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Abstract: This study introduces a novel concept approach for a read-across assessment, considering
species sensitivity differences among phosphate chemicals within structurally similar compound
groups. Twenty-five organic chemicals, with a log Kow of 5 or less, were categorized into three
functional groups based on acetylcholinesterase (AChE) inhibition as a specific mode of action (MOA).
The short-term aquatic toxicity data (LC50) for fish, crustaceans, and insects were collected from
the U.S. EPA Ecotoxicology (ECOTOX) Knowledgebase. A geometric mean calculation method
was applied for multiple toxic endpoints. Performance metrics for the new read-across concept,
including correlation coefficient, bias, precision, and accuracy, were calculated. Overall, a slightly
higher overestimation (49.2%) than underestimation (48.4%) in toxicity predictions was observed
in two case studies. In Case study I, a strong positive correlation (r = 0.93) between the predicted
and known toxicity values of target chemicals was observed, while in Case study II, with limited
information on species and their ecotoxicity, showed a moderate correlation (r = 0.75). Overall, the
bias and precision for Case study I were 0.32 ± 0.01, while Case study II showed 0.65 ± 0.06; however,
the relative bias (%) increased from 37.65% (Case study I) to 91.94% (Case study II). Bland–Altman
plots highlight the mean differences of 1.33 (Case study I) and 1.24 (Case study II), respectively.
The new read-across concept, focusing on AChE inhibition and structural similarity, demonstrated
good reliability, applicability, and accuracy with minimal bias. Future studies are needed to evaluate
various types of chemical substances, diverse modes of action, functional groups, toxic endpoints,
and test species to ensure overall comprehensiveness and robustness in toxicity predictions.

Keywords: AChE inhibition; acute aquatic toxicity; octanol/water partition coefficient (Kow);
phosphate chemicals; read-across assessment; species sensitivity factor

1. Introduction

Over 84,000 chemicals are used in commerce around the globe, and new chemicals are
produced every single day. Many chemicals have contributed to the development of various
industries that improve our quality of life but, at the same time, increase the potential
risk to human health and the environment, requiring rigorous approaches to ensure their
safe use. The EU and U.S. introduced chemical regulations to assess toxicological effects
and risks for the safer use of chemicals [1,2]. Risk assessment is a process designed to
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characterize potential risks and hazards of chemicals to human health and the environment
upon exposure. The evaluation of chemical hazards is associated with information on
physicochemical properties, structural similarity, and toxicity [3].

To assess the impact of chemical exposures on human and environmental health,
animal testing data are generally necessary to gain insights into various biological sys-
tems [4]. In the context of the aquatic environment, toxicity data are used to derive the
predicted no-effect concentration (PNEC), representing the concentration below which
adverse effects are unlikely to occur during either long- or short-term exposure. However,
due to the increasing number of chemicals, reliance on animal testing for the identification
of chemical hazards and risks has become substantially limited. Ethical concerns, along
with factors such as high cost, time constraints, and manpower, further contribute to these
limitations [5]. Animal testing is also considered a poor predictor for humans [6]. Given
these challenges and circumstances, non-animal testing techniques have been proposed
in the field of environmental risk assessment and have been widely accepted all over
the globe.

The EU, recognizing the need to minimize animal testing, considers it a last resort
in chemical risk assessment and advocates for alternative methods. In recent decades,
many countries, including South Korea, European nations, and the U.S., have also aimed to
reduce their reliance on animal testing in chemical risk assessments. Read-across stands
out as one of the alternative methods used to estimate various toxic endpoints for hazard
assessment purposes. This approach predicts toxicological endpoints using the endpoint
data of another chemical, provided that they are classified within the same analog chemical
group. Chemicals are typically grouped based on structural similarity and other parameters
related to the endpoint. The EU, U.S., and OECD have jointly published several technical
guidance perspectives for the application of the read-across approach. In the context of
aquatic toxicity, the structural similarity, chemical functional groups (FGs), mode of toxic
actions (MOAs), and octanol–water partition coefficient (Kow) were considered [7–9].

In the traditional read-across approach, the aquatic toxicity value of a target chemical
(with no available data) is simply predicted using the toxicity value of a source chemical
within the same species when they belong to the same analog group. In a preliminary
study, we assessed the performance of the traditional read-across approach for aromatic
amines, a group considered for use in the read-across approach by the U.S. EPA for hazard
assessments [10]. However, the differences between predicted and observed toxic values
were up to 3.2 times greater in fish (Pimephales promelas) and 5.1 times greater in crustaceans
(Daphnia magna), indicating potential limitations in terms of hazard assessment when using
that approach.

According to the grouping method based on MOAs and FGs [11,12], we identified that
these aromatic amines are mostly classified as a neutral organic group, their narcosis as a
mode of toxic action. Given that narcosis is recognized as an unspecific mode of toxic action,
there would be variations in the sensitivities among aquatic species, which are also affected
by other factors [13]. Consequently, the traditional read-across approach, relying on the
predicted toxicity values, may introduce potential uncertainty and lack reliability. To ensure
high reliability and accuracy in toxicity predictions, using the read-across approach requires
consideration of specific MOAs and species sensitivities. Furthermore, the correlation
between MOAs and variations in aquatic species sensitivity has been extensively explored
in ecological effect assessments, often employed for the estimation of species sensitivity
distributions (SSDs) [14–16].

Therefore, in this study, we aimed to introduce a new concept approach for read-
across assessments, considering the differences in species sensitivity to phosphate chemicals
within structurally similar chemical compounds of the same category group and the specific
mode of toxic action effects. We also evaluated the performance of a new read-across
concept by calculating various statistical metrics, including the correlation coefficient,
bias, relative bias, precision, and accuracy, and compared the differences between the
log-transformed predictions and known toxicity values.
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2. Materials and Methods
2.1. Selection of Chemicals in New Read-Across Concept Development

The subject chemicals were selected based on the parameters that are generally used
for a chemical grouping of traditional read-across assessments of acute aquatic toxicity.
The parameters were defined as the mode of toxic actions (MOAs), functional groups
(FGs), and octanol–water partition coefficient (Kow) [7–9]. Among MOAs, we considered
acetylcholinesterase (AChE) inhibition rather than unspecific MOAs (e.g., narcosis, etc.)
because AChE inhibition exhibits a neuro route toxicity on particular biological molecules
after chemical exposure [17,18]. An unspecific route of MOA may have limitations in
its acute effects on aquatic species. Regarding the three FGs, ester (phosphate), oxime
carbamate ester, and mono (or di) thiophosphate were considered, as they contribute to
AChE inhibition through a neurotoxic mechanism [17,18]. If the chemicals possessed other
functional groups unrelated to neurotoxic toxicity, they were not taken into consideration
for chemical grouping. The MOAs and FGs of the chemicals were classified according to
previous studies [11,12]. To determine the cut-off level of acute effect concentrations (LC50)
in aquatic toxicity, log Kow, a factor of baseline toxicity, was employed. In general, aquatic
toxicity tends to increase with the increased log Kow values reaching up to 5 to 6 [19,20]. In
this log Kow range, the aquatic toxicity may be mainly affected by MOA together with the
baseline toxicity. A total of twenty-five organic chemicals belonging to phosphate chemicals
(n = 25) were selected based on the following specific criteria: a log Kow of less than 5,
AChE inhibition, and being classified into three functional groups (Table 1).

2.2. Selection of Aquatic Species and Toxicity Data Collection

Target aquatic species were selected by considering the phylogenetic information
related to AChE inhibition. According to phylogenetic proximity, aquatic species were
classified into groups of similarity in terms of their nervous systems [21], and the classified
species could be expected to show similar effects concerning the use of phosphate chemicals.
Therefore, we considered fish, crustaceans, and insects as they also demonstrate AChE
inhibition through specific neurotoxicity after chemical exposure [18,22,23]. We collected
short-term (LC50) toxicity data for each of the three aquatic taxonomies through the U.S.
EPA ECOTOX Knowledgebase [10]. The aquatic toxicity data were applied to calculate the
geometric mean if more than three toxicity data were available for the same species in each
taxonomy. In the process of collecting the toxicity data, we considered the water solubility
limit, which explains the relationship between the dissolved concentration and uptake by
aquatic species. Hence, we used an LC50 value less than the water solubility value.

2.3. Development of New Concept in Read-Across Assessment

In this study, we developed a novel concept relating to the read-across assessment
method to address the limitations observed in traditional read-across approaches by consid-
ering species sensitivity factors, i.e., the differences in species sensitivity to the structurally
similar chemical compounds that share a common mode of toxic action within the same
category. We classified the target chemicals into three functional groups: ester (phosphate),
carbamate, and thiophosphate, as those contributing to the neurotoxic mode of action
(AChE inhibition) and toxicological mechanisms. A total of 25 organic chemicals with a log
Kow of five or less were selected for chemical pairing, and then fish, crustaceans, insects,
and amphibians were selected as the target species organisms for ecological risk assessment.
Utilizing this new read-across approach, we predicted acute toxicity concentrations via
pairwise matching of each chemical substance in a 1:1 manner.
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Table 1. Physicochemical properties and classification of aquatic toxicity for 25 target chemical substances included in this study. [All pictures of chemical structures
were downloaded from the official website of PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 1 September 2023)].

No Mode of Action
(MOA)

Chemical
Functional

Group
Subgroup Chemical Name CAS no.

Molecular
Weight
(g/mol)

Log Kow
Water

Solubility
(mg/L)

Activity Class

1

AChE inhibition

Esters
(phosphate)

-

Acephate 30560-19-1 183.16 −0.85 818.00 Class 5
2 Dichlorvos 62-73-7 220.97 1.43 8.00 Class 5
3 Methamidophos 10265-92-6 141.13 −0.80 1000.00 Class 5
4 Mevinphos 7786-34-7 224.15 0.13 600.00 Class 5
5 Nemacur 22224-92-6 303.36 3.23 0.33 Class 5
6 Profenofos 41198-08-7 373.63 4.68 0.03 Class 5

7

Carbamate

Carbamate
Esters, Phenyl

Aminocarb 2032-59-9 208.26 1.90 0.92 Class 4
8 Carbaryl 63-25-2 201.22 2.36 0.11 Class 4
9 Carbofuran 1563-66-2 221.25 2.32 0.32 Class 4

10 Propoxur 114-26-1 209.24 1.52 1.86 Class 4

11
Oxime
Carbamate Ester

Aldicarb 116-06-3 190.26 1.13 6.03 Class 4
12 Methomyl 16752-77-5 162.21 0.60 58.00 Class 4
13 Oxamyl 23135-22-0 219.26 −0.47 280.00 Class 4

14

Thiophosphate

Mono

Chlorpyrifos 2921-88-2 350.59 4.96 0.001 Class 4
15 Diazinon 333-41-5 304.35 3.81 0.04 Class 4
16 EPN 2104-64-5 323.31 4.78 0.003 Class 4
17 Fensulfothion 115-90-2 308.35 2.23 2.00 Class 4
18 Fenthion 55-38-9 278.32 4.09 0.01 Class 4
19 Methyl parathion 298-00-0 263.21 2.86 0.04 Class 4

20

Di

Azinphos-methyl 86-50-0 317.32 2.75 0.02 Class 4
21 Dimethoate 60-51-5 229.25 0.78 23.30 Class 4
22 Disulfoton 298-04-4 274.39 4.02 0.02 Class 4
23 Dyfonate 944-22-9 246.32 3.94 0.02 Class 4
24 Malathion 121-75-5 330.35 2.36 0.14 Class 4
25 Terbufos 13071-79-9 288.42 4.48 0.01 Class 4

https://pubchem.ncbi.nlm.nih.gov/
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2.4. Chemical Pairing for a New Read-Across Assessment

We paired a couple of chemicals to perform a new concept in the read-across assess-
ment. In each paired couple, the two chemicals consisted of one source and another target
chemical based on the log Kow difference. A chemical with a relatively higher log Kow
than a source chemical was selected as a target chemical, while the paired source chemical
was selected due to a lower log Kow than the target chemical. In this study, only the aquatic
species with a high log Kow and increased ecotoxicity observed in the target chemical
were included. Accordingly, we conducted a comparison concerning the differing levels of
toxic concentrations for the common species among the chemicals to validate the variation
in ecotoxicity corresponding to the increased log Kow values. In cases where toxicologi-
cal information on the aquatic species was available (accessible), we identified a paired
chemical group matching and then conducted the new read-across assessment concept.
The toxicity data of each chemical were listed and matched with each other, whether the
couple chemicals had the same species data or not. If the paired matching species data
appeared to have higher toxic sensitivity to the source chemicals, it was not considered in
our new read-across concept because the aquatic toxicity might be affected by a specific
MOA and log Kow rather than other factors. The pairing of a couple of chemicals in the
new read-across concept used one species from each taxonomy. According to this process,
25 target chemicals were applied to make a pairing couple of combinations to perform the
new read-across concepts. Case study I limited the scenario, where the ecotoxicity data
were only available for at least three of the four target aquatic species, and Case study II also
limited the scenario, where the ecotoxicity data for at least two out of four aquatic species
could be collected for use in the read-across assessment using the paired couple chemicals.

2.5. Introduction of a New Concept in the Read-Across Method with the Species Sensitivity Factor

We introduced the species sensitivity factor (SSF) to the new read-across concept,
which includes a couple of specific factors. SSF represents the geometric mean of species
sensitivity ratios (SSRs), which are species-specific toxicity ratios for each paired matching
chemical. The SSR of each species in the couple is derived by dividing the smaller LC50
value of the target chemical by the larger LC50 value of the source chemical. We developed
two scenarios (i.e., Case studies I and II) for the new read-across concept according to
the number of matched species between the source and the targeted coupled chemicals
(Figure 1). We needed more than two species with known toxicity data in both the source
and target chemicals and one species for the source chemicals, where we calculated SSR-1
and SSR-2 and further processed them for SSF, as in the Case study I approach. On the
other hand, we needed one or more than one species (or simply uses a species showing
the closest toxicity to the target species) with known toxicity data in the source and target
chemicals and one species for the source chemical, as in the Case study II approach. The
calculated SSF was applied to the toxicity value of the target species in the source chemical
to predict the toxicity value of the target species in the target chemical. The results of the
predicted toxicity value in the target chemical were assigned to either overestimation or
underestimation by comparing the results to the observed toxicity data, which is assumed
to be a data gap (Figure 2). Overestimation means that the predicted toxicity value shows
the lowest toxicity value, i.e., greater toxic sensitivity than indicated in the observed toxicity
data. Likewise, underestimation means that the predicted toxicity value is located between
the observed toxicity data of the target chemical and the source chemical.
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2.6. Calculation of Lack of Agreement

The lack of agreement (bias, relative bias, precision, and accuracy) was calculated to
evaluate the performance of a new read-across concept approach to assess whether the
predicted toxicity outcomes were over- or underestimated. Equations (1)–(3) are defined as
follows [24]:

Bias =
1
n ∑n

j=1

(
Ej − A

)
(1)

Relative bias =
(

ebias − 1
)
× 100%, where ebias is exp

∑n
j=1 (Ej−A)

n (2)

Precision =
1

n − 1

n

∑
j=1

[(
Ej − A

)
− bias

]2 (3)

where Ej is the log-transformed predicted toxicity when using the new read-across concept
for the Jth sample. A is the log-transformed known toxicity value collected from the
ECOTOX Knowledgebase. n is the number of the toxicity value present in the data set.

We also calculated the accuracy, defined as the mean absolute error (MAE), using
Equation (4), which reveals the average distance between the predicted and known toxicity
values. It is also known to be a less sensitive and more robust measure of accuracy [24]. We
used the mean values of the predicted toxicity compared to the known toxicity values.

Accuracy =
1
n ∑n

j=1

∣∣Ej − A
∣∣ (4)

Residuals, which are the differences between the log-transformed predictions and
known toxicity values, were also calculated using Equation (5), as follows:

Residual = Ej − A (5)

We produced Bland–Altman plots showing the mean differences between the predicted
and known toxicity values with 95% upper and lower limits of agreement. Finally, we
calculated the Pearson’s correlation coefficients (r) between the log-transformed prediction
and known toxicity values, and scatter plots with a fitted linear line with corresponding
95% confidence intervals (CIs) were also drawn for Case studies I and II.

2.7. Statistical Analysis

We statistically compared the predicted toxicity with the observed toxicity to examine
the applicability of the new read-across concept approach. All read-across predicted
and aquatic toxicity values were log-transformed after performing the Anderson–Darling
normality test. Lack of agreement (bias, relative bias, precision, and accuracy), residuals,
SSR, SSF, and Pearson’s correlation coefficients were calculated, and scatter plots with the
fitted linear line and Bland–Altman plots were also drawn. All statistical analyses were
performed using R statistical software version 4.2.2 (R Core Team, Vienna, Austria, 2023)
with Rstudio version 2023.03.1+446 (Rstudio Inc., Boston, MA, USA), and a p value less
than 0.05 was considered statistically significant.

3. Results

Table 1 shows the information on the toxicological mechanisms, physicochemical
properties, and ecological toxicity classification for the 25 target chemicals related to AcheE
inhibition included in this study. The three functional groups of chemical substances were
classified as esters (phosphate), carbamates (subdivided into carbamate esters, phenyl, and
oxime carbamate esters), and thiophosphates (mono or di). According to the classification
criteria of Verhaar et al. (1992) [13], 19 chemicals were identified as Class 4 (specific-acting
chemicals), while the rest of the chemicals were Class 5 (not considered). Furthermore,
22 chemicals (e.g., Dichlorvos, Mevinphos, etc.) were classified under aquatic acute hazard
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Category 1 (H400, H410) due to their chronic and acute toxic effects. One substance,
Oxamyl (CAS no. 23135-22-0), was categorized as aquatic chronic hazard Category 2
(H411). Acephate (CAS no. 30560-19-1) and Dimethoate (CAS no. 60-51-5), on the other
hand, were not classified as having aquatic hazard toxicity (Supplementary Table S1).

Table 2 shows the range of ecotoxicity values for each target chemical collected in
this study. The concentration range of 24 h, 48 h, or 96 h LC50 of 72 species of fish such
as Oncorhynchus mykiss, Morone sapatilis, and Cyprinus carpio was at least 6.93 × 10−7 to a
maximum of 3.08 × 103 mg/L, and the concentrations of 72 species of crustaceans, including
Daphnia magna, Palaemonetes pugio, Gammarus pulex, etc., ranged from 7.28 × 10−11 to
2.35 × 103 mg/L, respectively. The concentration range of 85 insect species, including Aedes
aegypti, Chauliodes sp., and Peltodytes sp., was from 6.94 × 10−7 to 6.50 × 102 mg/L, and the
concentration range of 17 species of amphibians, such as Ambystoma gracile, Microhylanata,
and Rana boylii, ranged from 9.40 × 10−3 to 8.82 × 103 mg/L. The aquatic toxicity values of
insect and amphibian species were not collected for some of the target chemicals, whereas
all of the toxicity values on fish and crustaceans were collected from the U.S. EPA ECOTOX
Knowledgebase for all 25 chemical substances.

In Table 3, the information concerning SSR across different species, known reference
toxicity values collected from the U.S. EPA ECOTOX Knowledgebase, SSF, and predicted
toxicities derived using the new read-across concept were summarized for seven target
chemicals paired with source chemicals in the Case study I scenario. The predicted toxicity
values showed a slightly higher percentage of overestimation (49.2%) than underestimation
(48.4%), and in three substances, Carbaryl, Malathion, and Chlorpyrifos, the outcomes in
over- and underestimations in terms of species were the same: thus, the decision concerning
either over- or underestimation was not made. In Table 4, the predicted toxicity values
and over- or underestimation decisions are shown for 10 target chemicals using the new
read-across approach. In the Case study II scenario, however, the predicted toxicity values
showed a higher overestimation percentage (52%) than underestimation (48%). Therefore,
the predicted toxicity values using the new read-across concept presented a tendency
toward overestimation when comparing the known toxicity values in both scenarios (Case
studies I and II).

In Table 5, the results yielded from calculating the overall bias, relative bias, precision,
and accuracy are shown. The overall bias and precision were 0.32 ± 0.01 for Case study I
and 0.65 ± 0.06 for Case study II, respectively. Relative bias (%) was 37.65% for Case study
I and 91.94% for Case study II, indicating that both Case studies I and II scenarios showed
overestimation. The overall accuracy was 0.01 for Case study I and 0.05 for Case study II,
indicating that both of the case studies had high accuracy. In Case study I, the bias and
precision for a functional group of thiophosphates were as high as 0.01 ± 0.01, with an
accuracy of 0.004. Figure 3 also shows scatter plots demonstrating the linear relationships
between the predicted and known toxicity values in the target chemicals derived using a
new read-across concept approach. The Pearson correlation coefficient was r = 0.93 for Case
study I, indicating a strong positive correlation (Figure 3a), and a moderate correlation
(r = 0.75), which is relatively lower than that for the Case study I scenario, was observed in
Case study II (Figure 3b).
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Table 2. Acute aquatic toxicity data were collected from the ECOTOXicology Knowledgebase (ECOTOX, Version 5, U.S. EPA, 2022) for 25 target chemicals. * LC50

(mg/L): All of the available toxicity values (either 24 h, 48 h, or 96 h-LC50) were selected and collected from the ECOTOX database.

No
Chemical

Functional Group Chemical Name

Fish Crustacean Insect Amphibian

n LC50 *
(mg/L) n LC50 *

(mg/L) n LC50 *
(mg/L) n LC50 *

(mg/L)

1

Esters (phosphate)

Acephate 12 1.46 × 10−3~3.08 × 103 7 3.50 × 10−1~2.35 × 103 9 1.14 × 10−1~6.50 × 102 2 6.43 × 103~8.82 × 103

2 Dichlorvos 38 6.41 × 10−3~1.67 × 102 25 1.30 × 10−4~1.29 × 102 24 1.00 × 10−4~2.38 × 102 5 7.80 × 10−1~7.89 × 10
3 Methamidophos 8 5.36 × 10 ~1.12 × 102 4 1.61 × 10−6~1.46 - - 1 2.72 × 10
4 Mevinphos 12 2.23 × 10−2~4.00 × 10 9 9.50 × 10−4~1.30 × 10−1 1 4.95 × 10−3 - -
5 Nemacur 3 1.75 × 10−2~1.40 × 10−1 6 2.65 × 10−3~1.50 × 10−1 - - - -
6 Profenofos 17 2.55 × 10−3~2.02 11 4.10 × 10−5~7.71 6 1.18 × 10−2~3.70 1 5.80 × 10−1

7

Carbamate

Aminocarb 12 5.24 × 10−1 ~1.00 × 102 8 1.20 × 10−2~3.27 × 10 7 2.25 × 10−2~2.86 - -
8 Carbaryl 60 6.93 × 10−7~1.08 × 102 41 3.75 × 10−3~9.65 42 6.94 × 10−7~4.79 17 1.64~5.53 × 10
9 Carbofuran 28 4.23 × 10−2~7.90 15 3.32 × 10−4~2.70 8 1.19 × 10−4~1.59 3 1.12 × 10~1.13 × 102

10 Propoxur 12 1.30~4.25 × 10 7 1.50 × 10−2~1.43 22 1.80 × 10−2~8.00 - -
11 Aldicarb 9 6.56 × 10−2~4.50 × 10 16 1.20 × 10−2~1.73 × 10 5 2.00 × 10−2~2.80 × 10−1 - -
12 Methomyl 14 3.40 × 10−1~5.25 19 6.40 × 10−3~7.20 4 6.43 × 10−2~8.79 × 10−1 3 5.55 × 10~6.16 × 102

13 Oxamyl 6 2.60~2.75 × 10 4 2.20 × 10−1~2.30 × 10 - - - -

14

Thiophosphate

Chlorpyrifos 40 5.80 × 10−4~5.98 × 10−1 47 7.28 × 10−1~ 4.57 × 10−1 85 5.00 × 10−5~3.80 × 10−1 6 1.90 × 10−2~5.62 × 10−1

15 Diazinon 53 7.00 × 10−5~4.00 × 10 20 3.87 × 10−4~1.25 23 5.67 × 10−4~2.20 × 10−1 5 3.43~1.48 × 10
16 EPN 11 1.81 × 10−2~4.20 × 10−1 6 2.90 × 10−4~4.38 × 10−2 2 1.10 × 10−3~7.40 × 10−3 - -
17 Fensulfothion 3 7.20 × 10−2~4.31 × 10 2 1.00 × 10−2~5.07 × 10−2 - - - -
18 Fenthion 21 4.53 × 10−1~3.10 16 1.52 × 10−4~1.80 57 5.00 × 10−4~1.10 1 9.40 × 10−4

19 Methyl parathion 42 5.00 × 10−3~1.90 × 10 28 2.05 × 10−4~4.00 12 5.40 × 10−4~2.74 × 10−1 4 3.70~9.59
20 Azinphos-methyl 26 3.60 × 10−4~4.06 10 1.61 × 10−4~1.38 × 10 6 3.70 × 10−4~8.85 × 10−2 - -
21 Dimethoate 26 1.30 × 10−1~4.20 × 10 14 2.00 × 10−3~1.50 × 10 13 1.29 × 10−3~9.60 5 7.82 × 10−3~3.75 × 10
22 Disulfoton 10 3.70 × 10−2~7.20 3 3.90 × 10−3~1.00 × 10−1 1 5.00 × 10−3 - -
23 Dyfonate 5 1.60 × 10−2~1.09 2 4.90 × 10−4~2.70 × 10−3 2 3.90 × 10−2~5.40 × 10−2 - -
24 Malathion 72 1.95 × 10−2~1.70 × 10 46 9.70 × 10−5~8.15 × 10 67 1.00 × 10−3~2.69 × 10 9 5.90 × 10−4~3.32 × 10
25 Terbufos 8 2.90 × 10−3 ~1.31 × 10−1 5 2.97 × 10−4~1.00 × 10−2 - - - -
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Table 3. (Case study I) The example of results of the predicted values of acute aquatic toxicity (in read-across) for target chemicals using known toxicity data of
source chemicals. * n: Number of species in fish/crustacean/insect, ** ND: Not determined for either over- or underestimation of predicted toxicity.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known
Toxicity
of Target
Chemical

(ug/L)

Predicted Toxicity
of Target Chemical

(Read-Across) (ug/L)

Known/Predicted Toxicity Decision Ratio of
Example

Known/Predicted Toxicity
Decision Ratio of Each Species

Min Max
Overesti
mation

(n)

Underesti
mation

(n)
Decision

Decision
of Over

estimation
(n)

Decision
of Under

estimation
(n)

Decision of
ND ** (n)

1
Esters

(phosphate) 1/3/1

Fish (e.g., Gambusia
affinis)

Acephate Profenofos

3.48 × 102 1.82 × 103 5.79 × 103 0 3 Under 0 1 0

Crustacean (e.g.,
Americamysis bahia) 2.37 7.85 × 10 - 0 1 Under 0 3 0

Insect (e.g., Culex
quinquefasciatus) 1.18 × 10 6.84 × 10−2 2.18 × 10−1 3 0 Over 1 0 0

2
Esters

(phosphate) 2/4/3

Fish (e.g., Gambusia
affinis)

Dichlorvos Profenofos

3.48 × 102 7.57 × 10 2.91 × 103 5 7 Under 0 2 0

Crustacean (e.g.,
Americamysis bahia) 1.71 8.93 × 10−2 5.72 2 4 Under 2 2 0

Insect (e.g., Culex pipiens
ssp. Pallens) 7.45 × 10 1.85 2.56 × 10 8 0 Over 2 1 0

3 Carbamate 4/1/1

Fish (e.g., Oncorhynchus
mykiss)

Propoxur Carbaryl

1.21 × 103 6.50 × 103 - 0 1 Under 2 2 0

Crustacean (e.g.,
Daphnia magna) 2.07 × 102 8.47 × 10 2.17 × 102 3 1 Over 1 0 0

Insect (e.g., Aedes
aegypti) 7.08 × 102 3.21 × 102 8.22 × 102 2 2 ND ** 0 0 1

4 Carbamate 4/1/1

Fish (e.g., Salvelinus
fontinalis)

Aminocarb Carbaryl

1.88 × 103 7.09 × 102 - 1 0 Over 2 2 0

Crustacean (e.g.,
Gammarus
pseudolimnaeus)

1.53 × 10 6.39 × 10 1.15 × 102 0 4 Under 0 1 0

Insect (e.g., Pteronarcella
badia) 1.53 × 10 3.29 5.88 4 0 Over 1 0 0

5 Thiophosphate 3/2/1

Fish (e.g., Cyprinus
carpio)

Dimethoate Malathion

2.65 × 103 5.80 × 10 7.03 × 102 2 0 Over 2 0 1

Crustacean (e.g.,
Daphnia magna) 7.28 3.51 × 10 2.12 × 102 0 3 Under 1 1 0

Insect (e.g., Aedes
aegypti) 1.06 × 102 3.56 × 10 2.60 × 103 1 5 Under 0 1 0

6 Thiophosphate 4/1/1

Fish (e.g., Oreochromis
niloticus)

Dimethoate Chlorpyrifos

1.25 × 102 3.63 - 1 0 Over 2 2 0

Crustacean (e.g.,
Daphnia magna) 8.04 1.82 2.67 × 10 2 2 ND** 0 0 1

Insect (e.g., Aedes
aegypti) 7.02 4.96 7.28 × 10 1 3 Under 0 1 0
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Table 3. Cont.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known
Toxicity
of Target
Chemical

(ug/L)

Predicted Toxicity
of Target Chemical

(Read-Across) (ug/L)

Known/Predicted Toxicity Decision Ratio of
Example

Known/Predicted Toxicity
Decision Ratio of Each Species

Min Max
Overesti
mation

(n)

Underesti
mation

(n)
Decision

Decision
of Over

estimation
(n)

Decision
of Under

estimation
(n)

Decision of
ND ** (n)

7 Thiophosphate 1/2/1

Fish (e.g., Pimephales
promelas)

Malathion
Methyl

parathion

7.14 × 103 8.41 × 102 1.31 × 103 2 0 Over 1 0 0

Crustacean (e.g.,
Americamysis bahia) 6.92 × 10−1 9.08 × 10−1 - 0 1 Under 0 2 0

Insect (e.g., Culex pipiens
ssp. ) 3.07 8.21 1.28 × 10 0 2 Under 0 1 0

8 Thiophosphate 3/2/1

Fish (e.g., Channa
punctata)

Malathion Diazinon

1.44 × 103 4.25 × 102 5.41 × 102 2 0 Over 3 0 0

Crustacean (e.g.,
Daphnia magna) 1.22 1.74 2.30 0 3 Under 0 2 0

Insect (e.g., Culex
quinquefasciatus) 6.67 9.10 1.53 × 10 0 6 Under 0 1 0

9 Thiophosphate 1/1/10

Fish (e.g., Pimephales
promelas)

Malathion Fenthion

2.75 × 103 2.28 × 102 2.43 × 103 10 0 Over 1 0 0

Crustacean (e.g.,
Americamysis bahia) 2.65 × 10−1 1.58 × 10−1 1.69 1 9 Under 0 1 0

Insect (e.g., Aedes
aegypti) 2.35 × 10 1.04 × 10 - 1 0 Over 5 5 0

10 Thiophosphate 7/2/14

Fish (e.g., Lepomis
macrochirus)

Malathion Chlorpyrifos

5.72 2.86 × 10−1 9.82 22 6 Over 6 1 0

Crustacean (e.g.,
Americamysis bahia) 4.00 × 10−2 1.90 × 10−2 1.42 5 93 Under 0 2 0

Insect (e.g., Aedes
aegypti) 7.02 1.05 4.29 14 0 Over 7 7 0

11 Thiophosphate 3/4/1

Fish (e.g., Lepomis
macrochirus)

Methyl
parathion Chlorpyrifos

5.72 3.22 × 102 1.38 × 103 0 4 Under 0 3 0

Crustacean (e.g.,
Americamysis bahia) 4.00 × 10−2 1.65 × 10−2 6.46 × 10−2 2 1 Over 3 1 0

Insect (e.g., Culex pipiens
ssp. ) 1.04 2.05 × 10−2 3.45 × 10−1 12 0 Over 1 0 0

12 Thiophosphate 3/1/1

Fish (e.g., Oncorhynchus
mykiss)

Diazinon Fenthion

7.95 × 102 5.88 × 10 - 1 0 Over 3 0 0

Crustacean (e.g.,
Americamysis bahia) 2.65 × 10−1 9.99 × 10−1 1.19 0 3 Under 0 1 0

Insect (e.g., Culex pipiens
ssp. ) 5.07 1.29 × 10 1.53 × 10 0 3 Under 0 1 0
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Table 3. Cont.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known
Toxicity
of Target
Chemical

(ug/L)

Predicted Toxicity
of Target Chemical

(Read-Across) (ug/L)

Known/Predicted Toxicity Decision Ratio of
Example

Known/Predicted Toxicity
Decision Ratio of Each Species

Min Max
Overesti
mation

(n)

Underesti
mation

(n)
Decision

Decision
of Over

estimation
(n)

Decision
of Under

estimation
(n)

Decision of
ND ** (n)

13 Thiophosphate 6/3/2

Fish (e.g., Lepomis
macrochirus)

Diazinon Chlorpyrifos

5.72 1.80 8.05 × 10 1 5 Under 1 5 0

Crustacean (e.g.,
Americamysis bahia) 4.00 × 10−2 4.61 × 10−2 1.26 0 12 Under 2 1 0

Insect (e.g., Culex pipiens
ssp. ) 1.04 5.13 × 10−1 2.23 × 10 3 15 Under 1 1 0

14 Thiophosphate 5/1/11

Fish (e.g., Oncorhynchus
mykiss)

Fenthion Chlorpyrifos

1.82 × 10 5.86 × 10 1.77 × 102 0 11 Under 0 5 0

Crustacean (e.g.,
Americamysis bahia) 4.00 × 10−2 2.67 × 10−3 4.73 × 10−2 52 3 Over 1 0 0

Insect (e.g., Aedes
aegypti) 7.02 4.86 × 10−1 2.84 5 0 Over 9 2 0

Table 4. (Case study II) The example of results of the predicted values of acute aquatic toxicity (in read-across) for target chemicals using known toxicity data of
source chemicals. * n: Number of species in fish/crustacean/insect.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known Toxicity of
Target Chemical (ug/L)

Predicted Toxicity of
Target Chemical

(Read-Across) (ug/L)

Known/
Predicted Toxicity
Decision Ratio of

Example

Known/Predicted Toxicity Decision
Ratio of Each Species

Overestimation
(n)

Underestimation
(n)

1 Esters (phosphate) 3/2/0

Fish (e.g., Lepomis
macrochirus)

Acephate Methamidophos

4.13 × 104 1.31 × 105 Under 1 2

Crustacean (e.g.,
Americamysis
bahia)

1.05 × 103 1.01 × 103 Over 1 1

2 Esters (phosphate) 4/1/0

Fish (e.g.,
Oncorhynchus
mykiss) Acephate Mevinphos

2.23 × 10 1.51 × 102 Under 0 4

Crustacean (e.g.,
Americamysis
bahia)

1.30 1.92 × 10−1 Over 1 0

3 Esters (phosphate) 1/2/0

Fish (e.g.,
Gambusia affinis)

Acephate Dichlorvos

5.27 × 103 9.72 × 102 Over 1 0

Crustacean (e.g.,
Americamysis
bahia)

2.26 × 10 1.23 × 102 Under 0 2
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Table 4. Cont.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known Toxicity of
Target Chemical (ug/L)

Predicted Toxicity of
Target Chemical

(Read-Across) (ug/L)

Known/
Predicted Toxicity
Decision Ratio of

Example

Known/Predicted Toxicity Decision
Ratio of Each Species

Overestimation
(n)

Underestimation
(n)

4 Esters (phosphate) 2/1/0

Fish (e.g.,
Oncorhynchus
mykiss) Acephate Nemacur

1.40 × 102 7.91 × 102 Under 0 2

Crustacean (e.g.,
Americamysis
bahia)

6.80 1.21 Over 1 0

5 Esters (phosphate) 1/3/1

Fish (e.g.,
Gambusia affinis)

Acephate Profenofos

3.48 × 102 1.02 × 102 Over 1 0

Crustacean (e.g.,
Penaeus duorarum) 4.60 3.95 × 102 Under 1 2

Insect (e.g, Culex
quinquefasciatus) 1.18 × 10 1.38 × 10−1 Over 1 0

6 Esters (phosphate) 0/8/1

Crustacean (e.g.,
Daphnia magna)

Methamidophos Dichlorvos

3.71 2.92 × 10 Under 0 8

Insect (e.g,
Pteronarcys
californica)

2.50 × 10 1.79 Over 1 0

7 Esters (phosphate) 2/4/3

Fish (e.g.,
Gambusia affinis)

Dichlorvos Profenofos

3.48 × 102 2.00 × 10 Over 2 0

Crustacean (e.g,
Ceriodaphnia dubia) 4.10 × 10−2 1.26 × 10−1 Under 1 3

Insect (e.g, Culex
pipiens) 6.23 × 10 4.88 Over 2 1

8 Carbamate 2/1/0

Fish (e.g.,
Pimephales
promelas) Methomyl Aminocarb

7.39 × 102 3.72 × 102 Over 1 1

Crustacean (e.g,
Gammarus
pseudolimnaeus)

1.63 × 102 2.42 × 102 Under 0 1

9 Carbamate 1/2/0

Fish (e.g.,
Oncorhynchus
mykiss) Methomyl Carbaryl

1.21 × 103 2.11 × 10 Over 1 0

Crustacean (e.g.,
Americamysis
bahia)

1.01 × 10 5.67 × 10 Under 0 2

10 Carbamate 4/1/1

Fish (e.g., Cyprinus
carpio)

Propoxur Carbaryl

2.95 × 103 3.27 × 103 Under 2 2

Crustacean (e.g.,
Daphnia magna) 2.07 × 102 1.94 × 102 Over 1 0

Insect (e.g., Aedes
aegypti) 7.08 × 102 7.58 × 102 Under 0 1
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Table 4. Cont.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known Toxicity of
Target Chemical (ug/L)

Predicted Toxicity of
Target Chemical

(Read-Across) (ug/L)

Known/
Predicted Toxicity
Decision Ratio of

Example

Known/Predicted Toxicity Decision
Ratio of Each Species

Overestimation
(n)

Underestimation
(n)

11 Carbamate 4/1/1

Fish (e.g.,
Salvelinus
fontinalis)

Aminocarb Carbaryl

1.88 × 103 2.64 × 102 Under 4 0

Crustacean (e.g.,
Gammarus
pseudolimnaeus)

1.53 × 10 1.11 × 102 Over 0 1

Insect (e.g.,
Pteronarcella badia) 1.53 × 10 2.12 Under 1 0

12 Thiophosphate 3/2/1

Fish (e.g., Cyprinus
carpio)

Dimethoate Malathion

2.65 × 103 1.39 × 102 Over 2 1

Crustacean (e.g.,
Daphnia magna) 7.28 4.23 × 10 Under 1 1

Insect (e.g., Aedes
aegypti) 7.89 × 10 2.00 × 103 Under 0 1

13 Thiophosphate 1/1/0

Fish (e.g.,
Oncorhynchus
mykiss) Dimethoate Aldicarb

5.83 × 102 1.32 × 103 Under 0 1

Crustacean (e.g.,
Daphnia magna) 3.19 × 102 1.40 × 102 Over 1 0

14 Thiophosphate 0/2/1

Crustacean (e.g.,
Daphnia magna)

Dimethoate Dichlorvos

3.71 2.41 × 10 Under 1 1

Insect (e.g., Aedes
aegypti) 4.50 × 10 1.21 × 103 Under 0 1

15 Thiophosphate 2/1/1

Fish (e.g.,
Heteropneustes
fossilis)

Dimethoate Propoxur

6.48 × 103 3.80 × 103 Over 1 1

Crustacean (e.g.,
Daphnia magna) 3.76 × 102 7.37 × 102 Under 0 1

Insect (e.g., Aedes
aegypti) 1.37 × 103 7.00 × 102 Over 1 0

16 Thiophosphate 3/2/1

Fish (e.g., Cyprinus
carpio)

Dimethoate Carbaryl

2.95 × 103 1.24 × 103 Over 1 2

Crustacean (e.g.,
Daphnia magna) 2.07 × 102 3.80 × 102 Under 0 2

Insect (e.g., Aedes
aegypti) 7.08 × 102 3.40 × 10 Over 1 0

17 Thiophosphate 2/2/0

Fish (e.g., Channa
orientalis)

Dimethoate Methyl parathion

3.32 × 103 2.05 × 102 Over 2 0

Crustacean (e.g.,
Daphnia magna) 1.65 × 10 1.28 × 103 Under 0 2
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Table 4. Cont.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known Toxicity of
Target Chemical (ug/L)

Predicted Toxicity of
Target Chemical

(Read-Across) (ug/L)

Known/
Predicted Toxicity
Decision Ratio of

Example

Known/Predicted Toxicity Decision
Ratio of Each Species

Overestimation
(n)

Underestimation
(n)

18 Thiophosphate 3/1/0

Fish (e.g., Cyprinus
carpio)

Dimethoate Diazinon
8.72 × 102 4.01 Over 3 0

Crustacean (e.g.,
Daphnia magna) 1.22 2.67 × 102 Under 0 1

19 Thiophosphate 1/0/1

Fish (e.g.,
Oncorhynchus
mykiss) Dimethoate Fenthion

7.95 × 102 5.25 × 10 Over 1 0

Insect (e.g., Aedes
aegypti) 2.35 × 10 3.56 × 102 Under 0 1

20 Thiophosphate 4/1/1

Fish (e.g.,
Oreochromis
niloticus)

Dimethoate Chlorpyrifos

1.25 × 102 5.30 Over 3 1

Crustacean (e.g.,
Daphnia magna) 8.04 1.90 × 102 Under 0 1

Insect (e.g., Aedes
aegypti) 7.02 1.50 × 10 Under 0 1

21 Thiophosphate 8/3/0

Fish (e.g.,
Cyprinodon
variegatus) Malathion Azinphos-methyl

2.28 2.98 Under 5 3

Crustacean (e.g.,
Gammarus
fasciatus)

2.01 × 10−1 3.60 × 10−2 Over 3 0

22 Thiophosphate 1/2/1

Fish (e.g.,
Pimephales
promelas)

Malathion Methyl parathion

7.14 × 103 7.93 × 102 Over 1 0

Crustacean (e.g.,
Americamysis
bahia)

6.92 × 10−1 3.21 × 10−1 Over 1 1

Insect (e.g., Culex
pipiens ssp.
Quinquefasciata)

3.07 6.63 Under 0 1

23 Thiophosphate 3/2/1

Fish (e.g., Channa
punctata)

Malathion Diazinon

1.44 × 103 4.31 × 102 Over 3 0

Crustacean (e.g.,
Ceriodaphnia dubia) 4.23 × 10−1 2.68 × 10−1 Over 1 1

Insect (e.g., Culex
quinquefasciatus) 6.67 6.50 Over 1 0
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Table 4. Cont.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known Toxicity of
Target Chemical (ug/L)

Predicted Toxicity of
Target Chemical

(Read-Across) (ug/L)

Known/
Predicted Toxicity
Decision Ratio of

Example

Known/Predicted Toxicity Decision
Ratio of Each Species

Overestimation
(n)

Underestimation
(n)

24 Thiophosphate 1/1/10

Fish (e.g.,
Pimephales
promelas)

Malathion Fenthion

2.75 × 103 7.03 × 10 Over 1 0

Crustacean (e.g,
Americamysis
bahia)

2.65 × 10−1 5.29 × 10−1 Under 0 1

Insect (e.g., Culex
pipiens ssp.
Quinquefasciata)

5.07 2.54 Over 7 3

25 Thiophosphate 7/3/16

Fish (e.g., Lepomis
macrochirus)

Malathion Chlorpyrifos

5.72 6.70 Under 6 1

Crustacean (e.g.,
Ceriodaphnia dubia) 6.74 × 10−2 8.65 × 10−1 Under 0 3

Insect (e.g.,
Chironomus
utahensis)

1.98 3.66 × 10−2 Over 9 7

26 Thiophosphate 2/2/0

Fish (e.g., Lepomis
macrochirus)

Azinphos-methyl Chlorpyrifos

5.72 4.90 Over 1 1

Crustacean (e.g.,
Americamysis
bahia)

4.00 × 10−2 1.07 × 10−1 Under 0 2

27 Thiophosphate 3/2/0

Fish (e.g., Lepomis
macrochirus)

Methyl parathion Diazinon

2.00 × 102 2.53 × 102 Under 2 1

Crustacean (e.g.,
Ceriodaphnia dubia) 4.23 × 10−1 1.49 × 10−1 Over 2 0

28 Thiophosphate 4/1/0

Fish (e.g., Morone
saxatilis)

Methyl parathion Fenthion

4.53 × 102 8.89 × 102 Under 2 2

Crustacean (e.g.,
Americamysis
bahia)

2.65 × 10−1 1.35 × 10−1 Over 1 0

29 Thiophosphate 3/4/1

Fish (e.g., Lepomis
macrochirus)

Methyl parathion Chlorpyrifos

5.72 3.74 × 102 Under 0 3

Crustacean (e.g.,
Americamysis
bahia)

4.00 × 10−2 2.33 × 10−1 Under 2 2

Insect (e.g., Culex
pipiens ssp.
Quinquefasciata)

1.04 8.15 × 10−2 Over 1 0
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Table 4. Cont.

No
Chemical

Functional
Group

n * Species Source
Chemical

Target
Chemical

Known Toxicity of
Target Chemical (ug/L)

Predicted Toxicity of
Target Chemical

(Read-Across) (ug/L)

Known/
Predicted Toxicity
Decision Ratio of

Example

Known/Predicted Toxicity Decision
Ratio of Each Species

Overestimation
(n)

Underestimation
(n)

30 Thiophosphate 3/1/1

Fish (e.g.,
Oncorhynchus
mykiss)

Diazinon Fenthion

7.95 × 102 6.70 × 10 Over 3 0

Crustacean (e.g.,
Americamysis
bahia)

2.65 × 10−1 3.44 × 10−1 Under 0 1

Insect (e.g., Culex
pipiens ssp.
Quinquefasciata)

5.07 3.91 Over 1 0

31 Thiophosphate 3/1/0

Fish (e.g., Lepomis
macrochirus)

Diazinon EPN

1.36 × 102 1.57 × 102 Under 0 3

Crustacean (e.g.,
Americamysis
bahia)

4.63 4.00 Over 1 0

32 Thiophosphate 6/3/2

Fish (e.g., Lepomis
macrochirus)

Diazinon Chlorpyrifos

5.72 2.38 Over 4 2

Crustacean (e.g.,
Ceriodaphnia dubia) 5.69 × 10−2 1.30 × 10−1 Under 1 2

Insect (e.g., Culex
quinquefasciatus) 2.25 4.54 × 10−2 Over 2 0

33 Thiophosphate 2/1/0

Fish (e.g.,
Pimephales
promelas) Disulfoton EPN

8.81 × 10 8.30 × 102 Under 0 2

Crustacean (e.g.,
Gammarus
fasciatus)

6.87 7.29 × 10−1 Over 1 0

34 Thiophosphate 5/1/11

Fish (e.g.,
Oncorhynchus
mykiss)

Fenthion Chlorpyrifos

1.82 × 10 2.86 × 10 Under 2 3

Crustacean (e.g.,
Americamysis
bahia)

4.00 × 10−2 8.19 × 10−2 Under 0 1

Insect (e.g., Culex
tarsalis) 5.30 × 10−1 2.59 × 10−1 Over 5 6

35 Thiophosphate 2/1/0

Fish (e.g., Lepomis
macrochirus)

EPN Chlorpyrifos

5.72 1.17 Over 2 0

Crustacean (e.g.,
Americamysis
bahia)

4.00 × 10−2 1.95 × 10−1 Under 0 1
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Table 5. Lack of agreement (bias, relative bias, precision, and accuracy) for a new read-across concept
approach in Case study I and II.

Chemical Functional Group n
New Read-Across Concept

Bias Relative
Bias (%) Precision Accuracy

Case study I
Overall 1095 0.32 37.65 0.01 0.010
Esters (phosphate) 81 0.15 15.70 0.05 0.050
Carbamate 24 0.16 17.51 0.01 0.050
Thiophosphate 990 0.01 1.24 0.01 0.004

Case study II
Overall 218 0.65 91.94 0.06 0.050
Esters (phosphate) 39 0.36 43.18 0.15 0.150
Carbamate 18 0.23 25.26 0.03 0.080
Thiophosphate 161 0.07 7.02 0.02 0.020
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In Figure 4, the Bland–Altman plots were drawn to demonstrate the mean differences
between the predicted and known toxicity values. For the Case study I scenario, the mean
difference was 1.33, and most of the predicted values were within a 95% upper and lower
limits range (+1.96 SD 2.32~−1.96 SD 0.35); however, some appeared to be outside of the
range. On the other hand, the mean difference was 1.24 for the Case study II scenario,
which was lower than the Case study I. Nonetheless, the 95% upper and lower limits
ranged from +1.96 SD 3.11 to −1.96 SD −0.64, which is relatively wider than that of Case
study I. Only eight values exceeded the 95% upper limit value in all of the datasets.
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4. Discussion

In this present study, we developed a novel read-across concept approach to assess
predicted toxicity by considering differences in species-specific sensitivity, known as species
sensitivity factors. We used a dataset of 25 organic chemicals with AChE inhibition (MOA).
To account for interspecies variation, we collected known reference toxicity values for
fish, crustaceans, and insects from the U.S. EPA ECOTOX Knowledgebase. In the first
scenario (Case study I), we had a minimum of one or more toxicity data values available
per species (i.e., at least three or more species’ toxicity information can be collected and
used in common), and the predicted outcomes revealed a strong positive correlation
(r = 0.93) with known toxicity values. In the second scenario, however, where toxicity-
related information was limited for some species (i.e., only available for some species), we
observed a moderate correlation (r = 0.75), indicating that the first scenario (Case study I)
had higher predictability and reliability.

Generally, there are four types of read-across assessment approaches, each contingent
on data availability: one-to-one, one-to-many, many-to-one, and many-to-many read-
across. For this study, we adopted a one-to-one approach, anticipating the toxicity of target
chemicals based on the toxicity of the source chemicals. As outlined in this study, we
endeavored to enhance the reliability of our findings by incorporating other aquatic species
with known toxicity values that exhibit biologically or genetically similar toxic mechanisms.
In Case study I, we employed two or more different species, while in Case study II, we
utilized only one species. The key distinction between these two approaches lies in the
number of species with known toxicity values. We posit that a higher number of such
species improves prediction accuracy, aligning with our assumptions. It is important to
note the variability in toxicity values of biological origin, which can differ significantly
across laboratories or experiments. Occasionally, such disparities are so pronounced that
scientists may omit certain values as outliers. While this issue falls outside the scope of
our study, as experimental errors are inherently present in the existing toxicity values, it is
worth recognizing that the pattern of toxicity values may conform to a normal distribution
with a larger volume of increased datasets. In this regard, our study does not set boundaries
based on the number of preexisting datasets in aquatic species, but the inclusion of a greater
variety of species may contribute to the overall reliability of our findings.

Furthermore, the predicted outcomes from the two scenarios generally demonstrated a
tendency toward overestimation. In Case study I, the overestimated values of acute aquatic



Toxics 2024, 12, 96 20 of 25

toxicity were approximately 40% higher than the known reference values. However, in Case
study II, this overestimation was much higher, at approximately 90%. Therefore, the newly
developed read-across approach demonstrates good accuracy, precision, and high reliability
in predicting acute aquatic toxicity for organic chemicals at a screening level. In fact, the
prediction of aquatic toxicity using a new read-across concept approach was based on the
hypothesis that toxicity is primarily caused by structural similarity, the mode of toxic action,
toxicological mechanisms, and log Kow, among other parameters. In this study, the mode of
toxic action for organic substances was based on one of the neurotoxic mechanisms, AChE
inhibition. Colovic et al. (2013) [18] reported that irreversible AChE inhibition is associated
with specific chemical functional groups, including ester (phosphate), carbamates, and
mono- or di-thiophosphates, i.e., organophosphorus compounds.

Nagai and Taya [16] observed a relationship between the average sensitivity of algae
and EC50 values for herbicides. They reported that when the specific MOA information
within the same category was taken into consideration, the accuracy of predicting sensitivity
variation, known as species sensitivity distribution (SSD), significantly improved. In this
present study, we similarly considered the differences in toxicity sensitivity among various
aquatic species for organic substances exhibiting AChE inhibition as their common mode
of action. Our study indicates that the accuracy of the predicted results was high, which
is consistent with that found in the previous studies. In addition, a study conducted by
Lambert et al. [25] performed acute toxicity concentration (LC50) predictions for 617 organic
substances, considering the log Kow values. The study found that the accuracy of the
toxicity prediction results was significantly higher in the specific MOA-based QSAR models
compared to a wide range of general MOA groupings. Therefore, the authors of this study
have provided sufficient evidence that log Kow, one of the fundamental physicochemical
characteristics, is significantly correlated with the acute toxicity of organic matter across
diverse ranges of MOA categories, which is similar to two previous studies [25,26]. Belanger
et al. [27] also noted a robust linear correlation between the acute toxicity of short- and
long-chain alcohols to fish and log Kow (hydrophobicity).

In line with previous studies, our current study identified that the log Kow values
of the organic substances selected for the newly developed read-across assessment fell
within the range of −0.85 to 4.96 rather than exceeding a cutoff range. Furthermore, we also
observed a correlation whereby the average toxicity value of each species was associated
with an increase in the log Kow values (resulting in lower toxicity values) for organic
substances. Suter and Lizarraga [28] provided evidence for read-across assessments, which
were classified into four broad categories: structural features of chemicals, physicochemical
properties, toxicokinetics, and toxicodynamics. In particular, they emphasized that source–
target chemical analogs should be evaluated for similarity across various parameters,
including taxonomy, toxic endpoint, exposure route, structural features, toxicokinetic or
toxicodynamic pathways and processes, structure–activity relationships, mechanisms of
toxicity, etc. Therefore, a Weight of Evidence (WoE) assessment for read-across assessments
should be conducted to examine whether there is relevance, strength, or reliability among
these parameters, ultimately enhancing the credibility and validity of the entire assessment
process and results.

In the present study, we quantitatively predicted the LC50 concentrations of target
substances by pairing source and target chemicals with one-on-one (1:1) couple matching
based on similar functional groups with respect to structurally similar characteristics, toxic
mode of action (AChE inhibition), functional groups, octanol–water partition coefficient
(Kow), toxicity effects, and endpoints (i.e., acute aquatic toxicity). Therefore, prior to
our new read-across concept applied to aquatic toxicity prediction and assessment, our
hypothesis satisfied the results reported in several previous studies, thus leading to a high
level of reliability in terms of the predicted results with high confidence. Therefore, it can
be concluded that a new read-across concept could be relevant to predicting aquatic toxicity
with high reliability, accuracy, and less bias. Several previous studies have also reported
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predictions of acute toxicity for various organic substances using the refined read-across
methods, which are similar to the read-across concept approach employed in this study.

For instance, Kühne et al. [29] utilized a read-across approach applying Kow- and
LSER-based methods to predict the acute toxicity concentration (48 h-LC50) for water fleas,
and they observed a strong correlation between their predictions and experimental data,
indicating that their predictions were within the applicability domain. Chavan et al. [30]
used a k-nearest neighbor (k-NN) classification method that they developed to determine
the most optimal k value. Then, they classified the substances into two classes (e.g.,
highly toxic or non-harmful) based on their LD50 values and predicted repeated dose
toxicity (LOEL) values. These model predictions demonstrated good applicability, with
approximately 74% within an order of magnitude of the experimental LOEL values. In
another study, Paul et al. [31] collected soil pEC50 values of F. candida for various classes of
organic compounds from the U.S. ECOTOX Knowledgebase and used diverse prediction
models to estimate the toxicity values. In particular, when using the chemical read-across
method to predict unknown toxicity values of similar substances based on known toxicity
values of substances within the same category, the results showed much better-predicted
values in terms of validation metrics compared to the intelligent consensus model (i.e., the
partial least square PLS model). This read-across approach was reported to be a practical
tool for predicting toxicity, using small datasets, and was found to be simple, accurate,
and reliable.

Furthermore, Lizarraga et al. [32] recently introduced a modified, revised read-across
framework based on key principles, evaluation experience, and new approach methodolo-
gies (NAMs) data. The revised read-across framework particularly emphasizes evaluating
biological similarity as a means of identifying groups of similar substances. The sequence
of read-across assessment has five steps, and in the third step, the structural similarity,
toxicokinetic/toxicodynamic properties, similar toxic pathways and effects, and candi-
date similar substances are compiled or grouped within the same category (i.e., similar
functional groups). Therefore, we anticipate that the results obtained by applying our
new read-across concept approach, appropriately incorporating the key principles and
steps in our new read-across assessment process and methodology, will provide scientifi-
cally valid evidence to predict the acute aquatic toxicity of organic substances focusing on
AChE inhibition.

However, there are some limitations to this study. First, the sample size of the selected
organic chemicals for the read-across assessment was relatively small (n < 30) since we
established three hypotheses for the study goal: a range of log Kow less than 5, a specific
MOA of AChE inhibition, and a category for chemical functional groups. Secondly, some of
the aquatic species in each taxonomy show higher toxicity to the source chemicals that have
a lower log Kow value than the target chemicals. This suggests that other species may have
different sensitivities to chemicals, even though the same MOA contributes significantly to
species sensitivity. In fact, the available toxicity information was collected and evaluated
considering the physicochemical characteristics of specific organic substances and their
toxic mode of action only. Therefore, it is difficult to generalize and apply this new read-
across concept to all other chemical substances, various toxic modes of action, different toxic
endpoints, and circumstances. The other types of MOAs for aquatic species should also be
applied to assess aquatic toxicity using the new read-across approach. Apart from AChE
inhibition, other types of MOAs with specific endpoints and toxic effects have also been
widely studied in previous studies concerning respiratory blocking [17,33], irritants [17],
central nervous system seizing [34], and inhibiting oxidative phosphorylation [35,36]. Most
studies provided sufficient evidence of the relationship between MOAs and variations
in species sensitivity based on chemical functional groups [14–16]. Thus, further studies
are necessary to consider other well-known MOAs to apply this new concept to diverse
functional groups and different types of chemical substances and validate this new read-
across concept approach using a larger number of predicted toxicity values in various
situations in the future.
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Despite these limitations, this study has several strengths. First, we fully satisfied the
assessment process, steps, and key principles of the newly revised read-across framework.
We collected all the available data for predicting the aquatic toxicity of target chemicals by
using a large-scale dataset from the globally recognized and well-known U.S. EPA ECOTOX
Knowledgebase. In this study, we performed one-on-one (1:1) couple pairing of the source
and target chemicals, with the collection of large groups of known acute toxicity (LC50)
values for various test species widely used in the OECD test guidelines, such as Danio
rerio, Oryzias latipes, etc., for fish, Daphnia magna, etc., for crustaceans, and Chironomus sp.,
etc., for insects in Case study I (n = 1095) and II (n = 218), respectively. Therefore, our
new read-across concept introduced highly reliable performances in toxicity prediction
by applying a sufficient large-scale dataset of aquatic toxicity, which is essential for the
statistical evaluation of accuracy, bias, precision, and reliability in this study. However,
it is unable to quantitatively compare our study results with previous studies due to the
unavailability of raw data. If possible, a new pooled analysis using all combined data and
related information acquired from the previous and current studies should be performed
to increase the credibility, accuracy, and validity of the new read-across concept.

Moreover, the U.S. EPA ECOTOX Knowledgebase, which we used to collect toxicity
information, offers a strong advantage in terms of the comprehensive and transparent
curation of detailed aquatic toxicity datasets from the latest study results, following a
rigorous process of literature search and systematic review. It also provides extensive
updates and encompasses a wide range of documents, including all endpoints and other
related toxic effects, rendering it a reliable and comprehensive source of aquatic toxicity
data. This database is made readily accessible to all stakeholders, including government
officials, academic researchers, and industrial experts, by ensuring ease of use, free of
charge, accessibility, and a high level of data quality.

In a recent review, Olker et al. [37] reported that the ECOTOX database (Version 5)
included the ecotoxicity data for over 12,000 chemicals and 13,000 species with over one
million testing results in the last decade and a higher volume of data updates. All toxicity
data underwent internal review and were subjected to quality assurance (QA) processes.
More importantly, this database serves as a curated source of toxicity data that offers high
reliability and applicability for various chemical risk assessments and related validation
studies. It can also be interoperable with other available toxicity databases, continuously
evolving into a state-of-the-art source of information and practices around the globe.

Most importantly, this study considered inter-species sensitivity using the aquatic
toxicity information for various organisms collected from the recently published references
and toxicity databases. We also proposed a new concept approach of read-across assessment
that enables the simple and rational prediction of acute aquatic toxicity concentrations of
specific target substances at a screening level. Using this method, further studies can be
conducted to predict, evaluate, and be applied to diverse chemical substances, different
toxic mechanisms (MOAs), and other toxic endpoints and effects, thus enabling further
cross-validations of this method (prediction model) of the new read-across assessment that
we have introduced in the present study.

In particular, further studies should focus on using AI-based toxicity prediction tech-
niques to predict aquatic toxicity values for various toxic endpoints of organic substances
in various MOA groups, as indicated by the recent trends in the published literature. A
comprehensive review conducted by Jeong and Choi [38], covering research papers on
toxicity prediction and risk assessment from 1990 to 2020, highlighted the increasing use of
machine and deep learning models. These advanced models, including algorithms such as
random forest, support vector machines, and deep neural networks, can be employed to
predict various toxicity endpoints in aquatic environments. Given that AI-based prediction
models can handle large volumes of toxicity data, it is anticipated that they will play an
important role in read-across approaches and validation as larger datasets can be collected
in the future.
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Certainly, while models developed using artificial neural networks (ANNs) may not
fully replace experimental toxicity data, they are expected to serve as valuable screening
tools in situations where experimental data are lacking or insufficient [39]. In addition,
similarity-based machine learning models successfully predicted acute toxicity concentra-
tions for various organic chemicals in two species, D. magna and O. latipes, demonstrating
a high correlation with experimental data [40]. The application of the newly developed
read-across structure–activity relationship (RASAR) model demonstrated more accurate,
consistent, and reproducible predictions of aquatic acute toxicity values, with the species
identified as the most crucial input feature [41].

Although it is nearly impossible to fully predict exposure scenarios for chemical mix-
tures or complexes in real-world environments, machine learning-based models would be
applicable. Recently, a modeling study conducted by Schür et al. using the ADORE datasets
extracted from the U.S. EPA ECOTOX database utilized machine learning techniques to
predict acute ecotoxicity. The detailed modeling processes, approaches, and predicted
outcomes, including model performance and best practices, were also described [42]. There-
fore, it is highly expected that further studies on machine learning-based techniques for
ecotoxicity predictions will provide evidence of model improvement and cross-validation
with less uncertainty in the future.

5. Conclusions

In this study, the new read-across assessment concept demonstrated a strong correla-
tion with known reference toxicity, indicating high reliability and accuracy in predicting
aquatic toxicity for target substances with minimal bias. We focused on AChE inhibition
as a specific mode of action (MOA) and structural similarity (functional groups) across
three aquatic species, including fish, crustaceans, and amphibians. Our concept followed a
modified read-across framework, considering important elements, such as source–target
chemical paring, species sensitivity factors, species sensitivity ratio (SSR), and the species
sensitivity factor (SSF). Future studies should emphasize different substances, diverse toxic
action modes, various functional group categories, additional toxic endpoints, and effects
on various test species. Further validation of the read-across concept approach is crucial,
and comparative studies using machine learning-based models should be conducted to
ensure overall comprehensiveness and robustness in ecotoxicity predictions.
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