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Abstract: Resveratrol (RSV), a polyphenol, is known to have a wide range of pharmacological
properties in vitro. RSV may have therapeutic value for various neurodegenerative diseases via
neuroprotective effects. However, it is not yet clear whether RSV can induce intestinal–brain interac-
tions. It is assumed that the intestinal cells may secrete some factors after being stimulated by other
substances. These secreted factors may activate nerve cells through gut–brain interaction, such as
exosomes. In this study, it was discovered that Caco-2 cells treated with RSV secrete exosomes to
activate SH-SY5Y neuronal cells. The results showed that secreted factors from RSV-treated Caco-2
cells activated SH-SY5Y. The exosomes of RSV-treated Caco-2 cells activated SH-SY5Y cells, which
was manifested in the lengthening of the nerve filaments of SH-SY5Y cells. The exosomes were char-
acterized using transmission electron microscopy and sequenced using the Illumina NovaSeq 6000
sequencer. The results showed that the miRNA expression profile of exosomes after RSV treatment
changed, and twenty-six kinds of miRNAs were identified which expressed differentially between
the control group and the RSV-treated group. Among them, three miRNAs were selected as candidate
genes for inducing SH-SY5Y neural cell activation. Three miRNA mimics could activate SH-SY5Y
neurons. These results suggested that the miRNA in intestinal exocrine cells treated with RSV may
play an important role in the activation of SH-SY5Y neurons.

Keywords: resveratrol; Caco-2 cells; exosomes; miRNA; SH-SY5Y cells

1. Introduction

Resveratrol (RSV) is an active polyphenol substance that is found in grapes and
knotweed [1–4]. Studies showed that Resveratrol had anti-inflammatory, antioxidant,
immunomodulatory, anticancer, neuroprotective, and cardioprotective properties [3,5–8].
There was a correlation between RSV levels and neuronal function [9]. RSV could protect the
central nervous system of diabetic rats induced by streptozotocin and had a neuroprotective
effect on the toxicity of amyloid β-induced hippocampal neurons in rats [10,11]. RSV could
also prevent neurotoxicity caused by kainic acid and global cerebral ischemia damage
in gerbils [12,13]. It has also been reported that RSV can exert its neuroprotective effect
through increased heme oxygenase activity [14].

Extracellular vesicles are all membrane-bound vesicles released from cells into ex-
tracellular space. Extracellular vesicles can be divided into microbubbles (100~1000 nm)
and exosomes (30~150 nm) according to their diameters. Exosomes are composed of lipid
bilayer vesicles, which contain a lot of DNA, mRNA, miRNA, protein, and other genetic
materials. The substances in exosomes can play an important role in cell proliferation
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and growth. Some studies showed that miRNA encapsulated in the exocrine body can be
transferred to the target cells, thereby transferring miRNA signals from their parent cells.
MiRNAs in the exosomes released by damaged podocytes can promote apoptosis of renal
tubular epithelial cells. MiRNA is a 20~25 nucleotides-long noncoding regulatory RNA
that is internally expressed and plays a major role as a regulator of gene expression. They
can act as silencers of gene expression at the post-transcriptional level by inhibiting mRNA
translation or mRNA degradation. In addition, miRNA can destabilize mRNA transcripts
by binding to 5′ or 3′ untranslated regions. Therefore, miRNA plays a role as a promoter of
normal basic biological processes, such as cell differentiation, proliferation, apoptosis, and
survival by manipulating target genes.

Neurogenesis plays a vital role in maintaining neuronal quantity and viability through
a process encompassing neuronal regeneration, differentiation, and synapse formation.
The production and release of neurotrophic factors, such as nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic fac-
tor (GDNF), serve as significant catalysts for neurogenesis, exerting regulatory control
over neuronal growth, survival, and differentiation. The Caco-2 cell model (Caco-2), a
human clone of colorectal adenocarcinoma cells, is used to predict the constituent’s in-
testinal absorption. This cell line is a useful research tool that can reveal that drugs or
extracellular vesicles stimulate further differentiation of nerve cells. Human SH-SY5Y
cells are commonly employed in vitro to simulate both undifferentiated and differentiated
neuronal cells. These cells exhibit the presence of dopaminergic markers, such as DAT
and tyrosine-hydroxylase (TH), and when subjected to various stimuli they demonstrate a
mature neuron-like phenotype characterized by a spindle-shaped morphology, extensive
neurite outgrowth, and heightened expression of TH and neuronal markers (e.g., neuron-
specific enolase, synaptophysin, and synaptic-associated protein-97). In this study, it was
investigated whether RSV-mediated extracellular vesicles produced by Caco-2 cells can
activate neural cells. At the same time, second-generation sequencing technology was used
to sequence miRNAs in extracellular vesicles to elucidate the molecular mechanism of
gut-brain interactions induced by miRNAs.

2. Materials and Methods
2.1. Chemicals

Resveratrol (RSV) (purity ≥ 98%) and retinoic acid (RA) (purity ≥ 98%) were pur-
chased from Sigma (St. Louis, MO, USA). TranswellTM cell culture dishes were obtained
from Corning Costar Corp (Cambridge, MA, USA). Fetal bovine serum, MEM glucose
medium, and cell culture flasks were from Gibco (Grand Island, NY, USA). Merck provided
Neuro-Chrom Pan Neuronal Marker (Billerica, MA, USA). A MiRCURY exosome cell kit
was purchased from Qiagen (Benelux B.V., Germany). The goat anti-rabbit IgG antibody
Alexa Fluor 555 was purchased from Thermo Fisher Scientific, Inc. (Waltham, MA, USA).
Exosome inhibitors (GW4869) were obtained from MedChemExpress (Monmouth Junction,
NJ, USA). Anti-CD9 antibody (ab286172), Anti-CD63 antibody (ab275273), Anti-CD81
antibody (ab286173), Anti-NEFM antibody (ab7794), and Anti-BDNF antibody (ab108319)
were obtained from Abcam (Cambridge, MA, USA).

2.2. Cell Culture

Caco-2 cells were maintained in media containing 20% fetal bovine serum (FBS), 1%
glutamax, and 1% sodium pyruvate at 37 ◦C under humidified atmospheric conditions
containing 5% CO2. SH-SY5Y cells were cultured in this medium at a 10% dilution for 24 h.
An exosome collection kit was used to isolate exosomes from RSV-treated Caco-2 cells. A
BCA protein assay kit was used to quantify exosomes. A protein equivalent to 90 ng of
exosomes was added to SH-SY5Y cells for 24 h.
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2.3. Cell Viability

Cell Counting Kit-8 (CCK-8) was used to detect the viability of Caco-2 cells. The CCK-8
cell viability detection kit contains WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-
5-(2,4-disulfobenzene)-2H-tetrazole monosodium salt). In the presence of an electronic
carrier, WST-8 is oxidized and reduced by intracellular dehydrogenase to produce water-
soluble–orange-yellow methane dye, which can be dissolved in a tissue culture medium.
The amount of methane generated is proportional to the number of living cells.

2.4. Measurement of Neurite Growth on SH-SY5Y Cells

The method for measuring the axonal growth of SH-SY5Y cells was carried out accord-
ing to our previous experimental steps [15]. In brief, 2 × 104 SH-SY5Y cells were seeded in
6-well plates. After SH-SY5Y cells were treated with culture medium or exosomes, the cells
were fixed with 4% paraformaldehyde for 15 min and then blocked with blocking buffer
for 1 h. The SH-SY5Y cells were incubated with Neuro-Chrom Pan Neuronal Markerat for
24 h. After washing three times with PBS, the SH-SY5Y cells were stained with Alexa Fluor
555 goat anti-rabbit IgG antibody at 25 ◦C for 1 h. The SH-SY5Y cells were further stained
with Hoechst 33342 for 10 min and the staining of the cells was observed under a confocal
laser scanning microscope (LSM 800, Zeiss, Germany). For quantifying the number of
neurites per cell, neurite-bearing cells were counted from at least three randomly selected
microscopic fields with an average of 40 cells per field.

Additionally, neurite length was measured from all neurite-bearing cells and the
length of each neurite was quantified by using Image J 14 (Bethesda, MD, USA). Neurite
lengths that were counted from three different images and at least 30 neurites per condition
were quantified. Independent cell culture experiments were conducted in triplicate.

2.5. Protein Expression Analysis

The expressions of β-actin, neurofilament medium polypeptide (NEFM), and brain-
derived neurotrophic factor (BDNF) were analyzed in SH-SY5Y cells via Western blot. The
method for determining protein expression follows our previous experimental steps [15].
In brief, the collected total protein was separated using a precast SDS-PAGE gel. The
separated target protein was transferred to a polyvinylidene fluoride membrane. The blots
were incubated with the primary antibody for 24 h, and they were then incubated with
the horseradish peroxidase-conjugated secondary antibody for 1 h. Protein bands were
detected using a BIO-RAD imaging system (BIO-RAD, Hercules, CA, USA).

2.6. Establishment of Caco-2 Cells Model

In 12-well Transwell polycarbonate membranes, Caco-2 cells were seeded at 105 per
well. Every other day, the medium was changed. Every day, Caco-2 cells were observed
for their morphology. When the resistance value of Caco-2 is greater than 1000 Ω, RSV as
128 µM or 256 µM was added to the apical Caco-2 cells.

2.7. Exosome Isolation

Exosomes were isolated with the miRCURY exosome cell kit (Qiagen, Benelux B.V.,
Germany) following the manufacturer’s instructions [16].

2.8. Transmission Electron Microscopy (TEM)

The TEM determination of exosomes separated with ultracentrifugation refers to our
previous experimental steps [15]. In brief, one drop of resuspended exosomes was put on a
copper mesh for 5 min. The fluid was then absorbed from the edges of the copper mesh
with filter paper. The copper mesh was stained with 1% phosphotungstic acid, 44-hydrate
for 1 min. The sample was dried for 20 min at room temperature after the staining solution
was absorbed by the filter paper. The preparations were examined under a transmission
electron microscope (FEI, Tecnai G2 Spirit BioTwin, Hillsboro, OR, USA) at an acceleration
voltage of 80 kV.
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2.9. RNA Sequencing (RNA-seq) and Bioinformatic Analysis

RNA was extracted using the RNeasy Micro Kit (Qiagen, Benelux B.V., Germany)
following the guidelines provided by the manufacturer. To assess the quality of RNA, an
Agilent 2100 Bioanalyzer was employed. To compare the control and experimental samples,
we computed ratios based on the normalized signal intensities of every probe. TargetScan
(http://www.targetscan.org/, accessed on 7 September 2021) was utilized to predict the
target genes of miRNAs. We evaluated the pertinent functional classifications by utilizing
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).

2.10. Preparation of miRNA Mimics

miR-199a-3p mimics, miR-215-5p mimics, miR-105-5p mimics, and the corresponding
negative controls used were synthesized by GenePharma (Shanghai, China). The miRDB
database contains the specific sequences of three miRNAs (https://mirdb.org/, accessed
on 5 January 2022).

miR-199a-3p (ACAGUAGUCUGCACAUUGGUUA);
miR-215-5p (AUGACCUAUGAAUUGACAGAC);
miR-105-5p (UCAAAUGCUCAGACUCCUGUGGU).
MiRNA mimics were transfected into cells to enhance miRNA activity.

2.11. Statistical Analysis

The data are presented as means and standard deviations. Using one-way ANOVA
and Duncan’s multiple comparisons, we analyzed the differences among treatment groups.
Statistical significance was considered at p < 0.05.

3. Results
3.1. The Medium of Caco-2 Cells Treated with Resveratrol (RSV) Could Induce Neurite Outgrowth
in SH-SY5Y Cells

To investigate the activation of neurons via RSV, we utilized RSV-treated Caco-2 cell
culture media to stimulate neuronal cells and assess neurite growth. The results of cell
viability indicated that the viability of Caco-2 cells remained unaffected by 256 µM RSV
(Figure 1A). In the culture of SH-SY5Y cells, a 10% dilution of the RSV-treated Caco-2 cell
medium was utilized. As a positive control, retinoic acid (RA) was utilized. According
to Figure 1B,C, the Caco-2 cell culture medium exhibited a remarkable ability to enhance
the growth of neurites in SH-SY5Y cells and significantly increased the expression levels
of BDNF and NEFM in the RSV treatment group and the RA treatment group, when
compared to the control group. BDNF promotes neuronal differentiation, growth, and
survival (Figure 1D–F). Interestingly, Caco-2 cells induced via RSV may secrete factors that
promote SH-SY5Y cell neurite growth.

3.2. Neurite Growth Was Induced in SH-SY5Y Cells by Factors Released from RSV-Treated
Caco-2 Cells

Factors released by Caco-2 cells treated with RSV stimulated the growth of neurites in
SH-SY5Y cells. RSV was added to TranswellTM dishes containing cultured Caco-2 cells.
Cytokines were gathered in a limited quantity of cell culture medium on the lower side.
Figure 2A,B demonstrated that the application of RSV to the Caco-2 cell culture medium
stimulated the development of neurites in SH-SY5Y cells. This medium also caused the
induction of BDNF and NEFM in SH-SY5Y cells, as shown in Figure 2C–E. Secretory
factors released by RSV-treated Caco-2 cells could potentially trigger nerve cell activation,
facilitating intestinal–brain interactions caused by RSV.

http://www.targetscan.org/
https://mirdb.org/
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Figure 1. The culture medium of Caco-2 cells could activate SH-SY5Y cells. (A) The effects of 
different concentrations of RSV (8~256 µM) on Caco-2 cell viability. (B) Representative fluorescence 
images of SH-SY5Y were taken with a confocal laser microscope, scale bars: 100 µm. (C) Neuro-
filament medium polypeptide was quantitatively determined via Image J. (D–F) The expression of 
brain-derived neurotrophic factor (BDNF) and neurofilament medium polypeptide (NEFM) was 
measured. Values are presented as the means ± SD where applicable (n = 6). Differences were con-
sidered significant when the p value was < 0.05 (* p < 0.05, ** p < 0.01). The normal group without 
any treatment was treated as the control group. The RA group with retinoic acid treatment was 

Figure 1. The culture medium of Caco-2 cells could activate SH-SY5Y cells. (A) The effects of different
concentrations of RSV (8~256 µM) on Caco-2 cell viability. (B) Representative fluorescence images
of SH-SY5Y were taken with a confocal laser microscope, scale bars: 100 µm. (C) Neurofilament
medium polypeptide was quantitatively determined via ImageJ version 1.54. (D–F) The expression
of brain-derived neurotrophic factor (BDNF) and neurofilament medium polypeptide (NEFM) was
measured. Values are presented as the means ± SD where applicable (n = 6). Differences were
considered significant when the p value was <0.05 (* p < 0.05, ** p < 0.01). The normal group without
any treatment was treated as the control group. The RA group with retinoic acid treatment was
treated as the positive group. The RSV (128 µM) group and RSV (256 µM) group were treated as the
experimental groups.
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Figure 2. Activation of SH-SY5Y cells by factors released from Caco-2 cells cultured on permeable
supports. (A) Representative fluorescence images of SH-SY5Y were taken with a confocal laser micro-
scope, scale bars: 100 µm. (B) Neurofilament medium polypeptide was quantitatively determined via
ImageJ version 1.54. (C–E) The expression of BDNF and NEFM was measured. Values are presented
as the means ± SD where applicable (n = 6). Differences were considered significant when the p value
was <0.05 (* p < 0.05, ** p < 0.01).

3.3. SH-SY5Y Cell Neuritis Was Induced by Exosomes Produced from RSV-Treated Caco-2 Cells

Exosomes produced from RSV-treated Caco-2 cells were isolated using a kit designed
for exosome collection. Exosomes were characterized using transmission electron mi-
croscopy. Figure 3A illustrates the utilization of transmission electron microscopy for the
characterization of every exosome group. To compare the exosome abundance, the con-
centrations of extracellular vesicle markers, namely CD9, CD63, and CD81, in the purified
exosome sample were quantified using ELISA. Compared to the control, the amount of
CD9, CD63, and CD81 markers increased in a concentration-dependent manner in the
RSV-treated samples as well as in the RA-treated one as a positive control (Figure 3B–D).
After being exposed to exosomes for a duration of 24 h, the findings from Figure 3E,F
indicated a notable enhancement in neurite growth among SH-SY5Y cells when treated
with 128 µM and 256 µM RSV. Compared to the control cells (Figure 3G–I), the exosomes
stimulated the expression of BDNF and NEFM in SH-SY5Y cells. This study showed that
exosomes generated by Caco-2 cells treated with RSV have a notable ability to enhance the
growth of neurites in SH-SY5Y cells.

3.4. SH-SY5Y Cells Could Not Be Activated after the Production of Exosomes Was Inhibited

GW4869 is an exosome inhibitor, which can inhibit the formation of exosomes. GW4869
was used to inhibit the production of exosomes. As shown in Figure 4A, GW4869 could sig-
nificantly inhibit the production of extracellular vesicles by cells. To compare the exosome
abundance, CD9, CD63, and CD81 in the purified exosome sample were quantified using
ELISA. RSV treatment alone increased CD9, CD63, and CD81 concentrations; however, the
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addition of GW4869 with RSV decreased them to a negative control level (Figure 4B–D).
The result showed that inhibitors can inhibit the production of exosomes. Furthermore,
compared with the control group, there was no significant difference in the synaptic length
of SH-SY5Y cells (Figure 4E,F), indicating that SH-SY5Y cells were not activated in the
preparation group. Compared with the control group, the protein in the inhibitor group
exhibited no significant difference (Figure 4G–I). The results showed that Caco-2 cells
activated SH-SY5Y cells by producing exosomes.
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Figure 3. Activation of SH-SY5Y cells by exosomes derived from Caco-2 cells. (A) Exosomes were
characterized via transmission electron microscopy, scale bars: 100 nm. (B–D) The concentration of
CD9, CD63, and CD81 in the sample containing the purified exosomes was quantified with ELISA.
(E) Representative fluorescence images of SH-SY5Y were taken with a confocal laser microscope, scale
bars: 100 µm. (F) Neurofilament medium polypeptide was quantitatively determined via ImageJ
version 1.54. (G–I) The expression of BDNF and NEFM was measured. Values are presented as the
means ± SD where applicable (n = 6). Differences were considered significant when the p value was
<0.05 (* p < 0.05, ** p < 0.01).
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Figure 4. SH-SY5Y cells could not be activated after the production of exosomes was inhibited.
(A) Exosomes were characterized with transmission electron microscopy, scale bars: 100 nm. (B–D)
The concentrations of CD9, CD63, and CD81 in the sample containing the purified exosomes were
quantified with ELISA. (E) Representative fluorescence images of SH-SY5Y were taken with a confocal
laser microscope, scale bars: 100 µm. (F) Neurofilament medium polypeptide was quantitatively
determined via ImageJ version 1.54. (G–I) The expression of BDNF and NEFM were measured.
Values are presented as the means ± SD where applicable (n = 6). Differences were considered
significant when the p value was <0.05 (* p < 0.05, ** p < 0.01). Compared to control; ns means no
significant difference (p > 0.05).
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3.5. Analysis of Exosome miRNA Expression Profiles

To investigate the molecular mechanism through which exosomes activate SH-SY5Y
cells, an analysis of exosomes’ miRNA expression profile was conducted. In the treat-
ment group and the control group, 26 miRNAs showed differential expression with 11
up-regulated and 15 down-regulated. In the group treated with 256 µM RSV, 25 miRNAs
showed differential expression compared to the control group. Out of these, 21 miRNAs
were up-regulated while 4 miRNAs were down-regulated (Figure 5). The target genes of
these different miRNAs were predicted using TargetScan, and an analysis of GO enrichment
was performed on them. Target genes primarily pertain to cellular processes, metabolic
processes, and biological regulation in the context of biological process classification. Cell
membranes and organelles are the primary focus of the target genes when considering cell
components. Approximately half of the genes in the molecular function study exhibited
antioxidant activity, while the majority of genes were engaged in catalysis (Figure 6A,C).
Based on pathway categorization, there was a notable enrichment of both dynactin com-
plexes and the binding of transcription coactivators (Figure 6B,D). miRPath was used to
analyze the miRNA target genes and identify KEGG-enriched biological pathways. The
majority of the target genes of the selected 30 miRNAs were involved in the AMPK signal-
ing pathway, cholinergic synapse, phospholipase D signaling pathway, and ras signaling
pathway (Figure 7A–D). The majority of the target genes of the selected 14 miRNAs were
involved in ‘Parkinson’s disease’, ‘Alzheimer’s disease’, ‘function in synaptic vesicle exocy-
tosis’, ‘phospholipase D signaling pathway’, ‘glutathione metabolism’, and ‘axon guidance’
(Table 1). The results showed that miRNAs in exosomes obtained from RSV-treated Caco-2
cells activate neuronal cells through their target genes.
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Figure 5. Expression profile analysis of exosome miRNAs.

Among the altered miRNAs, the focus was on miR-199a-3p, miR-215-5p, and miR-105-
5p. These miRNAs are associated with neuronal activation. We evaluated the activation
of SH-SY5Y cells after treatment with miR-199a-3p, miR-215-5p, and miR-105-5p mimics.
Compared with the control group, all three simulants activated SH-SY5Y cells (Figure 8A,B).
At the same time, the protein expression in SH-SY5Y cells was significantly increased after
treatment with three simulants (Figure 8C–E). These data indicate that the miRNA in the
exosomes derived from Caco-2 is partially involved in the activation of nerve cells.
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control group. 

Figure 6. Gene ontology (GO) analysis of differentially expressed miRNA targets. (A) GO classifica-
tion analysis between RSV (128 µM) group and control group. (B) The top 30 GO terms for the target
genes of differentially expressed miRNA between RSV (128 µM) group and control group. (C) GO
classification analysis between RSV (256 µM) group and control group. (D) The top 30 GO terms for
the target genes of differentially expressed miRNA between RSV (256 µM) group and control group.
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Figure 7. Kyoto encyclopedia of genes and genomes (KEGG) analysis of differentially expressed
miRNA targets. (A) KEGG classification analysis between RSV (128 µM) group and control group.
(B) The top 30 KEGG terms for the target genes of differentially expressed miRNA between RSV
(128 µM) group and control group. (C) KEGG classification analysis between RSV (256 µM) group
and control group. (D) The top 30 KEGG terms for the target genes of differentially expressed miRNA
between RSV (256 µM) group and control group.
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Table 1. Functions of target genes of miRNA in exosomes derived from RSV-treated Caco-2 cells.

miRNA Function of Target Genes

miR-122-5p Transduction of nerve signals
miR-199a-3p Parkinson’s disease
miR-199b-3p Role in development of nervous system
miR-320c Neurodegeneration
miR-215-5p The neurexin family
miR-146b-3p AMPK signaling pathway
miR-199a-5p Ras signaling pathway
miR-432-5p Function in synaptic vesicle exocytosis
miR-105-5p Neurodegenerative disorder
miR-199b-5p Alzheimer’s disease
miR-411-5p Axon guidance
miR-483-3p Phospholipase D signaling pathway
miR-6808-3p Cholinergic synapse
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Figure 8. The miRNA in exosomes could activate SH-SY5Y cells. (A) Representative fluorescence im-
ages of SH-SY5Y were taken with a confocal laser microscope, scale bars: 100 µm. (B) Neurofilament
medium polypeptide was quantitatively determined via ImageJ version 1.54. (C–E) The expression of
BDNF and NEFM were measured. Values are presented as the means ± SD where applicable (n = 6).
* p < 0.05 was considered to indicate a statistically significant difference (* p < 0.05; ** p < 0.01).
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4. Discussion

Some food ingredients have been shown to affect brain cognitive function, including
curcumin, retinoids, and carnosine [17,18]. RSV is a dietary compound with chemo-
preventative activity. Studies showed that RSV has effective pharmacological activity and
the potential to treat a variety of diseases, including inflammation, diabetes, cardiovascular
disease, neurodegeneration, tumors, and cancers [19–24]. Many aspects of the molecular
mechanism for food-induced gut–brain interactions have been studied, including the direct
delivery of food components to the brain. In addition, there are the secretion factors of
intestinal cells activated by food ingredients and the delivery of immune cells produced
from intestinal cells activated by food ingredients. In addition to the studied direct effects
of RSV on the brain, RSV may play a protective role through indirect effects. Therefore, we
hypothesized that RSV may activate intestinal cells to secrete factors and induce intestinal–
brain interactions.

Exosomes are a concern for many scientific researchers. In particular, food-induced
exosomes have been considered for the treatment of diseases [25]. Studies showed that
both imidazole dipeptide carnosine and γ-Aminobutyric acid can induce the secretion
of exosomes, thereby activating the axon extension in SH-SY5Y cells [26,27]. Our study
focused on the exosomes secreted by RSV-treated Caco-2 cells, which can induce neurite
extension in SH-SY5Y cells. First, SH-SY5Y cell neurites grow more rapidly in a Caco-2
medium containing RSV. Second, Caco-2 cells were cultured in a Transwell polycarbonate
membrane, and the collected fluid can also promote SH-SY5Y neurite growth. Finally, TEM
was used to identify the collected exosomes, which can also be used to promote neurite
growth in SH-SY5Y cells. Compared with RSV-stimulated Caco-2 cell culture medium,
400 nm Transwell polycarbonate membrane blocks the passage of organic macromolecules
larger than 400 nm. The Transwell polycarbonate membrane only allows the passage of
exosomes and small molecules smaller than 400 nm, allowing researchers to further focus
on the experimental subject. The exosome collection kit was used to further confirm that
exosomes smaller than 400 nm play a role in activating nerve cells. The innovation of this
study is to focus on the exosomes produced by RSV-stimulated Caco-2 cells according
to normal cell culture medium, Transwell polycarbonate membrane filtered cell culture
medium, and an exosome collection kit, and to detect miRNA in exosomes. Overall,
the results indicated that RSV can induce the secretion of exosomes from intestinal cells.
Exosomes can play a role by transporting exosomes to the central nervous system through
the bloodstream, penetrating the blood–brain barrier, and activating nerve cells in the
brain. In their seminal study, Alvarez Erviti et al. pioneered the utilization of exosomes
as a vehicle for gene transfer [28]. Specifically, they employed brain-targeted exosomes to
administer BACE1 siRNA, with the aim of addressing Alzheimer’s disease. Remarkably,
these extracellular vesicles not only exhibited commendable efficacy in delivering the
therapeutic cargo to cells in vitro, but also elicited a substantial reduction in both BACE1
mRNA and protein levels upon intravenous administration, primarily within the midbrain,
cortex, and striatum. The capacity of extracellular vesicles to traverse the blood–brain
barrier may be intricately linked to the process of RVG-mediated endocytosis. Additionally,
research suggests that exosomes have the ability to internalize within multivesicular bodies
and subsequently rerelease, thereby exerting their effects [29]. This phenomenon could
potentially serve as an alternative mechanism through which extracellular vesicles traverse
multiple layers of the blood–brain barrier. However, further evidence is necessary to fully
elucidate the precise mechanism. In this study, RSV was able to induce the production of
exosomes in Caco-2 cells. Since exosomes can cross the blood–brain barrier to exert their
effects. We have reason to suspect that certain substances in exosomes may play a positive
role in activating neurons. This study can provide a novel insight into the treatment of
neurological diseases. So, we need to conduct detailed research on exosomes. We used
second-generation sequencing methods to sequence miRNAs in exosomes. RSV-induced
Caco-2 cells produced miRNA and exosomes that were analyzed for expression profiles.
Compared with the control group, the expression of miRNA in the RSV treatment group
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changed significantly. Target genes of differentially expressed miRNAs were enriched via
GO and KEGG, and were mainly enriched in multiple signaling pathways, such as the
AMPK signaling pathway, cholinergic synapse, phospholipase D signaling pathway, and
ras signaling pathway. We selected several differentially expressed miRNAs (miR-199a-3p,
miR-215-5p, and miR-105-5p) according to the literature [30–32]. We used three miRNA
mimics to intervene in SH-SY5Y cells and found that the three miRNAs can activate SH-
SY5Y cells. The above data indicate that RSV can induce Caco-2 cells to produce exosomes.
These exosomes contain some specific miRNAs that can activate SH-SY5Y nerve cells.
Collectively, the aforementioned studies furnish compelling theoretical substantiation for
the auspicious prospects of extracellular vesicles in facilitating gene transmission within
the brain.

5. Conclusions

RSV-activated Caco-2 cells induced activation of SH-SY5Y cells via the release of
exosomes. The miRNA expression profile of exosomes after RSV treatment changed, and
26 kinds of miRNAs expressed differentially between the control group and the RSV-treated
group. The miRNAs in the exosomes of RSV-treated intestinal cells may play a key role in
the activation of neuronal cells (Figure 9).
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