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Abstract: Cardiovascular disease is a leading global cause of mortality. The potential cardiotoxic
effects of chemicals from different classes, such as environmental contaminants, pesticides, and drugs
can significantly contribute to effects on health. The same chemical can induce cardiotoxicity in
different ways, following various Adverse Outcome Pathways (AOPs). In addition, the potential
synergistic effects between chemicals further complicate the issue. In silico methods have become
essential for tackling the problem from different perspectives, reducing the need for traditional
in vivo testing, and saving valuable resources in terms of time and money. Artificial intelligence
(AI) and machine learning (ML) are among today’s advanced approaches for evaluating chemical
hazards. They can serve, for instance, as a first-tier component of Integrated Approaches to Testing
and Assessment (IATA). This study employed ML and AI to assess interactions between chemicals
and specific biological targets within the AOP networks for cardiotoxicity, starting with molecular
initiating events (MIEs) and progressing through key events (KEs). We explored methods to encode
chemical information in a suitable way for ML and AI. We started with commonly used approaches
in Quantitative Structure–Activity Relationship (QSAR) methods, such as molecular descriptors
and different types of fingerprint. We then increased the complexity of encoders, incorporating
graph-based methods, auto-encoders, and character embeddings employed in neural language
processing. We also developed a multimodal neural network architecture, capable of considering
the complementary nature of different chemical representations simultaneously. The potential of
this approach, compared to more conventional architectures designed to handle a single encoder,
becomes apparent when the amount of data increases.

Keywords: in silico models; artificial intelligence; machine learning; new-approach methodolo-
gies (NAMs); toxicological endpoints; quantitative structure–activity relationship (QSAR); adverse
outcome pathway (AOP)

1. Introduction

Cardiovascular disease is a multifactorial condition involving a combination of genetic,
environmental, and lifestyle factors. There are many different types of cardiovascular
disease, each with its own set of risk factors and mechanisms for development. Accurately
predicting the onset or progression of cardiovascular disease in humans can therefore be
very difficult. In silico methods are essential for addressing these issues and reducing the
need for traditional in vivo testing.

The battery of computational tools is fundamental to a thorough understanding
of the impact of chemical compounds on cardiac tissues, considering both the hazard
and the exposure to compounds, and serves as a first-tier component for more complex
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evaluation architectures such as new-approach methodologies (NAMs) or next-generation
risk assessment (NGRA) [1,2]. The results from different in silico methods can always
be used, coupled with in vitro and omics results, in weight-of-evidence strategies. This
means that possible toxic chemicals can be given priority for further testing, with the aim
of examining only some specific compounds in vivo [3]. It would be ideal to extend current
modeling capabilities, since most work published nowadays dealing with the potential
cardiotoxicity hazard of chemicals focuses primarily on drugs and their potential impact
on hERG channel inhibition [4–7]. However, hERG channel inhibition is only one of the
possible interactions between chemicals and biological targets that could lead to cardiotoxic
effects. Additionally, drugs make up just one class of compounds capable of inducing these
effects [8], while many others may significantly contribute to these effects, considering that
cardiovascular diseases are among the leading causes of mortality worldwide [8]. This is
particularly noteworthy, especially considering that the evaluation of potential cardiotoxic
effects of chemicals, such as industrializers, pesticides, biocides, and mixtures thereof, is
still limited, poorly addressed, and poorly regulated.

We focused on modeling the potential hazards of compounds following the concept of
Quantitative Structure–Activity Relationships (QSARs) [9,10]. QSAR is a computational
method employed to predict a potential compound’s biological activity by considering
its chemical structure and other relevant properties, and models based on this approach
analyze how the properties of a molecule are related to its activity. Recent advances
in artificial intelligence (AI) and machine learning (ML) have revolutionized predictive
toxicology, holding promise for enhancing the safety assessment of different classes of
chemicals. These methods are particularly well suited for our purposes. AI and ML can
rapidly analyze large datasets, identify patterns, and learn from experience, thus improving
the accuracy of predictions. Then, we aim to demonstrate the potential of AI-based QSAR
models to predict cardiotoxicity using well-defined endpoints as biological targets defined
by the theory of the Adverse Outcome Pathway (AOP). This allows the development of
conceptual frameworks used in toxicology and risk assessment to describe and understand
the sequence of events linking a molecular initiating event (MIE) to an adverse outcome
such as increased mortality from heart failure.

In accordance with the events outlined in the linear AOP framework for cardiotoxicity
(https://aopwiki.org/aops/480, accessed on 18 November 2023), we collected data from
biological assays providing information on the potential toxic interactions between chemi-
cals and specific biological targets. The data came from various sources, and depending
on the amount and quality of the compounds tested, we employed different ML and AI
architectures. One fundamental topic in these approaches is extracting and using the chem-
ical information hidden in a molecule identifier, such as chemical names or the Chemical
Abstracts Service (CAS) numbers that can be found in datasets, in a way suitable for ML
and AI.

There are various methods to present chemical information, and we employed the
most widely used ones to provide the best description for each biological target. This is
a crucial step towards achieving high modeling performance since different sources of
information can describe specific toxicity mechanisms more effectively than others.

We explored different methods to encode chemical information in a suitable format for
ML and AI. Starting with commonly used approaches in QSAR strategies, such as molecular
descriptors and various types of fingerprints, we gradually increased the complexity of
encoders. This involved incorporating methods based on graphs, auto-encoders, and
character embeddings commonly used in neural language processing. This facilitates a full
comparison of methods for capturing chemical information.

In addition, our efforts were not limited to identifying the optimal encoder for each
target; we tailored the AI architectures to handle multiple chemical encoders simultaneously,
employing a multimodal approach. This enables our model to learn from diverse chemical
representations and gain insights from various perspectives on the same compounds,
making for greater predictive efficiency.

https://aopwiki.org/aops/480
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The key objective of a multimodal neural network is to leverage the complementary
nature of the different modalities to improve overall performance and gain a fuller un-
derstanding of the data. By combining information from multiple sources, the network
can capture richer patterns, correlations, and context that may not be evident when ana-
lyzing each modality in isolation [11]. The potential of this approach compared to more
conventional architectures designed to handle a single encoder becomes apparent when
the amount of data increases.

Cardiotoxicity assessment has often been investigated by modeling the mechanisms
most often targeted by drugs molecules (for instance, hERG inhibition) [5,6,12], but other
mechanisms like mitochondrial dysfunction appeared to be relevant especially for envi-
ronmental contaminants [8]. At the same time, mitochondrial dysfunction is a mechanism
of toxicity common to other Adverse Outcome Pathways targeting other endpoints (e.g.,
liver toxicity); therefore, several works have been published in the literature that partially
address the same topic [13,14]. Various methods, such as multitask or ensemble methods,
are explored to cover endpoints like mitochondrial dysfunction toxicity. In our cases, we
have developed different AI and ML approaches. These approaches utilize and compare
different chemical representations to evaluate which one is best suited for each specific case.
This involves considering a broader spectrum of molecular initiating events (MIEs) and
key events (KEs) with the ultimate goal of achieving a more comprehensive understanding
of the biological toxicity interaction that leads to cardiotoxic effects. This understanding is
a fundamental first step in building a battery of computational tools aimed at evaluating
the impact of chemical compounds on cardiac tissues.

2. Materials and Methods
2.1. Datasets

We collected data from the ICE database (https://ice.ntp.niehs.nih.gov/, accessed on
15 October 2023), which provides high-quality curated data to support the development
and evaluation of new, revised, and alternative methods. ICE contains datasets curated
by NICEATM, ICCVAM, and their partners to meet specific quality standards and are
useful in evaluating or developing new approaches for assessing chemical safety. We
selected the datasets related to cardiotoxicity, specifically on the mode of action called
Cardiomyocyte/Myocardial Injury. The data obtained in this manner can be presented
as a matrix, each row corresponding to a different chemical, and the columns showing
the biological assays in which the compounds are tested. The chemicals retrieved are
univocally defined by the CAS number, a unique numerical identifier assigned to each
chemical described in the scientific literature. We then retrieved the Simplified Molecular
Input Line Entry System (SMILES) from CAS using in-house software (https://github.
com/EdoardoVigano/Chemical-Resolver, accessed on 15 October 2023). We represent
the compounds using SMILES because it is a widely used and standardized notation
system for representing chemical structures and molecules, using text strings. Atoms and
bonds are represented by alphanumeric characters, with specific rules for various chemical
features, such as double bonds, rings, and branches. This representation of chemicals is
compact and human-readable, making it useful for computer-based chemical informatics
and chemical databases.

We curated the data on the retrieved SMILES. This involved standard SMILES can-
onization, followed by the removal of structures displaying inconsistencies that might
indicate chemical errors and any duplicate structures. We also excluded stereochemistry
and removed salts, concentrating solely on the largest fragments. This approach to SMILES
curation is very commonly used [15].

The total number of curated chemical SMILES was then grouped based on the types of
assay used to examine the compounds. This results in a series of specific datasets, one for
each of our endpoints, namely the MIE and KE highlighted by the AOP frameworks [16].
An MIE is the first interaction of a stressor with a biological system at the molecular
level. This interaction can be highly specific, such as chemical binding to a particular

https://ice.ntp.niehs.nih.gov/
https://github.com/EdoardoVigano/Chemical-Resolver
https://github.com/EdoardoVigano/Chemical-Resolver
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protein complex, DNA, or receptor, or non-specific, such as when reactive chemicals cause
modifications of proteins. The KEs are biological or chemical events or changes in an
organism that are vital in the pathway leading to an adverse outcome [16,17].

In our case, following the linear AOP for cardiotoxicity as shown in Figure 1, we
considered the inhibition of mitochondrial complexes (MIE1) as MIE and the increase
in oxidative stress (KE1) and the increase in mitochondrial dysfunction (KE2) as KEs.
We selected specific biological assays that have a critical role in identifying potentially
harmful compounds able to interact as stressors in these biological targets. Table 1
lists the assays used. All information about assays is available in the ICE database
(https://ice.ntp.niehs.nih.gov/, accessed on 15 October 2023).
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Figure 1. Representation of the linear AOP framework for cardiotoxicity. The colored blocks in the
image are the biological targets considered in our work, and the gray ones are other potential events
that could lead to heart failure.

Table 1. Assays to predict MIE and KEs for cardiotoxicity.

ASSAYS to Increase of
Oxidative Stress

ASSAYS to Increase in
Mitochondrial Dysfunction

ASSAYS to Inhibition of
Mitochondrial Complexes

APR HepG2 P-H2AX 24 h dn APR HepG2 MitoMass 24 h dn CCTE Simmons MITO basal resp rate OCR dn
APR HepG2 P-H2AX 24 h up APR HepG2 MitoMass 24 h up CCTE Simmons MITO basal resp rate OCR up
APR HepG2 P-H2AX 72 h dn APR HepG2 MitoMass 72 h dn CCTE Simmons MITO inhib resp rate OCR dn
APR HepG2 P-H2AX 72 h up APR HepG2 MitoMass 72 h up CCTE Simmons MITO inhib resp rate OCR up

APR HepG2 StressKinase 24 h dn APR HepG2 MitoMembPot 24 h dn CCTE Simmons MITO max resp rate OCR dn
APR HepG2 StressKinase 24 h up APR HepG2 MitoMembPot 24 h up CCTE Simmons MITO max resp rate OCR up
APR HepG2 StressKinase 72 h dn APR HepG2 MitoMembPot 72 h dn

APR HepG2 MitoMembPot 72 h up
ATG XTT Cytotoxicity up
TOX21 MMP ratio down

TOX21 MMP ratio up
TOX21 MMP rhodamine

The data are labeled as active or inactive for classification modeling purposes. We
define activity as follows: a chemical is considered active in a particular MIE or KE if it
shows a hit call label as active in at least one of the selected assays for that specific biological
target; otherwise, it is labeled as inactive. The individual assay label was available in the
files downloaded from the ICE platform. In particular, raw data provided by a vendor
or laboratory underwent processing, indexing, transformation, and normalization using
standardized methods. Subsequently, the concentration–response data are subjected to
modeling through three selected models (constant, Hill, and gain–loss). If any models fit
sufficiently, the chemical–assay pair is considered ‘active’ (hit call = active); otherwise, the
final hit call is ‘inactive’.

https://ice.ntp.niehs.nih.gov/
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Characteristics of the data collected and class proportions are shown in Table 2. The
datasets are unbalanced for all three endpoints, and the statistics on dataset composition are
reported. That information is important to consider applying a method for oversampling
the minority class and selecting the right metrics to assess the model’s performance.

Table 2. Summary of data for each endpoint with information, number of compounds, and percent-
ages of active and inactive compounds.

AOP Name Number of
Compounds Active Inactive Active% Inactive% Number of

Assays Used

MIE1 Inhibition Mitochondrial Complexes 232 184 48 79 21 6
KE1 Increase Oxidative Stress 636 191 445 30 70 7
KE2 Mitochondrial Dysfunctions 5004 1147 3857 23 77 12

2.2. Molecular Representation

To encode chemical information, we adopted various approaches, beginning with
the conventional methods typically employed in QSAR studies and gradually exploring
more conceptually advanced techniques. Our initial steps involved molecular descriptors
(MDs) [18], as well as different types of fingerprints like Morgan fingerprint and Molecular
ACCess System (MACCS). Continuing this progression, we further extended the method
by extracting chemical information through graphs and integrating NLP concepts, such
as character embedding. Finally, we assessed the latent representations generated by the
SeqToSeq encoder–decoder architecture as CDDD [19]. The types of encoders tested are
summarized in Figure 2.
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Not all these approaches to encode chemical information are suitable for each ML
model or AI architecture since, in some cases, particular encoders require a specific AI archi-
tecture (all architecture used and specific encoders are reported in Supporting Information,
Section S2).

MMPN needs a specific architecture to manage the graph as input and must be capable
of performing the message-passing process to update the vectors that describe the nodes’
representations, considering the neighborhood of the atom. This architecture is specific to
managing graphs and cannot be used for other encoders, or vice versa.

NLP architecture can process SMILES directly as text using specific layers for text
vectorization and character embedding, which describe each character in SMILES as a
numerical vector. Additionally, the layers used to handle this embedding typically involve
managing sequences, such as Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM). As a result, NLP architectures are designed specifically to handle SMILES as a
sequence of characters, and no other encoder can be used as input in natural language
processing (NLP).

Regarding MD and fingerprints, the models use the same architecture, the only differ-
ence depending on the input dimensions, which are specific for each encoder.

Continuous and Data-Driven Descriptors (CDDDs) comprise latent representations
generated by a complex encoder–decoder architecture trained on a massive number of
SMILES, and this architecture can be separated from the one used for predictions. This
approach allows us to treat CDDD as a descriptor calculator, providing a numerical vector
for each SMILES, which can be used as input for deep neural networks, like what we have
carried out with fingerprints and MD.

All the encoders and models, whether part of baseline ML, advanced deep neural
networks, or other AI methods, were calculated and implemented using Python packages.
The versions of the libraries and packages used are documented in Section 2.8.

2.2.1. Molecular Descriptors

MDs enable us to describe each compound using thousands of numerical indices
representing different chemical properties, such as polarizability, steric hindrance, molecule
shape, etc. In other words, MDs are quantitative representations of chemicals, capturing
various aspects of their chemical structure, properties, or behavior. We calculated the MDs
using Mordred packages [20], obtaining 1613 different 1-2D descriptors.

2.2.2. Fingerprints

Morgan fingerprints and MACCS binary fingerprints are used to encode chemical
information. They are calculated using RDKit (version 2023.03.1) Python packages. Morgan
fingerprints are a method for translating the structural information of a molecule into a
fixed-length binary or bit-string presentation. This type of fingerprint does not rely on a
predefined fragment library. Instead, they are generated by enumerating all possible frag-
ments within a molecule, up to a certain size limit. The fragments are then converted into
numerical values using a hash function. The MACCS fingerprint instead is a binary method
that encodes the presence or absence of predefined structural fragments or substructures
in a molecule. This fingerprint is designed to capture key chemical features of molecules,
making it valuable for various tasks such as similarity searching, virtual screening, and
structure–activity relationship (SAR) analysis.

2.2.3. Molecular Graphs

When dealing with graphic representation, each compound is described as a graph
where each atom is a node with a list of features, such as atomic number, valence number,
number of hydrogen atoms bonded, and hybridization. Similarly, the chemical bonds are
encoded as bonds in a graph with some features such as the bond type and a Boolean value
indicating whether it is conjugated or not.
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2.2.4. Character/Word Embedding

Character/word embedding is applied directly to the SMILES string. Tokenization
is used for this and involves breaking text into smaller units, called tokens. Tokenization
is a fundamental step in NLP to analyze and process text. When splitting SMILES into
characters, we found that 95% contained fewer than 111 characters. That is important when
selecting the output sequence in the process of vectorization. For the text vectorization, we
have to select the length of the output sequence and the vocabulary that contains all the
different characters in the dataset plus a token to define the start and end of the sequence.
The character vocabulary defined this way contained 28 different characters.

The results of these vectorization processes are illustrated in Figure 3.
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components and an output length of 111, the 95th percentile of SMILES length.

The tokenized SMILES can be used as input in an embedding layer where each token
is represented by a numerical vector in the network. The model learns this embedding
during training and is the best way to describe the characters for our compound prediction
objectives.

2.2.5. CDDD: Latent Descriptors

Latent representation is used to describe the molecule in a very particular way that
is based on the concept of encoder–decoder architecture [19], which is a fundamental
component in AI and ML. This architecture is actually vital in tasks like natural language
processing and image analysis. An encoder is responsible for transforming input data, such
as text, SMILES strings, or images, into a compact and meaningful form called a latent
representation. This captures essential information from the input data while reducing
its size. This enables the auto-encoder to present complex chemical structures in a more
manageable format.

This latent representation can be used for various tasks like similarity analysis, cluster-
ing, and—as in our case—even for property prediction describing compounds for QSAR
modeling. We used an architecture already trained on millions of chemicals [19]. CDDD is
an auto-encoder often used for dimensionality reduction, which is particularly useful in
chemistry to manage high-dimensional data.

2.3. Applicability Domain

The applicability domain (AD) of a QSAR model describes the model’s constraints
within its structural domain and response space. This validation principle limits the model’s
applicability to accurately predict test samples that share structural similarities with the
training samples used to construct the model.
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Over the years, various approaches have been proposed to define the AD of QSAR
models. The differences among these approaches are mainly in the algorithms employed
to characterize the AD within the descriptor space where the model can make reliable
predictions [21,22].

To calculate the AD, we used the Applicability Domain Toolbox (for MATLAB) (Mi-
lano Chemometrics and QSAR Research Group) [23]. This tool implements a set of AD
approaches based on several strategies, such as bounding box on PCs, convex hull, leverage,
distance to centroid, k-nearest neighbors (kNN) approach with fixed k, k-nearest neighbors
(kNN) approach with variable k, and probability-density-function-based methods. We
defined the AD using methods such as range-based methods, geometric methods, and
distance-based methods, specifically ‘Bounding box’, ‘Bounding box PCA’, ‘Leverage’,
‘Distance from centroid’, and ‘Distance kNN—variable k’ [24,25]. These methods are used
to reach a consensus; therefore, if a chemical in the test set is defined as out of domain by
all these algorithms, it is considered potentially to be discarded.

This evaluation was conducted for each encoder considering these approaches as a
further consensus, so we discarded from our test set only the compounds that turned out
to be out of the domain in any type of encoder. In other words, only compounds classified
as out of domain in each AD method and for each chemical encoder were discarded. This
decision reflects our aim to maintain a certain uniformity in the dataset without having
different sets for each encoder, making for a more straightforward comparison. No data
were out of domain, so no test data were discarded.

2.4. Model Architecture and Data Augmentation

We tested a wide range of different ML models and AI architectures to predict the
potential toxic effects of chemicals on diverse events highlighted in AOP frameworks for
cardiotoxicity. Selecting the model types and AI architecture depends on different factors
such as the amount of data obtained and the type of encoder selected.

We started with conceptually simpler and more common methods, gradually increas-
ing the complexity of ML models, ending with a multimodal architecture that can consider
different types of encoders simultaneously. We could only use these methods on KE2 be-
cause it is the only endpoint with enough data to train this type of architecture. A summary
of the tests to establish the best model-encoder for each endpoint is reported in Supporting
Materials Table S3.

For all endpoints, including MIE1, KE1, and KE2, we selected a baseline battery of ML
models, including logistic regression (LR), decision tree (DT), random forest (RF), balanced
random forest (BRF), extreme gradient boosting (XGB), support vector machine (SVM),
k-nearest neighbors (KNN), and Gaussian Naive Bayes (Gaussian NB). For the analysis
of KE2, we gathered enough data to assess various deep learning approaches, including
deep neural networks (DNNs) and message-passing neural networks (MPNNs), as well as
architectures commonly used in NLP, that contain layers such as GRU and LSTM. We also
explored multimodal architecture.

Details of the architecture of each model are provided in Section S3 of the Supplemen-
tary Materials.

For the NLP architecture, we employed a character embedding model with an ar-
chitecture able to work directly on SMILES strings, encoding every single character as a
numerical vector. This way, the networks learn the SMILES grammar and correlations
between strings or sequences of characters and endpoints. With this approach, we can use
data augmentation methods, writing the same SMILES in different way without changing
the chemicals’ meaning, increasing the numbers in the training set by a factor of almost 10
(Figure 4).
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Figure 4. Example of how to achieve data augmentation on SMILES. The numbers represent the
atomic enumeration based on the SMILES string, meaning the atom enumerated as ‘n’ is the ‘n’-th
character in the string. The colors are used as an example to identify the different SMILES and the
position of their atoms/characters.

Data augmentation is an essential technique to increase the diversity and size of train-
ing data in ML, particularly when the data are limited. We used the SMILES enumeration
approach [26]. Here, the fact that multiple SMILES represent the same molecule is explored
as a technique to increase the data of a molecular QSAR dataset modeled by convolution
layers and an LSTM cell-based neural network.

The architecture used to manage the graph encoder using message-passing neural
networks (MPNNs) is proposed in the literature [27]. These networks are particularly
useful for tasks involving data with relational or graph-like structures, such as molecules,
social networks, recommendation systems, and others. MPNNs operate on these molecular
graphs through a series of message-passing iterations. During each iteration, nodes (atoms)
exchange messages with their neighboring nodes (atoms), incorporating information about
their local chemical environment that could be relevant to predict the potential activity of
chemicals, finding a correlation between the local environment and the specific toxicity
mechanism of action.

The last architecture test was designed to consider different encoders and belong to
the class of multimodal methods. An example is reported in Figure 5.
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Figure 5. Architecture of a multimodal model able to learn from different chemical encoders.

The architecture of a multimodal neural network typically consists of multiple branches,
each dedicated to processing data from a specific modality. These branches can consist
of various neural network layers, such as convolutional layers for images, recurrent or
transformer layers for text, and fully connected layers for numerical data. The features
learned by each branch are then fused or combined in a merging layer, where the model
integrates the information from different modalities. We developed a multimodal architec-
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ture capable of simultaneously considering all the descriptors tested individually, except
for the graph. This architecture includes five branches, each consisting of a deep neural
network designed to handle one of the different descriptor types we used, such as MACCS,
extended-connectivity fingerprints, MDs, SMILES as text, and CDDD. Regarding the archi-
tecture of each branch, the same principles apply to the individual models. For instance, the
branch responsible for processing the SMILES string is based on an NLP architecture with
text vectorization and embedding layers, followed by LSTM and GRU layers. The branches
designed to handle numerical input, such as fingerprint or MD descriptors, consist of a
series of dense layers with dropout. Joint training of all modules, with concatenation as a
merging mechanism, was used to facilitate the convergence of the network.

2.5. Data Pre-Processing and Validation

Model validation is an essential step for producing high-quality models that can make
accurate predictions that generalize well. A precise pipeline must be followed for model
validation.

2.5.1. Data Split

It is common practice to split the original dataset into training and testing sets. When
dealing with datasets with a small number of compounds, such as MIE1 and KE1, we
conducted a 90–10% training/set split, while for KE2, we tested different splits, progres-
sively increasing the size of the training set, starting from 70–30% and ending with 90–10%
(Table 3). This choice was made with the aim of evaluating the models’ behavior as the
training dataset became bigger. Ideally, a good model should consistently perform better
when the training set increases. For KE2, we could do these tests thanks to the amount of
data available. In each split, we maintained the ratio between the toxic and non-toxic labels
in the original dataset. The results for each split are reported in Supporting Information
Tables S1 and S2.

Table 3. Summary of data and splits for each endpoint, with information about the data and number
of training and test compounds.

AOP Name Number of Compounds Training Data Test Data SPLIT %

MIE1 Inhibition Mitochondrial Complexes 232 209 23 90–10
KE1 Increase Oxidative Stress 636 572 64 90–10
KE2 Mitochondrial Dysfunctions 5004 4504 500 90–10
KE2 Mitochondrial Dysfunctions 5004 4003 1001 80–20
KE2 Mitochondrial Dysfunctions 5004 3503 1501 70–30

To train DNN efficiently, some of the training data (10%) are used in the validation set;
this split is required to fine-tune the model’s parameters properly.

2.5.2. Data for Modeling for Each Encoder

The second step in the validation pipeline, after the data split, involves data pre-
processing. This varies, and the method for preparing the data can differ significantly
depending on the type of encoder. For instance, MD requires several distinct phases, includ-
ing managing possible errors in MD calculations and scaling the resulting values. Scaling
data in QSAR modeling is essential to ensure consistent and accurate model performance
by addressing issues related to variable units and algorithm sensitivity.

Other encoders are less demanding in the preparation phase. For instance, NLP
models based on word embeddings can take canonical SMILES as input directly. MD data
were standardized using standard scaling, which involves centering the variables around
the mean and scaling to unit variance. Descriptors with a variance less than 0.1 or closely
correlated descriptors (correlation exceeding 0.9) were discarded for CDDD descriptors
and MD. For graphs, fingerprints, and word embeddings, no data curation was conducted
in preparation for modeling.
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The data preparation for deep neural networks and AI architectures differs slightly
from traditional data processing. Besides handling data values, tasks such as checking for
Not a Number [NaN] values and data scaling, one must also consider the computational
cost and optimize the training time to create the best conditions for model convergence and
stability during training. One way to achieve this is by normalizing activations within each
mini-batch, which can reduce the likelihood of overfitting.

In the case of our AI architecture, the dataset was divided into mini-batches of 32,
and we employed TensorFlow for data prefetching. This technique is used to enhance the
training performance of deep learning models by overlapping the data loading and model
training phases. The goal of data prefetching is to minimize the idle time of the GPU or
CPU during training and mitigate the impact of data loading latencies on overall training
speed. By keeping the computational units, such as GPUs or CPUs, fully utilized, data
prefetching achieves faster training times and more efficient model convergence.

2.5.3. Unbalanced Datasets

One of the most important limitations we encountered to reaching good performance
for modeling is the presence of unbalanced classes. This is a very common problem with
real data provided by biological assays, and data distribution makes it challenging for a
model to learn and predict the minority class effectively. In addition, models operating on
imbalanced data can seem very accurate when measured by traditional accuracy metrics,
yet they may perform poorly in practice.

To avoid these issues, we adopted different strategies commonly used in these situa-
tions. With baseline models belonging to ML methods, we employed a Synthetic Minority
Over-sampling Technique (SMOTE) [28–30] on the training set. SMOTE works by generat-
ing synthetic samples of the minority class to increase its representation in the dataset. This
is performed by selecting a minority class sample and then finding its nearest neighbors. A
new synthetic sample is then created by randomly selecting a point between the minority
class sample and one of its nearest neighbors. This process is repeated until the desired
number of synthetic samples has been generated. This approach has different variants
regarding the way to generate synthetic data, and we tested different ones such as K-means-
SMOTE, SVM-SMOTE, and Borderline-SMOTE 1 and 2 [29,30]. The performance was best
with SMOTE for MIE1 and KE2 and SMOTE-Borderline 1 for KE1.

Additionally, we evaluated whether the synthetic data generated by the methods
selected for the final model maintains an acceptable distribution compared to the original
dataset. The results are reported in Section S5 of the Supporting Information. If the
distribution difference between the augmented data and the original training dataset is
substantial, the augmented data may not contribute effectively to model training. However,
for each of our datasets, the difference between the original data and the dataset after the
SMOTE approach remains acceptable.

Regarding the architecture of deep learning, the methods to manage unbalanced
datasets are different. During the training phase of DNN, the values of parameters are
randomly selected by uniform distribution, and the models by backpropagation adjust
these values, but initial guesses are not always the best. One can set the output layer’s bias
to reflect the unbalanced distribution of data, and this can help with initial convergence.

2.5.4. Internal and External Validation

After pre-processing and oversampling, the data can be used to train and validate
models with internal and external validation. For ML models, the internal validation
involved 10 iterations of k-fold cross-validation, and during these iterations, we evaluated
the internal performance of different ML methods and encoders to predict our endpoints.
The results are reported in detail in Section S1 of the Supporting Information. Only the best
combination encoder-model was further considered for the parameter tuning phase.

Regarding deep learning architecture such as multimodal models, MPNN, DNN,
and NLP, the methods for internal evaluation are conceptually similar but different. The
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models are trained on the training dataset for multiple epochs. Each epoch comprises one
forward pass and one backward pass for all the samples. During each epoch, input data
are processed through the model to make predictions, and model parameters are updated
based on the prediction errors evaluated on the validation set. This iterative process enables
you to track the history of your selected optimization metric as it converges to a minimum
over epochs.

For the external validation, we incorporated other metrics in addition to the F1-score
and balance accuracy to show a fuller assessment of the model’s predictive abilities, so
we could evaluate more deeply the model’s ability to generalize the knowledge gained
from the training set. The metrics selected to evaluate the model’s performance on external
tests are balance accuracy, precision, sensitivity, specificity, Matthews correlation coefficient
(MCC), and F1-score.

Precision is the ratio of true positive predictions to the total number of positive
predictions made by a model. Specificity measures the ability of a model to correctly
identify negative instances out of all actual negatives. Sensitivity, also known as recall,
measures the ability of a model to correctly identify positive instances out of all actual
positives. The Matthews correlation coefficient is a metric that takes into account true
positives, true negatives, false positives, and false negatives to provide a balanced measure
of classification performance. F1-Score is the harmonic mean of precision and sensitivity
(recall), and it provides a balance between precision and recall and is especially useful
when there is an uneven class distribution.

A detailed explanation of the indices used to evaluate the models is provided in the
Supporting Materials Section S3.

2.6. Tuning Parameters

After initial screening to select the best combination encoder-model, we ran another
five iterations of k-fold cross-validation to tune the hyperparameters, using grid-search.
Grid search can systematically explore different hyperparameter combinations, allowing
the selection of optimal settings that enhance the model’s predictive performance. The
results for each baseline ML model are reported in Supporting Information Section S1. F1-
score is the metric employed to evaluate the models during hyperparameter optimization
because it is the most meaningful since it can be applied for unbalanced datasets.

For DNN, we ran a grid search to explore the numbers of layers and nodes to use
in the fully connected part of the architecture, but always considering the computational
cost. Many hardware platforms, including CPUs and GPUs, are optimized for operations
involving powers of 2. Therefore, selecting a number of nodes in a layer that has a power
of 2 enhances the efficiency of architectures in terms of memory and computation. This
optimization results in faster training and inference processes. During the training phases
for DNN, to reduce the computational cost and optimize the hyperparameters, we set the
checkpoint to monitor the convergence of the network. If there was not any improvement
in validation loss for n-epochs, the learning rate parameter was decreased by a factor of
10, but if there was still no improvement, the networks ended the training phase to avoid
overfitting.

2.7. Explainability Methods

In this work, we focused our efforts on achieving high model performance, sacrificing,
in part, the model interpretation, at least for the more advanced approach. However,
we examined the models obtained to provide insights about potentially relevant features
associated with the toxic outcome. This was performed focusing on the models developed
for the smaller datasets, namely MIE1 and KE1, where the best models obtained were
based on ML methods, and the encoder was molecular descriptors and physico-chemical
properties. Depending on the type of models and encoders, different approaches can
also be used to perform Explainable Artificial Intelligence (XAI) analysis, such as SHAP
or LIME [31,32]. SHAP facilitates global model interpretability by extending its analysis
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beyond individual predictions, providing a comprehensive view of feature importance
through the consideration of average contributions across all predictions. In a few words,
the Shapley value is the measure of the average marginal contribution of a feature.

Additionally, the permutation importance method was employed. Randomly re-
ordering a single descriptor in the dataset should cause less accurate predictions, and the
model performance will suffer especially when a descriptor that the model relied on heavily
for predictions is shuffled.

2.8. Software

All models and architecture implementations were performed with Python packages.
Python 3.9.16, RDKit (version 2023.03.1), scikit-learn 1.2.2, SciPy 1.8.1, imbalanced-learn
0.10.1, pandas 1.5.3, matplotlib 3.7.1, and deepchem 2.7.1 xgboost 1.7.5,libraries were used
for ML implementation, oversampling methods, data analysis and data exploration, and
data visualization. TensorFlow 2.12.0 and Keras 2.12.0 were used to create architecture for
deep learning models as multimodal and NLP methods. The packages used for XAI are
eli5 version 0.13.0 and SHAP version 0.44.0.

3. Results
3.1. Baseline Models

In the initial phase of the modeling process, we focused on establishing a baseline
model by testing the most commonly used ML methods. We specifically selected encoders
suitable for these approaches, such as MDs, Morgan fingerprints, MACCS, and CDDD
latent descriptors. We aimed to assess the best combination of model descriptors for
each endpoint by systematically evaluating all possible combinations of model types,
descriptors, and biological targets. The results for each model and descriptor are detailed
in the Supplementary Materials, Sections S1 and S2. Table 4 reports the best results after
a parameter grid search for hyper-parameters. The exploratory analysis, which involved
internal validation, was used to identify the most effective combination of models and
chemical encoders. Mordred molecular descriptors and latent descriptors from CDDD were
the preferred methods for encoding chemical information for MIE1, KE1, and KE2. The
model types that performed best are respectively k-nearest neighbors, logistic regression,
and extreme gradient boosting.

The performance is quite satisfactory, especially when considering the limited amount
of data available, particularly for KE1 and MIE1, where there are only a few hundred
samples. One must also bear in mind that the in vitro tests used for chemical evaluation
may give some false positives. False positives would have a significant impact on our
dataset because we incorporate multiple assays, and our labeling criteria define a compound
as ‘active’ if it gives positive results in just one assay.

The presence of a certain number of false positives might also be attributable to
the oversampling approach. While oversampling methods have proved fundamental in
improving the performance of the models, they do have the side effect of increasing the
rate of false positives.
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Table 4. Results for the best ML models.

External Test Set Training Set CV Grid
Optimization 5-Fold

Balance
Accuracy Precision Sensitivity Specificity MCC F1-Score Balance

Accuracy Model Selected Oversampling Encoders SPLIT%

Inhibition of
mitochondrial

complexes
0.721 0.889 0.842 0.600 0.415 0.865 0.833 k-nearest

neighbors SMOTE Mordred molecular
descriptors 90–10

Increase in
oxidative stress 0.720 0.542 0.684 0.756 0.415 0.605 0.748 Logistic

regression SVM-SMOTE Mordred molecular
descriptors 90–10

Increased
mitochondrial
dysfunction

0.742 0.605 0.600 0.883 0.485 0.602 0.921 Extreme gradient
boosting SMOTE Latent description

CDDD 90–10

Increased
mitochondrial
dysfunction

0.747 0.615 0.607 0.887 0.500 0.611 0.922 Extreme gradient
boosting SMOTE Latent description

CDDD 80–20

Increased
mitochondrial
dysfunction

0.758 0.626 0.628 0.889 0.516 0.627 0.922 Extreme gradient
boosting SMOTE Latent description

CDDD 70–30
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3.2. Baseline Models XAI

We explore the importance of descriptors for the assessment provided by ML models,
as they have advantages compared to more advanced AI approaches in being less complex
and, therefore, more transparent.

For KE1, the selected models are of the logistic regression type, which is a very
transparent method where the descriptor weights can be easily accessible. Access to
model weights allows us to create a hierarchy of importance for the descriptors, and we
can understand how these descriptors affect the assessment. Also, for KE1, the chosen
encoder was molecular descriptors that have chemical-physical meaning, which could
also be interpretable from a toxicological perspective. We found that for KE1, the ATS
(autocorrelation of a topological structure) descriptor has high weight in logistic regression
parameters. In these descriptors, the atoms of a molecule were represented by properties
such as atomic mass or partial charge. The distance between atoms was measured as the
number of bonds between the respective atoms (topological distance). Then, it could mean,
from a toxicological perspective, that the shape of molecules and charge distribution has a
fundamental role in chemicals’ ability to trigger the biological targets that affect the KE1
and that should be further explored.

Regarding the MIE1 model that is KNN, we chose to explore the descriptors’ impor-
tance using the permutation importance method; the results are reported in Table 5.

Table 5. Results of permutation importance method on KNN models for MIE1. The descriptors with
the highest values are reported.

Weight Feature

0.0194 ± 0.0178 MAXsOH
0.0164 ± 0.0030 MAXdssC
0.0139 ± 0.0082 GATS7d
0.0121 ± 0.0086 AATS5i
0.0115 ± 0.0045 AATS8se
0.0103 ± 0.0030 NssS

These listed descriptors are defined in this way:

• MAXsOH: max. number of OH with a single bond.
• MAXdssC: max. number of C with double and two single bonds (=C<).
• GATS7d: Geary coefficient of lag 7 weighted by valence electrons.
• AATS5i: averaged Moreau–Broto autocorrelation of lag 5 weighted by ionization

potential.
• AATS8se: averaged Moreau–Broto autocorrelation of lag 8 weighted by Sanderson‘EN.
• NssS: number of S with two single bonds.

This suggests that a specific feature in molecules, such as an alcohol group or double
bonds, and more generally, a small region with high electron density, holds significance in
the presence of the inhibition of mitochondrial complexes.

For KE2, the models and encoders selected for higher performance exhibit less trans-
parency compared to MIE and KE. Indeed, we chose XGB models trained on chemicals
described by CDDD descriptors. This implies that, even though we can explore how
descriptors can impact the assessment, the challenge lies in thoroughly understanding the
specific CDDD descriptors that have been identified as highly important, particularly in
terms of their implications for toxicology or chemical-physical meaning, as described in
Section 2.2. Despite this interpretative limitation of CDDD, we decided to use the SHAP
method to explore descriptor influence on decision making performed by the model. The
results are reported in Figure 6.
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Figure 6. Features contributing to push the model output from the base value (the average model
output over the training dataset we passed) to the model output. Features pushing the prediction
towards higher values are shown in red; those pushing the prediction towards lower values are in
blue. KE2 with CDDD as encoder.

The results suggest that there are important features related to semantic and grammar
rules in SMILES notation that, when decoded by CDDD descriptors, become relevant to
performing the chemical assessment. Further exploring these rules could be fundamental
to finding a bridge between chemical property and toxicological effects regarding KE2.

3.3. Deep Neural Networks and AI Architectures

In the second part of our modeling work, we progressively increase the complexity of
AI architecture to predict KE2 to outperform the optimized ML. We selected this biological
target because the amount of data available allows us to use more advanced deep learning
methods commonly used in other fields that require at least some thousands of training
data. We built DNN architectures with multiple layers and ran many tests, examining the
different types of activation functions, optimizers, learning rates, and numbers of layers
and nodes to find the optimal in terms of results and computational cost. The models’
results are reported in Table 6, and details of the models’ architectures are reported in the
Supporting Materials in Section S2.

We used the same architecture of DNN on different encoders for a similar evaluation
of the ML models. In this case, for DNN, the CDDD latent descriptors seemed the most
promising to capture the chemical information to predict the effects of chemical toxicity on
the KE2 endpoint.

The results from both NLP and multimodal approaches are promising. With multi-
modal methods, we have developed an architecture capable of managing all the encoders
we tested. Consequently, as the dataset grows bigger, and the training data becomes more
extensive, these methods tend to outperform even the best baseline ML models.
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Table 6. Results for the AI models are reported for split 90–10. Each row represents a distinct AI architecture. The first of the three sections relates to the evaluation
of the models on the external test set, the second assesses the model in training, and the third contains information on the encoder used.

Test Set Training Set

Balance Accuracy Precision Sensitivity Specificity MCC F1-Score Balance Accuracy Encoder

DNN Circular Fingerprint 0.746 0.527 0.672 0.819 0.454 0.591 0.870 Circular Fingerprint

DNN MACCS 0.700 0.446 0.638 0.762 0.358 0.525 0.737 MACCS fingerprint

DNN CDDD 0.808 0.539 0.828 0.788 0.542 0.653 0.836 Latent representation CDDD

DNN Molecular Descriptors 0.774 0.471 0.828 0.720 0.470 0.600 0.811 Molecular Descriptors

MPNN 0.746 0.527 0.672 0.819 0.454 0.591 0.741 Graph

NLP chars Embedding 0.780 0.551 0.741 0.819 0.510 0.632 0.753 Text Vectorization and character
embedding

NLP chars Embedding Augmented 0.815 0.616 0.776 0.855 0.585 0.687 0.886 Text Vectorization and character
embedding

Multimodal 0.808 0.592 0.777 0.839 0.564 0.672 0.830 All (no graph)

Extreme Gradient Boosting (best ML with
oversampling methods) 0.742 0.605 0.600 0.883 0.485 0.602 0.921 Latent Description CDDD
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3.4. Baseline Models Compared with Deep Neural Networks and AI Architectures and Encoders

As mentioned earlier, we found the best encoder for MIE1 and KE1 involved Mordred
molecular descriptors. The behavior of these descriptors during cross-validation tests, as
shown in different types of ML baseline methods (Figure 7), demonstrates a certain level
of stability in performance across various folds. The performance achieved with these
descriptors is satisfactory and confirms the efficiency of a more classical approach in QSAR
modeling using MDs, especially when the data are in the order of hundreds, and there are
not enough data to permit a more advanced architecture that learns both the encoding and
predictive assessment simultaneously (like, for instance, in NLP using character embedding
as a layer).
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The results for KE2 differ. In this case, we had enough data to adopt advanced AI
architectures. Some of these, during training, can simultaneously learn to encode chemical
information and improve their predictive efficiency. NLP with data augmentation performs
best when the dataset is split into a 90–10% train–test ratio (BA 0.815). NLP with embedding
layers updates the vectors that represent characters in a text sequence during the training
phase. This means that the AI architecture is learning how to encode the information and
how to use this information to assess chemicals at the same time. Therefore, the amount
of data available becomes crucial, which explains why the data augmentation approach
significantly boosts NLP performance, by 4.5%. This improvement starts from baseline
accuracy (BA) of 0.780 for NLP and ends with a BA of 0.815 with data augmentation.

Another encoder we found very promising in almost all endpoints, giving good
stability in performance using different models, is the CDDD latent descriptor. This turned
out to be the best overall to build the baseline model for KE2.

In summary, the results of our assessments of different methods for encoding chemical
information are consistent with our expectations. Descriptors that rely on predefined
methods for encoding information, such as MD, fingerprint, and CDDD pre-trained, have
limitations in representing the full spectrum of information contained in a chemical struc-
ture. These methods are limited by their intrinsic properties, which prescribe a predefined
way of describing the compound, and models trained on such representations are limited
to only determining the correlation between the information encoded and the endpoint
labels, without taking an active part in the extraction of useful information from chemical
identifiers such as SMILES. This limitation is then reflected in the results of the models
themselves, which reach a plateau in performance despite the increase in training data, as
shown in Figure 8 regarding the best baseline ML models (XGB) to predict KE2. In other
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words, models detect correlations but are limited by the predefined representation of the
chemical information. This important limitation is overcome in cases of AI architecture
such as multimodal approaches, which use multiple parallel ways to encode chemical
information, and NLP models, where the embedding layer is trained as part of the network
(Figure 8). The evaluation described in Figure 8 used different splits, gradually increasing
the size of the training set, to gain insights into the models’ behavior. The expectation is
that the models will consistently improve their performance or, at the very least, maintain it
as the training set gets bigger. It is interesting that the behavior of the multimodal approach
aligns with this ideal scenario, its performance constantly increasing with the increase of
data in the training set. The NLP models with data augmentation reach the best overall
performance with the last split, in conditions with a maximum number of compounds in
the training set. Ultimately, the XGB, which belongs to the baseline models, maintains a
certain stability, but its performance does not increase as the training test gets bigger.
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training dataset.

In general, with no further consideration about the encoder type, deep learning
methods have proved competitive and often outperform baseline ML techniques, as is
evident in our case. The top-performing ML model is the XGB with oversampled training
data that achieved a BA of 0.742. However, it falls short of the performance achieved by the
multimodal architecture, which reached a BA of 0.808, and NLP models employing data
augmentation methods, which reached a BA of 0.815.

These methods owe their high performance to different reasons, as mentioned before.
NLP can learn how to extract information directly from the SMILES identifier without
needing any predefined way to encode chemical information, so they have access to a
higher concept of chemical representation without any pre-processing. The same is true
for one of the branches of multimodal models, since it is based on the NLP approach, but
can also integrate other sources of information encoded by other approaches such as MD,
various fingerprints, and CDDD that fill the possible lack of purely chemical information
derived from managing directly and only the SMILES as a string.
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4. Discussion and Conclusions

We developed ML and AI models to assess the potential cardiotoxic effects of chemicals
belonging to different classes such as pesticides, drugs, and industrializers. We followed
linear AOP developed specifically for the cardiotoxicity endpoint, and this enabled us
to select precise well-defined endpoints such as MIEs and KEs that describe possible
molecular interactions between compounds and biological targets. Following the AOP
theory is, from our point of view, one of the best approaches to selecting well-defined
endpoints for modeling, which is fundamental in the regulatory perspective, as mentioned
in OECD Environment Health and Safety Publications, Series on Testing and Assessment
No. 69, Paris 2007 [33].

With our models, we evaluated the potential hazard of chemicals for inhibition of
mitochondrial complexes, increase in oxidative stress [34,35], and increased mitochondrial
dysfunction [36], and this makes this battery of models a promising first-tier component
for new-approach methodologies (NAMs) or next-generation risk assessments (NGRAs)
for cardiotoxicity. The use of in silico approaches in NAM-assisted toxicology, such as AI
and ML models, to predict hazards is progressing fast, with the potential to transform
the toxicology field by providing greater understanding of the mechanisms underlying
chemical toxicity and permitting the development of safer and more sustainable products.

We carried out different experiments to build advanced and high-performance AI
networks, showing that these approaches outperform the baseline ML methods when the
conditions are favorable, as in cases where the data run into the thousands. It is important
to bear in mind that general ML models, due to their intrinsic properties, reach a plateau in
performance that cannot be improved further even when new data become available. This
is not true for AI approaches such as DNN or other architecture tested here. NLP methods
and those that could manage different types of chemical encoders offer great promise, as
we show here; the latter can learn from different chemical representations and further
improve their ability to predict potential toxicity. Nevertheless, multimodal models are
generally more complex due to the integration of multiple chemical encoders. Managing
and optimizing such complexity can be challenging, both in terms of model architecture
and training procedures. Integrating data from different encoders may pose challenges
in terms of preprocessing and data elaboration. Additionally, combining information
from multiple representations often requires more computational resources compared
to unimodal models, leading to higher training times and resource requirements. The
computational cost is a challenging problem not only during the training phases, as there
are many cloud platforms available for performing calculations, but also for inference,
reducing the models’ availability and practical use for the ultimate users. Other limitations
of these methodologies may be linked to the fact that increasing the complexity of models
often sacrifices model transparency. The challenge, therefore, lies in crafting models
where each layer of complexity serves a purpose, rendering them both powerful and
comprehensible. The ‘black box’ aspect associated with advanced AI methods leads the
final user to prefer more transparent approaches, potentially sacrificing predictive capacity
and performance. The need to increase the transparency of these approaches is often
recognized, and indeed, a stronger emphasis on the model’s explainability is considered
crucial. Various methods, including SHAP and LIME [31,32], appear to be promising
solutions as well as integrating a self-attention mechanism into the network [37] with the
goal of exploring the reasoning behind the models’ assessments and providing a chemical
or toxicological explanation.

In the future, we hope to improve the model’s ability in different aspects. For instance,
we want to develop multitask models to manage all the data provided for all possible
events that may lead to cardiotoxic effects. This would allow our models to learn the
potential toxicity of compounds in parallel on different MIEs and KEs. If possible, we
would also like to include another mode of action such as hERG channel inhibition, which
is a fundamental endpoint for evaluating cardiotoxicity, increasing the amount of data used
by the models to learn the cardiotoxic effects.
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