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Abstract: Poly(vinyl chloride) (PVC) is widely used to produce various consumer goods, including
food packaging, toys for children, building materials, and cosmetic products. However, despite
their widespread use, phthalate plasticizers have been identified as endocrine disruptors, which
cause adverse health effects, thus leading to increasing concerns regarding their migration from PVC
products to the environment. This study proposed a method for rapidly measuring the migration
of phthalates, particularly di(2-ethylhexyl) phthalate (DEHP), from PVC products to commonly
encountered liquids. The release of DEHP under various conditions, including exposure to aqueous
and organic solvents, different temperatures, and household microwaves, was investigated. The
amount of DEHP released from both laboratory-produced PVC films and commercially available
PVC products was measured to elucidate the potential risks associated with its real-world applica-
tions. Furthermore, tests were performed to evaluate cytotoxicity using estrogen-dependent and
-independent cancer cell lines. The results revealed a dose-dependent impact on estrogen-dependent
cells, thus emphasizing the potential health implications of phthalate release. This comprehensive
study provides valuable insights into the migration patterns of DEHP from PVC products and forms
a basis for further research on the safety of PVC and plasticizers.
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1. Introduction

Poly(vinyl chloride) (PVC) is the most produced polymer after polyethylene and
polypropylene [1]. It is widely employed to fabricate consumer products, including food
and beverage packages, children’s toys, plastic bags, automobile interiors, building materi-
als, furnishings (e.g., wallpaper, vinyl flooring, and furniture upholstery), and cosmetic
products [2]. However, owing to the inherent rigidity of PVC, plasticizers are typically
incorporated to confer flexibility and elasticity for specific applications [3]. More than
3 million tons of plasticizers, particularly phthalate plasticizers, are produced annually
globally [4].

Despite their widespread use, PVC and its associated phthalate plasticizers have gar-
nered considerable attention owing to their associated health and environmental risks [5].
Phthalate plasticizers, a significant component that makes PVCs flexible, have been iden-
tified as endocrine disruptors, which affect the endocannabinoid system and are directly
linked to metabolic syndrome and tissue damage [6–8]. Di(2-ethylhexyl) phthalate (DEHP),
the most commonly used phthalate ester plasticizer, interacts with estrogen receptor al-
pha and interferes with the normal hormonal balance, leading to estrogenic effects in
the body [9]. These plasticizers can be released into the environment from various PVC
products, thus posing a potential threat to human health through inhalation, ingestion,
and skin contact [10–15]. Their non-covalent attachment to PVC facilitates easy migration,
leading to recent efforts to explore the covalent attachment of phthalates to PVC [16].
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Studies on DEHP have highlighted its adverse effects, including anti-androgenic effects
at high doses (405 mg/kg/day) and subtle effects at lower doses (15 mg/kg/day) [17].
The Food and Drug Administration (FDA) further emphasizes the risks associated with
oral exposure to DEHP during gestation (100–200 mg/kg/day), which include neural tube
defects, skeletal and cardiovascular malformations, developmental delays, and intrauterine
death [18]. However, the recent announcement by the European Food Safety Authority
establishes significantly lower limits, setting a tolerable daily intake (TDI) of 50 µg/kg
based on the potential for fetal testosterone depression and a TDI of 150 µg/kg based on
effects on the liver [19]. DEHP is also found in PVC medical devices, subject to scrutiny
from European authorities [20], resulting in strict controls over its use.

In addition to health concerns, awareness on the environmental impact of phthalate-
based plasticizers originating from PVC products is increasing. Further, as the detection
of microplastics in living environments has become more prevalent [21,22], the potential
migration of phthalate-based plasticizers from PVC items has raised additional alarms. The
harmful nature of fine plastics contributes to the complexity of this issue [23].

Despite these concerns, studies assessing the plasticizer quantity in PVC products
in various living environments remain limited. Further, current methods for evaluating
the plasticizer content rely on physical and chemical analyses of the melted PVC products
to determine the remaining plasticizer content in the solution [24]. However, these meth-
ods lack the specificity required to ascertain whether phthalates migrate from consumer
products into the body. In response to these challenges, the present study aims to over-
come the lack of information by developing a method to rapidly measure the migration
of phthalates from PVC products into liquid components commonly used in daily life. By
subjecting phthalate-containing products to conditions encountered in living environments
and assessing the amount of phthalate leaching, our aim is to identify conditions where
phthalates migrate readily. This research seeks to provide a quick and straightforward
method, employing simple equipment such as high-performance liquid chromatography
(HPLC), to determine the extent of DEHP leaching from a PVC product in a living envi-
ronment. Thus, it elucidates the potential risks associated with the use of PVC and its
plasticizers in various applications.

2. Materials and Methods
2.1. Reagents and Materials

Extra-pure-grade DEHP was obtained from Samchun Chemical (Pyeongtaek, Republic
of Korea). HPLC-grade n-hexane and glacial acetic acid were purchased from Merck
(Darmstadt, Germany). Phosphate-buffered saline (PBS), Dulbecco’s modified Eagle’s
medium (DMEM), RPMI 1640 medium, and fetal bovine serum (FBS) were procured from
Corning Cellgro (Manassas, VA, USA). All reagents and buffer solutions were prepared in
glass vials and apparatuses to prevent contamination with phthalates.

2.2. Preparation of Standard PVC Film

The resin suspension, sourced from Hanwha Chemical (Yeosu, Republic of Korea),
was used as the base material for standard PVC film. To enhance flexibility, DEHP was
incorporated into the resin at a ratio of 60 parts of DEHP per 100 parts of PVC. The resulting
blend underwent a thorough melting process using a twin-screw extruder. Subsequently,
the extruded resin was pelletized and washed to eliminate surface dust and impurities.
Initially, granulated pellets were immersed in a 0.5% non-toxic mild soap solution and
stirred thoroughly for 3 min. Following this, the pellets underwent 5 min of washing with
running tap water, followed by washing with distilled water for an additional 10 min.
Subsequently, the samples were treated with HPLC-grade methanol for 15 s and then
dried in an oven at 50 ◦C for 30 min. The cleaned pellets were then shaped into a film
(20 mm × 10 mm × 0.4 mm) using a steel mold operated as a hot press at 170 ◦C. The
molded samples were promptly quenched in a water bath to room temperature. Subse-
quently, the samples underwent a secondary washing as described above. The molded and
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rinsed PVC films were then employed for leaching experiments. Furthermore, all glassware
used in this study underwent thorough cleaning using a tetrahydrofuran–methanol mixture
before use.

2.3. Migration of DEHP from PVC Films into Liquids

A two-pronged approach was adopted to investigate the release of DEHP from the
PVC films. First, a PVC film produced in the laboratory and designated as the control
group served as a benchmark for comparative analysis. In addition, various PVC products
procured from a local market were subjected to DEHP elution tests. PVC films were cut
into pieces (5 mm × 5 mm, 1 g per piece). Subsequently, various stimulants were used
to facilitate DEHP release. Distilled water, saline (PBS), hydrochloric acid (pH 1), sodium
hydroxide solution (pH 13), olive oil, ethanol, and acetone were used as representative
solvents possibly in contact with PVC products. The samples were submerged in the
stimulants (5 mL) for varying exposure times and temperatures. After the removal of the
PVC samples, the solutions were preserved in glass vials for subsequent analysis.

2.4. High-Performance Liquid Chromatography (HPLC)

HPLC analysis was performed using a Waters HPLC system (Waters Breeze 1525, Etten-
Leur, The Netherlands) equipped with a binary pump, autosampler (Waters 2707), and
ultraviolet–visible detector. Chromatographic separation was achieved using a Symmetry
C18 column (150 mm × 4.6 mm; particle size = 5 µm), with a mobile phase consisting of a
mixture of 40% methanol and 60% acetonitrile. In each analysis, a sample volume of 10 µL
was injected into the HPLC system. The flow rate was maintained at 0.6 mL/min and all
eluents were monitored at 228 nm. All experiments were conducted three times, and the
presented data correspond to the average of three replicates. Standard deviation is not
shown due to its negligible impact.

2.5. Calibration Curve of DEHP for HPLC

DEHP (0.786 mg/mL) was dissolved in acetonitrile (Merck, Darmstadt, Germany) to
prepare a 1000 ppm stock solution. Subsequently, the stock solution was diluted to generate
a series of standard solutions of varying concentrations: 0, 50, 100, 200, and 500 ppm. A
comprehensive calibration curve was constructed for all of these concentrations.

2.6. Cell Culture and Cytotoxicity Evaluation

MCF-7 and MDA-MB-231 cells were obtained from the Korean Cell Line Bank (Seoul,
Republic of Korea). MCF-7 cells were cultured in DMEM supplemented with 5% FBS,
whereas MDA-MB-231 cells were cultured in RPMI 1640 media with 10% FBS. The cells
were incubated at 37 ◦C in a 5% CO2 atmosphere. Since DEHP was not soluble in media, it
was initially solubilized in ethanol and then further diluted with the media. The resulting
concentration of ethanol in the media was 0.1%. All of the samples were filtered through a
0.22 µm filter, and the filtered samples were introduced to MCF-7 and MDA-MB-231 cells,
which had been cultured to approximately 20% confluence in 96-well tissue culture plates.
After 48 h of incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay was performed according to the manufacturer’s instructions (Sigma-Aldrich,
St. Louis, MO, USA). Cells were also cultured in the media only containing 0.1% ethanol
and used as a control (n = 4).

2.7. Statistical Analysis

For group comparisons, one-way analysis of variance (ANOVA) followed by Tukey’s
post hoc test using IBM SPSS version 19 was performed. Statistical significance was
determined at a p-value less than 0.05 for all tests.
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3. Results and Discussion

The objective of this study was to provide a standard experimental method to de-
termine the amount of DEHP that migrated from the PVC products. Therefore, first,
a calibration curve was prepared by plotting the peak area determined from the chro-
matogram vs. the DEHP concentration in the range of 0–500 ppm (Figure 1). Next, linear
regression was performed and the correlation coefficient was determined to be 0.9985, thus
suggesting a strong relationship between the peak area and DEHP concentration obtained
from the HPLC analysis.
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Figure 1. (a) HPLC chromatograms of DEHP standards at different concentrations (magenta, 0;
yellow, 50; blue, 100; green, 200; red, 500 ppm) and (b) a corresponding calibration curve.

The solutions used to stimulate the release of DEHP from the PVC products were
chosen based on conditions commonly used in daily life. Note that most foods contain
water and/or edible oil. Additionally, acidic solutions, such as vinegar and alcoholic
substances, are edible solutions used in various alcoholic beverages. Further, inedible
solutions, such as alkaline solutions used in various detergents and acetone used to remove
nail polish, are commonly used in living environments.

First, the amount of DEHP released from PVC films produced in the laboratory as
standard samples was measured. The aforementioned aqueous solutions were applied to
the PVC films under various temperature conditions (−20, 4, 25, and 37 ◦C), along with an
extremely harsh condition realized by an autoclave (121 ◦C). As listed in Table 1, elution
of DEHP from the PVC films was not detected in any of the collected aqueous samples,
even when the films were exposed to high temperatures. This finding clearly indicates that
DEHP is lipophilic [25].

By contrast, substantial amounts of DEHP were eluted into the organic solvents used
depending on the experimental conditions (Table 2). In particular, regarding PVC films
exposed to 90% ethanol, DEHP was not detected for 24 h; however, 4.17 ppm and 11.8 ppm
DEHP were eluted from the samples after exposure for 72 h and 1 w, respectively. Exposure
to 100% ethanol for 24 h did not yield detectable amounts of DEHP, whereas 11.5 ppm was
detected after 72 h of exposure. Further, the DEHP release in 100% ethanol was much faster
than that in 90% ethanol, thus indicating that higher ethanol concentrations yield faster
DEHP release from the PVC films.

No significant DEHP release was observed when the films were exposed to olive oil
for 1 w at 25 ◦C; however, it was detected at 121 ◦C, though very low compared to that
exposed to ethanol. Because autoclaving is not a commonly available condition in daily
life, instead of direct autoclaving, the sample was heated in olive oil using a household
microwave for 15 s, which yielded a similar result to autoclaving. Interestingly, 69.0 ppm
DEHP was detected after 24 h of exposure to acetone. Note that acetone tends to dissolve
PVC films; thus, the experiment was performed only within 24 h to monitor the release
from the films and not that from the complete dissolution of the film. Evidently, DEHP
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elution from the PVC films produced in the laboratory was much higher when organic
solvents were used compared with when aqueous solutions were used, even under harsh
conditions. Further, DEHP release was much higher with longer exposure times and higher
temperatures in organic solvents.

Table 1. Amounts of DEHP released from PVC films produced in the laboratory and treated with
aqueous solutions under various temperatures and times.

Stimulant Exposure
Temperature (◦C) Exposure Time Concentration (ppm)

distilled water

−20 4 weeks ND a

4 4 weeks ND
25 4 weeks ND
37 4 weeks ND

121 b 30 min ND

PBS

−20 4 weeks ND
4 4 weeks ND

25 4 weeks ND
37 4 weeks ND
121 30 min ND

pH 1

−20 4 weeks ND
4 4 weeks ND

25 4 weeks ND
37 4 weeks ND
121 30 min ND

pH 13

−20 4 weeks ND
4 4 weeks ND

25 4 weeks ND
37 4 weeks ND
121 30 min ND

a Not detected (below detection limit). b Autoclaved.

Table 2. Amounts of DEHP released from PVC films produced in the laboratory and treated with
organic solvents under various conditions of temperature and time.

Stimulant Exposure
Temperature (◦C) Exposure Time Concentration (ppm)

90% ethanol

37 24 h ND a

37 72 h 4.17
37 1 week 11.8

121 b 30 min 11.3
M c 15 s 12.1

100% ethanol
37 24 h ND
37 72 h 11.5

olive oil

37 24 h ND
37 72 h ND
37 1 week ND

121 b 30 min 0.35
M c 15 s 0.37

acetone 37 24 h 69.0
a Not detected (below detection limit). b Autoclaved. c Microwave used (700 W).

Next, the amount of DEHP released from the PVC consumer products used in daily
life was determined. Various commercially available products, including PVC packaging
materials, were purchased from local markets, and the release of DEHP from these products
was tested. A protective sheet is a versatile film commonly employed to safeguard surfaces,
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including kitchen tables and wooden furniture. Evidently, PVC products did not release
DEHP when exposed to aqueous solutions at 37 ◦C for 24 h (Table 3). The samples heated
by the microwave at 700 W for 15 s also did not significantly elute DEHP from aqueous
solutions, except under strongly alkaline conditions. A protective sheet heated in the
microwave released substantial amounts of DEHP under strongly alkaline conditions
(pH 13). Thus, microwave exposure could be useful for the rapid testing of whether
PVC products can release plasticizers under alkaline conditions. PVC products used as
a protective sheet and book cover roll released substantial amounts of DEHP into olive
oil, 90% ethanol, and acetone, even at 37 ◦C. Surprisingly, the samples heated for 15 s
in the microwave exhibited increased DEHP release (Table 3). Essentially, the PVC films
purchased from the local market released more plasticizers than those prepared in our
laboratory. This difference could be attributed to the use of high-purity raw materials and
the production of a limited quantity of film in the laboratory. It is crucial to acknowledge
that the amount of plasticizer eluted may vary depending on the purity of the resin and the
intricacies of the production process.

Table 3. Amounts of DEHP released from various consumer PVC products depending on various
stimulants and treatment conditions (unit: ppm).

Product

Stimulant
Condition Distilled

Water
pH 1 pH 13 Olive Oil

Ethanol
(90%) Acetone

protective sheet 37 ◦C, 24 h ND b ND ND 11261 1022 34,156 c

M a, 15 s ND ND 18.1 33,885 10,429 15,386 c

cover roll
37 ◦C, 24 h ND ND ND 9294 8648 26,878 c

M, 15 s ND ND ND 18,398 32,824 12,636 c

adhesive sheet
37 ◦C, 24 h ND ND ND ND ND 4.3

M, 15 s ND ND ND 4.8 9.7 10.3

hand warmer
37 ◦C, 24 h ND ND ND 1239 927 3028 c

M, 15 s ND ND ND 1528 1402 8735 c

a Microwave used (700 W). b Not detected (below detection limit). c Products were partially melted.

Given that phthalate plasticizers bind to estrogen receptors and mimic estrogen action,
the presence of this type of endocrine disruptor can be confirmed in estrogen-dependent
and estrogen-independent cancer cell lines [9,26]. Note that MCF-7 cells are estrogen-
dependent, whereas MDA-MB-231 cells are estrogen-independent [26]. In brief, the PVC
products were immersed in 90% ethanol for 24 h, and an eluted plasticizer was used to
test the viability of the MCF-7 and MDA-MB-231 cells. Evidently, treatment with standard
DEHP or plasticizer eluted from book cover rolls did not affect the viability of estrogen-
independent MDA-MB-231 cells. However, standard DEHP and the eluted plasticizer
increased the proliferation of estrogen-dependent MCF-7 cells in a dose-dependent manner
(Figure 2). The number of MCF-7 cells treated with the eluted DEHP was increased by
1.3 and 1.9 times for concentrations of 1 nM and 10 nM, respectively, compared to the
control group.

Plasticizers are the most popular plastic additives for enhancing the flexibility and
processability of materials; in particular, approximately 90% of them are used in PVC appli-
cations [27]. Despite being integral to PVC production globally, phthalate plasticizers face
legal restrictions in toys and food packaging in numerous countries owing to heightened
environmental awareness and growing social pressure. Thus, alternative plasticizers that
meet environmental criteria without compromising the end properties of the products
must be developed [28]. This study revealed a notable discrepancy in the amount of plas-
ticizer eluted from consumer PVC products sourced from local markets compared with
PVC films fabricated in the laboratory. This variance underscores the potential impact of
resin purity and production process on plasticizer release. The methodological approach
employed herein enabled the swift and thorough exploration of DEHP migration under
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diverse conditions, thus offering insights into the complexities of plasticizer release from
PVC products.
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Figure 2. Effects of DEHP eluted from book cover rolls immersed in 90% ethanol on the viability
of MCF-7 and MDA-MB-231 cells cultured for 48 h. Standard DEHP solutions were also used for
comparison, and cells cultured in media only served as a control. The number of cells were counted
after 48 h of culture and the cell viability was determined by comparing it to the number of control
cells (mean ± standard deviation, n = 4, * p < 0.05 versus control).

4. Conclusions

In this study, the migration of phthalates, specifically DEHP, from PVC products was
found to depend on various environmental conditions. A comprehensive evaluation of
the laboratory-produced PVC films and commercially available PVC products revealed
distinct patterns of DEHP release, thus emphasizing the role of exposure time, temperature,
and solvent type in the migration process. Importantly, the potential health risks associated
with phthalate release, particularly in estrogen-dependent cell lines, were highlighted. The
methodology reported herein provides a rapid and effective means of assessing DEHP
migration under diverse conditions, thus offering insights into plasticizer release from
consumer PVC products compared with laboratory-produced films. These findings con-
tribute to the evaluation of the safety of PVC and its plasticizers, essentially highlighting
the variability in plasticizer release depending on the source and production process of
PVC products. As regulatory scrutiny of phthalates intensifies, this study may provide
valuable information to consumers regarding the potential risks associated with the use of
PVC in everyday products.
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