning requires the availability of annotated
task-specific corpora, we first downloaded the relevant titles and abstracts from Pubmed
using simple keywords, such as, “in vitro”, “in vivo”, “micronucleus”, “micronuclei”. This
resulted in 20,000 abstracts, out of which 2000 were manually annotated by four annotators.
Controversial cases were verified by the domain expert. The collected and annotated data
were used to fine-tune the BioBERT [13], using default parameters. Transformers library [19]
on top of Pytorch [20] framework was used. The subsequent results were reviewed by
domain experts and data on experimental results and compounds used were extracted from
the publications. At the same time, studies were reviewed for their compliance with the
OECD 487 [21] MN in vitro and 474 [22] MN in vivo test guidelines, respectively. Equivocal
or technically compromised studies were removed from the datasets. Specifically, for MN
in vitro database only, experiments conducted on human peripheral blood lymphocytes,
CHO, V79, CHL/IU, L5178Y, TK6, HT29, Caco-2, HepaRG, HepG2, A549 and primary
Syrian Hamster Embryo cells were included, taking into account the use of rat liver extract
(S9) for negative results. As for in vivo MN, database results on bone marrow and/or blood
erythrocytes were selected considering the highest tested dose and duration of treatment.
Additionally, only studies reporting a statistically significant increase in micronucleated
cells in one or more experimental groups were included as positive results. In cases where
conflicting records existed for the same compound, the compound was either excluded
from the final dataset, or the record that complied with the current regulatory criteria was
retained. Two separate datasets for experimental results performed on mice and rats were
constructed. To obtain SMILES of the tested chemicals, PubChem querying was performed
based on the CAS numbers and/or name provided in the original source. Data were further
cleaned to remove mixtures, polymers and inorganic and organometallic compounds, and
by neutralization of salts. Finally duplicates from all datasets were removed by InChiKeys
comparisons and Canonical Smiles were generated using RDKit package [23].

The curated final dataset consists of 894 organic chemicals with binary (positive/neg-
ative) MN in vitro experimental data, containing 70% positive and 30% negative compounds.
Accordingly, the mouse MN in vivo database includes 1222 chemicals with 32% positive and
68% negative experimental data. Additionally, a set of 87 chemicals with MN in vitro and 87
with MN in vivo results was obtained from Baderna et al. [24] and Morita et al. [25], which
was used as an external test set (see Section 2.6). The names, SMILES and CAS numbers of
chemicals are provided in Tables S1 and S2 for MN in vitro and in vivo, respectively.

2.2. Structural Features Analysis by Chemotypes

To identify chemical substructures (i.e., chemotypes) that differentiate negative and
positive chemicals in the target dataset and compare chemical spaces, Toxprint chemo-
types were generated using freely available ChemoTyper application version 1.0 (https:
//chemotyper.org/, accessed on 12 May 2023). In total, 729 chemotypes were developed
by Molecular Networks GmbH and Altamira, LLC for US Food and Drug Administration
Center for Food Safety and Applied Nutrition and Office of Food Additive Safety based on
different toxicity databases [26]. The ToxPrint chemotype enrichment analysis workflow
(CTEW) described previously by Wang et al. [27] was applied. Based on a binary CT finger-
print table, a confusion matrix was generated, where true positives (TP) were defined as
chemicals that contained the chemotype (CT) and had a positive label; true negatives (TN)
were compounds that both had a CT negative label; false positives (FP) had a negative label

https://github.com/dmis-lab/biobert
https://chemotyper.org/
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but contained the CT; and false negatives (FN) did not have the CT but had a positive label.
ODDs ratio was calculated using the following formula:

ODDs = (TP ∗ TN)/(FN ∗ FP)

One sided Fisher’s exact test was performed to evaluate significance of each CT
and CTs were filtered based on the thresholds: ODDs ≥ 3 and p value < 0.5. Additionally,
balanced accuracy (BA) for each CT and the full set of enriched CTs and Positive predictivity
value (PPV) for each CT was calculated by:

BA = (SE + SP)/2

PPV = (TP + TN)/TP

2.3. Descriptors Calculation and Selection

For each of the datasets, 1D and 2D molecular descriptors were generated using the
RDkit package [23]. In total, 208 descriptors were calculated, consisting mostly of physico-
chemical properties and fraction of a substructure. Highly intercorrelated (R2 > 0.9), constant
and low variance (std < 0.5) descriptors were removed at the preprocessing step. Finally, the
optimal subset for each target dataset was determined using Genetic Algorithm [28]. In all,
12 types of molecular fingerprints, namely Toxprint, MACCS, Daylight and ECFP2, FCFP4
and ECFP6 with various lengths were calculated. Toxprint fingerprints were generated
using Chemotyper application version 1 (https://chemotyper.org/, accessed on 12 May
2023) based on Toxprint chemotypes, while the rest was calculated using RDkit.

2.4. Data Balancing

To address for data imbalance, class weighting [29] and/or Synthetic Minority Over-
sampling Technique (SMOTE) [30,31] was performed on the training set with ten-fold
cross-validation, using a ratio of samples in the minority class with respect to the majority
class corresponding to that of the training set. Class weighting allows for assigning weights
to each class during the training step resulting in a balanced contribution of each one.
The same balancing strategy was also applied for GCN using the Balancing Transformer
as implemented in DeepChem library [32]. The idea behind the SMOTE technique is to
create new synthetic data similar to existing samples in the minority class by finding their k
nearest neighbors. For comparison, models trained without balancing were benchmarked
against the same models trained using class weighting and SMOTE.

2.5. Model Development

In the present study, five ML models, namely random forest (RF) [33], Support Vector
Machine (SVM) [34], eXtreme Gradient Boosting (XGB) [35], Graph Convolutional Net-
works [36] (GCN) and BARTSmiles [37] were evaluated. The first three are conventional
ML algorithms applied on descriptors and fingerprints. GCN is a type of neural network
that operates directly on graph-structured data, while recently proposed BARTSmiles rep-
resents a large language model based on BART-like architecture, that has demonstrated
competitive results with the state-of-the-art self-supervised models in a wide range of
chemical and biological tasks [37]. The BARTSmiles model is publicly available at https:
//github.com/YerevaNN/BARTSmiles/ (accessed on 16 June 2023). The hyperparameters
optimization for RF, SVM and XGB models was carried out on the training set using a grid
search in an inner ten-fold cross-validation with the scikit-learn library for Python [38]. To
reduce computational cost, GCN and BARTSmiles were optimized with respect to their
hyperparameters using Butina split as implemented in RDkit [39].

The best-performing models were used to build an ensemble classifier. As has previ-
ously been shown, ensemble methods, which combine multiple individual models via vot-
ing or averaging, in general show better predictive performance than individual ones [40].

https://chemotyper.org/
https://github.com/YerevaNN/BARTSmiles/
https://github.com/YerevaNN/BARTSmiles/
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2.6. Model Performance Evaluation

All models were evaluated using a ten-fold cross-validation by splitting the data
into 90% training and 10% validation sets using Stratified shuffle split of scikit-learn [38].
Additionally, models were evaluated on the external test set (see Section 2.1). For evaluating
the performance of the models, the following metrics were used: the area under the curve
(AUC), accuracy (Acc), sensitivity (SE) and specificity (SP). All metrics were calculated based
on the confusion matrices created from the number of true-positive (TP), true-negative (TN),
false-positive (FP) and false-negative (FN) predictions using the following formulas:

Acc =
(TP + TN)

(TP + TN + FP + FN)

SE =
TP

(TP + FN)

SP =
TN

(TN + FP)

where Acc displays the ability of the model to correctly predict all positive samples as
positive ones; SE reflects the potential of the model to correctly classify a sample as positive,
while SP is the ability to correctly classify a sample as negative taking into account all posi-
tive or negative data points, respectively. The AUC is the measure of the predictive ability
of a model. The higher the AUC, the better the classifier’s performance at differentiating
between negative and positive classes.

The parameters were determined for each fold of validation, and average values of each
scoring matrix, including Acc, SE, SP and AUC, were calculated to select the best model.

3. Results and Discussion
3.1. Datasets

Chemical libraries for Q(SAR) models should constantly be updated to ensure better
predictive performance and high coverage. To the best of our knowledge, only recently was
the first dataset on MN in vitro, consisting of 380 samples, reported by Baderna et al. [24].
By utilizing a cutting-edge text-mining technique, we managed to increase this number by
almost three times. The mouse MN in vivo database increased by 308 chemicals compared
to the lately published one by Yoo et al. [41].

The distribution of the main physicochemical properties, namely molecular weight
(MW), octanol–water partition coefficient (logP) and aqueous solubility (logS) of the chemi-
cals in the final MN in vitro and MN in vivo databases, is shown in Figure 1. MW and logP
was calculated using the RDkit package, while the ALOGPS software was used to com-
pute logS [42]. As is evident from Figure 1, both datasets contain mostly small molecules
(MW < 500), though a slightly higher number of heavier compounds with MW > 500 is
found in in vivo data. The majority of chemicals in both datasets are characterized by logP
values between −2 and 6 and logS above 10−2, which correlate with good bioavailability
and solubility. Thus, there is no bias towards any specific type of chemicals with certain
properties in both datasets.

For more detailed description of the chemicals in datasets, we compared the chemical
space occupied by these compounds to the one covered by chemicals from databases,
which include REACH registered substances, FDA drugs, pesticides, biocides, substances
of very high concern (SVHC) and endocrine disruptor candidates (ED candidates) [43–48].
For comparison, Principal Component analysis (PCA) was performed based on MACCS
fingerprints. It is worth mentioning that for some parts of these databases no structures
could be retrieved; thus, the final number of chemicals in each dataset is as follows: REACH:
n = 14,790; FDA Drugs: n = 3234; pesticides: n = 1028; biocides: n = 235; SVHC: n = 470; and
ED candidates: n = 145. The results are shown in Figure 2, where structurally dissimilar
chemicals are found far apart from each other. Both MN in vitro and in vivo datasets covered
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vast areas of the chemical space, indicating that the datasets contain highly diverse chemicals.
The exceptions are the top-right and bottom-right areas, sparsely populated by substances
from both datasets, which are primarily occupied by REACH chemicals and FDA Drugs.
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We also performed the evaluation of MN in vitro and in vivo substances by their main
use and manufacturing using the PubChem database. The results are shown in Figure 3.
The majority of substances in both datasets are represented by pharmaceuticals, followed
by cosmetic ingredients and food additives.
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3.2. Structural Feature Analysis by Chemotypes

To search for potential structure–activity associations, we applied chemotype enrich-
ment analysis based on ToxPrint chemical features. Chemotype enrichment analysis results
for MN in vitro yielded 18 positively enriched CTs. The full lists and statistics are provided
in Table S3. Among the significantly positively enriched CTs were nitroso, steroids, alkyl
halides and PAH-phenanthrene. In order to give a rough estimate of the coverage, 1 or
more of the 18 positively enriched CTs was found in 263 compounds or only 39% of the
MN in vitro positives. However, 95% of the 169 chemicals that contain 2 or more CTs were
correctly predicted as MN positives. To evaluate a predictive performance of the full set of
18 positively enriched CTs, overall BA was calculated that reached 0.65, indicating overall a
moderate predictive performance.

For MN in vivo, 40 positively enriched CTs (Table S4) were identified. CTs signifi-
cantly enriched in a positive space included nitroso, metal and phosphorous substructures,
usually found in environmental chemicals, and “ring:hetero_” CTs common for drug-like
compounds. Despite the high number of positively enriched CTs, 1 or more of these CTs
was found only in 37% of TPs (157 out of 426 chemicals), while 77% of chemicals that
contain 2 or more CTs were correctly predicted as positives. Using all the CTs enriched
in positive space, the overall BA of 0.64 was found, which indicates a moderately good
predictive performance of the full set.

The positive CTs that are common for both endpoints represent a particular inter-
est. Previously, based on expert assessment, Canipa et al. [49] reported 19 structural
alerts that can predict both in vitro and in vivo chromosome damage without differen-
tiating between chromosomal aberration and MN in vivo tests. In our study, we iden-
tified only 4 CTs enriched in the positive space of both datasets, particularly nitroso
substructures, PAH_ phenanthrene and S(=O)O_sulfonicEster_alkyl_O-C_(H=0). To fur-
ther explore the relevance of CTs over-represented in MN in vitro dataset for in vivo
prediction, PPV for each CT enriched in MN in vitro was calculated for the MN in vivo
dataset. CTs with PPV ≥ 70% were considered highly relevant for MN in vivo, while CTs
with 50% < PPV < 70% and PPV < 50% were considered as moderately and poorly corre-
lated with in vivo data, respectively (Figure 4). Among 18 CTs positively enriched in MN
in vitro data, only 1 was found to be strongly associated with MN in vivo (PPV ≥ 70%),
specifically “bond:S(=O)O_sulfonicEster_alkyl_O-C_(H=0)”. Alkyl esters of alkyl or sul-
fonic acids induce genotoxicity via DNA intercalating mechanism and present a significant
safety challenge to drug producers and regulators [50]. Meanwhile, 6 CTs showed PPVs
between 50% and 70%, indicating moderate relevance for in vivo prediction.

For further illustration, we concentrated on the “bond:C(=O)N_carbamate” CT, which
was found positively enriched in the MN in vitro dataset and moderately associated with
in vivo activity (PPV < 70%). Figure 5 demonstrates images of four representative com-
pounds with their indicated CAS numbers (CASN) and MN activity. Three out of four
representative compounds induce MN both in vitro and in vivo, while urethane (CASN
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51-79-6) has been reported to induce MN only in vivo. Urethane belongs to the carbamates
chemical class and has been reported to induce MN in vivo but not in vitro. Though struc-
tural alerts for carbamate mutagenicity [51,52] have been reported, more recent thorough
evaluation of this group revealed that only a small number of compounds, particularly
urethane, demonstrate mutagenic activity in Ames tests via DNA adducts formation. More-
over, this effect is observed only when urethane is tested at very high concentrations
(above limits for relatively non-toxic compounds). In contrast, it tests positive in an MN
in vivo test. The most widely accepted explanation for this discrepancy is that urethane-
associated DNA adducts are rather formed by its metabolite [53]. The S9 fraction used in
an in vitro test is likely deficient in some cytochrome 450 enzymes responsible for urethane
metabolism, while the DNA reactive metabolite is readily formed in vivo. Contrary to
urethane, the other three chemicals, namely carbendazim (CASN 10605-21-7), albendazole
(CASN 54965-21-8) and thiophanate-methyl (CASN 23564-05-8) have been reported to
induce MN both in vitro and in vivo by directly interacting with tubulin and thus causing
aneugenicity [54,55].
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In summary, CT enrichment analysis revealed a range of substructures, such as ni-
troso, quinone, polycyclic hydrocarbons and aziridine, all of which have previously been
identified as genotoxicity-related structural alerts [24]. In overall, the data mining approach
employed in this study using ToxPrints CTs is chemically intuitive and straightforward to
implement and interpret.

3.3. Selection of Data Balancing Method

In this study, to deal with highly imbalanced data, we tried two types of data balancing
methods, namely class weights [29] and SMOTE [30,31], aiming to obtain a model that
can consistently predict positive and negative samples with balanced SE and SP, while
maintaining a high AUC value. It is worth mentioning that no balancing method is available
for BARTSmiles.

To reduce the number of combinations and computational time, we assessed balancing
strategies using the combination of RF with descriptors and MACCS fingerprints. The
main reason for choosing the above-mentioned algorithm/fingerprint combination is that
MACCS fingerprints and RF have been proven to be one of the most common and successful
combinations in various fields of chemoinformatics over the years [56,57].

As shown in Figure 6, both balancing strategies improved the model’s predictive bal-
ance for both datasets compared to the performance without balancing, despite similar AUC
values. A comparison of strategies for MN in vitro data (Figure 6a) revealed that though
SE and SP were comparable among the techniques, class weight balancing is characterized
by a slightly lower AUC value (0.746 for descriptor- and 0.73 for fingerprint-based models,
respectively) as opposed to SMOTE (0.77 for descriptor- and 0.75 for fingerprint-based
models, respectively).
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In contrast, training on the mouse MN in vivo data using SMOTE resulted in low SE
(0.54 and 0.52 for descriptor- and fingerprint-based models, respectively) and high SP (0.8
and 0.81 for descriptor- and fingerprint-based models, respectively) (Figure 6b). At the same
time, the class weight approach was found to give a more stable prediction accompanied by
a higher AUC for the descriptor-based model. The detailed evaluation results are presented
in Tables S5 and S6.

3.4. Selection of Molecular Fingerprints and Model Development

In the present study, we developed multiple models for each target endpoint using
the combination of three classical ML algorithms (RF, SVM and XGB) with molecular
descriptors and 12 types of fingerprints (MACCS, Daylight, Toxprint and ECPF with differ-
ent bits) through ten-fold cross-validation. All models were trained using an appropriate
balancing method.
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Following feature selection (see Section 2.3), 17 and 20 molecular descriptors were
used for building MN in vitro and in vivo models, respectively. The full list of descrip-
tors is presented in Table S7. It is worth mentioning that for both endpoints the selected
descriptors predominantly represent structural fragments rather than physico-chemical
ones. Fingerprints were used without feature reduction. We selected the best performing
combination based on the AUC values and balanced performance, ensuring an equal ability
to predict both positive and negative classes. The performance of descriptor-based models
for both datasets is presented in Table 1. The obtained results suggested that all models
performed equally well with a slight superiority of the RF algorithm for MN in vitro and
XGB for MN in vivo.

Table 1. Performance of models in combination with selected molecular descriptors on MN in vitro
and MN in vivo datasets. Models were trained using SMOTE or class weights balancing for MN
in vitro and in vivo, respectively. Average values of ten-fold cross-validation are presented. The best
performing model is in bold.

Model
RDkit Molecular Descriptors (AUC/Sensitivity/Specificity)

MN In Vitro MN In Vivo

XGB 0.74/0.756/0.65 0.725/0.59/0.747
RF 0.776/0.81/0.644 0.728/0.425/0.81

SVM 0.716/0.67/0.65 0.65/0.69/0.52

The performance of various combinations of fingerprints/models is shown in Figure 7.
All models demonstrated AUC values around 0.7 for both datasets and across all combina-
tions, indicating good predictive ability. However, based on the most optimal parameters of
internal validation (i.e., AUC/SE/SP) MACCS with RF was chosen as a final combination
for MN in vitro endpoints, while Toxprint and MACCS fingerprints with XGB were selected
for MN in vivo.
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3.5. Model Validation

Two conventional ML methods (RF and XGB) combined with selected molecular
descriptors and fingerprints (MACCS and MACCS and Toxprint fingerprints for MN
in vitro and MN in vivo, respectively) and two cutting-edge algorithms, namely GCN and
BARTSmiles, were used for target endpoint prediction. The performance of the models
obtained through a ten-fold cross-validation framework using balanced data where appro-
priate is presented in Figure 8. Among individual models, the best predictive performance
for the MN in vitro dataset was achieved with RF in combination with descriptors using
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SMOTE balancing (0.77, 0.81 and 0.64 for AUC, SE and SP, respectively). In contrast, for
MN in vivo, GCN showed a superior performance with AUC of 0.74, SE of 0.58 and SP
of 0.77. It is worth mentioning that though both target datasets are highly imbalanced,
BARTSmiles performed comparably to other models for the MN in vitro dataset in terms
of AUC, SE and SP. However, for the MN in vivo dataset, its predictive ability is highly
skewed towards the prediction of negative samples (SE of 0.23 and SP of 0.93).
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To further assess the predictive power, the models were evaluated on the external
test set. RF_Desc + SMOTE and RF_MACCS + SMOTE displayed equally good predictive
potential on the MN in vitro dataset (Table 2a). On the MN in vivo external test set, most
models showed a comparable prediction performance, with a slight predominance of the
XGB model build using MACCS fingerprints (Table 2b).

To overcome the limitations of individual models, the ensemble model via majority
voting was built. As expected, the ensemble model outperformed any single-base classifier,
achieving higher Acc (78.4% and 73% for MN in vitro and in vivo data, respectively).
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Table 2. Performance of individual and ensemble models on the MN (a) in vitro and (b) MN in vivo
mouse external datasets. The best model in terms of Acc and balanced performance is in bold.

(a)

Model Acc SP SE AUC

RF_Desc + SMOTE 72.41 0.548 0.821 0.76
RF_MACCS + SMOTE 75.86 0.613 0.839 0.747
GCN + class weight 67.816 0.645 0.696 0.740
BARTSmiles 66.666 0.516 0.750 0.675
Ensemble majority 78.38 0.593 0.894 -

(b)

Model Acc SP SE AUC

RF_Desc + SMOTE 56.3 0.58 0.541 0.63
RF_MACCS + SMOTE 65.5 0.7 0.6 0.68
GCN + class weight 63.2 0.64 0.62 0.67
BARTSmiles 65.5 0.82 0.43 0.69
Ensemble majority 71.26 0.72 0.703 -

3.6. Comparison with Previous Models

Recently, Baderna et al. [24] reported a fragment-based model for MN in vitro predic-
tion with Acc, SE and SP of 0.85, 0.98 and 0.62 in the validation set. Using the same set, which
allowed us to directly compare the results, we achieved a lower prediction performance.
Nonetheless, taking into account the high diversity of our dataset and the size of the training
set, our model may have broader applicability and better predictivity for new compounds,
which is highly practical for the early screening purposes of in silico models.

Conversely to MN in vitro, a number of in vivo prediction models exist [40,41,58,59].
Using commercial CASE Ultra software for MN in vivo prediction, Morita et al. [25] on the
external dataset of 337 chemicals reported Acc, SE and SP of 0.72, 0.91 and 0.57. Though SE
obtained in our study is lower, SP is particularly high. Moreover, the authors mention a
possibility that the test and training set included the same chemicals, which is not the case
in our study. More recently, Yoo et al. [41] developed a statistics-based model for the mouse
dataset comprising 1001 compounds using Leadscope and CASE Ultra software. On the
external test set of 42 compounds, the new models achieved SE of 67% and 83% and SP of
84% and 29% for Leadscope and CASE Ultra, respectively. Thus, compared to the models
of Yoo et al. [41] our model reached balanced SE and SP, resulting in greater stability.

4. Conclusions

In this study, we first enriched the dataset for MN in vitro and mouse in vivo assays by
leveraging freely available databases and conducting an extensive PubMed search, supported
by the advanced text-mining approach based on the BioBERT large language model.

Using the updated datasets, we identified chemotypes, i.e., structural features as-
sociated with MN induction in vitro or in vivo. At the same, seven chemotypes that are
positively enriched in the MN in vitro dataset and possess predictive value against MN
in vivo were found. We constructed a number of individual models using conventional ML
methods, such as RF, SVM and XGB, in combination with various fingerprints, molecular
descriptors and balancing methods. Our findings from ten-fold cross-validation highlighted
the superior performance of the MACCS fingerprint for MN in vitro prediction, while Tox-
print and MACCS fingerprints excelled for MN in vivo prediction. Additionally, our analysis
of various balancing techniques revealed that SMOTE for MN in vitro and class weights for
MN in vivo achieved the optimal balance in terms of SE and SP in predictive performance.
We also explored advanced modeling approaches, such as GCN and BARTSmiles, a large
pre-trained generative masked language model. The performance of individual models on
MN in vitro achieved accuracy values ranging from 66.7% to 75.9%, while for in vivo the
accuracy values ranged from 56.3% to 65.5%. To further enhance predictive performance,
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ensemble models were constructed, resulting in an accuracy of 78.38% for MN in vitro and
71.26% for the in vivo dataset. In comparison to previous models, we successfully achieved
a highly balanced classification for the latter endpoint.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11090785/s1, Table S1: The names, SMILES and CAS numbers
of MN in vitro dataset, Table S2: The names, SMILES and CAS numbers of MN in vivo dataset, Table
S3: CTs enriched in the positive space of MN in vitro, Table S4: CTs enriched in the positive space
of MN in vivo, Table S5: Balancing strategy selection for MN in vitro, Table S6: Balancing strategy
selection for MN in vivo, Table S7: Descriptors list, Table S8: Fingerprint/algorithm selection for MN
in vitro; Table S9: Fingerprint/algorithm selection for MN in vivo.
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