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Abstract: Florfenicol (FLO) is a widely used antibacterial drug, which is often detected in the
environment. In this paper, the photolysis mechanism of FLO in water was investigated using density
functional theory (DFT) and time-dependent density functional theory (TDDFT). The focus of the
study is to elucidate the direct photolysis mechanism of FLO in the water environment and the
indirect photolysis of free radicals (·OH, ·NO3, and ·SO4

−) as active species. The effect of metal ions
Ca2+/Mg2+/Zn2+ on the indirect photolysis was also investigated. The results show that the direct
photolysis of FLO involves C–C/C–N/C–S bond cleavage, the C5–S7 bond cleavage is most likely to
occur, and the C17–C18 cleavage reaction is not easy to occur during the direct photodegradation of
FLO. The indirect photolysis of FLO is more likely to occur in the environment than direct photolysis.
The main indirect photolysis involves OH-addition, NO3-addition, and SO4-addition on benzene
ring. The order of difficulty in the indirect photolysis with ·OH is C2 > C3 > C4 > C5 > C6 > C1,
Ca2+ can promote the indirect photolysis with ·OH, and Mg2+/Zn2+ has a dual effect on the indirect
photolysis with ·OH. In other words, Mg2+ and Zn2+ can inhibit or promote the indirect photolysis
with ·OH. These studies provide important information for theoretical research on the environmental
behavior and degradation mechanism of drug molecules.

Keywords: antibacterials; florfenicol; photolysis; metal ion influence; DFT

1. Introduction

Florfenicol (FLO) is a broad-spectrum chloramphenicol antibiotic widely used in the
prevention and treatment of bacterial diseases, which can inhibit or eliminate the growth
of microorganisms [1–5]. During aquaculture, FLO, as a pharmaceutical feed, is usually
leached directly or released into the aquatic environment with feces [6,7]. The average and
maximum concentration of FLO in the water around the farm is 0.42 and 2.84 µg/L, and
the maximum concentration in the Huangpu River is 46.6 ng L−1 [8,9]. Its residues are
likely to lead to the development and spread of drug-resistant bacteria/resistance genes,
which in turn limits the treatment options for human infections [10,11].

Since FLO exists in water for a long time and may pose a threat to the aquatic en-
vironment and food safety, there is an urgent need to investigate its chemical behavior
in water to evaluate its risks [12,13]. The degradation of FLO in water mainly includes
hydrolysis, biodegradation, and photolysis [14–16]. Photolysis can be divided into direct
photolysis and indirect photolysis. Direct photolysis means that substances directly absorb
light energy for decomposition reactions. During the indirect photolysis process, FLO can
react with ·OH, O3, 1O2, and other reactive oxygen species in the water environment [17].
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Direct and indirect photolysis play an indispensable role in the environmental behavior of
drugs [14,18].

In recent years, some studies have focused on the degradation behavior of FLO under
UV/H2O2, UV/Fe (II), and UV/Na2S2O3 conditions [18,19]. Xu et al. [20] studied the
degradation behavior of FLO and its metabolites under different soil and natural conditions
based on a simple method. In the past, photocatalysis has been shown to be an efficient
treatment for the removal of aquaculture antibiotics, and it is necessary to consider changes
in toxicity due to FLO decomposition [21,22]. Liu et al. [18] concluded that the toxicity of
final products of FLO by UV irradiation was lower than FLO. UV irradiation-activated
persulfate process can effectively control the toxicity of FLO degradation [19]. Meanwhile,
photolysis is dramatically affected by environmental factors such as the type of light, pH,
or antibiotic initial concentration [21,23,24]. Jiang et al. [25] considered that the superior
stability and low concentration of C–F bonds in FLO hindered its degradation, and the
degradation products may be as active/toxic as FLO. GE et al. [24] studied the effects of
Cl−, humic acid (HA), and other water components on the photodegradation of antibiotics;
under UV–visible irradiation, Cl− can promote the formation of 1O2 and accelerate the
photodegradation of phenols, while under simulated solar irradiation, its photodegra-
dation is not related to Cl−; HA inhibits photolysis under UV–visible irradiation, but it
can undergo photosensitive degradation under simulated solar irradiation. Laboratory
experiments are time-consuming, laborious, and costly, and it is difficult to decipher all the
pathways of organic pollutant degradation in a short time. More importantly, theoretical
calculations can find the intermediate products of the reaction process, which is difficult to
achieve with laboratory experiments. As a result, there is a lack of computational research
on the water environment behavior of FLO, especially the photodegradation behavior
in water environment, which has guiding significance and verification function for the
laboratory study.

By the means of quantum chemical calculation, this study intends to use density
functional theory (DFT) and time density functional theory (TDDFT) to explore the photo-
chemical transformation process of FLO in water environment [26–30]. The focus of the
study is to elucidate the direct photolysis mechanism of FLO in water and the indirect
photolysis of free radicals (·OH, ·NO3, ·SO4

−) as active species. In addition, the effects of
different metal ions (Ca2+/Mg2+/Zn2+) on the indirect photodegradation of FLO and ·OH
were also studied. The computational methods employed in this research provide valuable
insights into the photodegradation pathways and reactive intermediates involved in the
photolysis of FLO in aqueous environments. Additionally, these findings contribute to a
better understanding of the environmental fate and the potential remediation strategies of
FLO contaminants.

2. Computational Methods

The calculations in this study were performed using the Gaussian 16 quantum chem-
istry software package [31,32]. The DFT/TDDFT has been extensively tested and validated
against experimental data and has been shown to provide reliable predictions for the photol-
ysis behavior of a variety of organic compounds [33–36]. Based on the B3LYP/6-311+G (d,p)
level, DFT and TDDFT were used to optimize the stable structures of FLO in the ground
state (S0) and the lowest excited triplet state (T1), respectively [37–39]. The intrinsic reaction
coordinate (IRC) was used to analyze and verify the specified reactants (R) and products
(P) for each transition state (TS) linkage [40]. In all calculations, the solvent effect in water
is taken into account, and the integral equation in the form of the polarized continuum
model (IEFPCM) is used [39]. At the B3LYP/6-311+G(d,p) level, TDDFT theory is used
to calculate the electronic absorption spectra of monomer FLO and metal ion complexes
FLO–Ca2+/FLO–Mg2+/FLO–Zn2+ in water [41,42]. The photodegradation mechanism of
FLO in aqueous solution was analyzed by calculating the atomic charge and electron spin
density based on natural bond orbital (NBO) at the B3LYP/6-311+G (d,p) level of theory. It
mainly includes direct photodegradation (C–C bond cleavage, C–N bond cleavage, C–S
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bond cleavage), indirect photodegradation with free radicals (·OH, ·NO3, ·SO4
−) in water,

and indirect photodegradation with ·OH under the effect of metal Ca2+/Mg2+/Zn2+.
The structures of Rs (reactants), TSs (transition states), and Ps (products) during the

direct and indirect photolysis were optimized at the B3LYP/6-311+G(d,p) level. As T1 state
has been found to be a precursor of photochemical reactions that exists for a long time,
the calculation of photodegradation processes in this paper is carried out in T1 state [16].
Through the calculation and analysis of TS vibration, it is ensured that there is only one
imaginary frequency. All the calculated activation energy (Ea) and enthalpy changes (∆H)
of the reaction are modified by zero–point energy.

3. Results and Discussion
3.1. Optimized Geometry of FLO

Figure 1a shows the optimized geometry of FLO. The calculation results indicate that
although the benzene ring is symmetrical, the bond lengths are not the same. For example,
the C2–C3 bond (1.466 Å) is longer than the C2–C1 bond (1.434 Å), and the C5–C4/C4–C3
bond (1.470 Å / 1.356 Å) is shorter than the C5–C6/C6–C1 bond (1.473 Å / 1.360 Å).
Figure 1b shows the electronic absorption spectra of FLO. The calculated maximum ab-
sorption wavelength of FLO is 229 nm. Experimental results show that the maximum
absorption wavelength of FLO is 224 nm [11]. This indicates that the theoretical calculation
results are consistent with the experimental results. Due to absorption by the atmosphere,
the shortest wavelength of solar radiation reaching the Earth’s surface is 290 nm [43]. In
natural water, FLO can partially undergo direct photodegradation to a certain extent.
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Figure 1. (a) Optimized geometries of FLO along with selected bond lengths (Å) and (b) calculated
electronic absorption spectra of monomer FLO and complexes FLO–Ca2+/FLO–Mg2+/FLO–Zn2+

with maximum absorption wavelength (nm).

3.2. Direct Photolysis of FLO in Water

The direct photodegradation pathway of FLO in water with four reaction sites is
shown in Figure S1. Figure S2 shows the optimized geometries of Rs, TSs, and Ps for the
four reaction sites. The distance between the two sites of the broken bonds in the TSs
for the four reaction sites is 1.799–2.100 Å. The ∆H values show that the cleavage of C11–
C13/C5–S7 bond (Path 1/Path 4) is exothermic, and the cleavage of C13–N16/C17–C18
bond (Path 2/Path 3) is endothermic. The C11–C13 bond cleavage (Path 1) released the
most heat (∆H = −36.2 kcal/mol), indicating that the products P1a and P1(b) were the
most stable.

Pathways 1, 2, 3, and 4 involve C11–C13, C13–N16, C17–C18, and C5–S7 bond cleavage
(Path 1, Path 2, Path 3, and Path 4). The energy barrier diagram of the direct photolysis
of FLO is shown in Figure 2. The Ea values of C11–C13/C13–N16/C5–S7 bond cleav-
age (Path 1/Path 2/Path 4) of FLO in T1 state are 10.0 kcal/mol, 35.0 kcal/mol, and
2.0 kcal/mol, respectively, which were obviously lower than the cleavage of C17–C18 bond
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(Ea = 94.8 kcal/mol) (Path 3). The relatively high Ea value (94.8 kcal/mol) indicates that the
C17–C18 cleavage reaction (Path 3) does not easily occur during the direct photodegrada-
tion of FLO. The Ea value (2.0 kcal/mol) for the C5–S7 bond cleavage (Path 4) is the lowest
among all the four paths, indicating that C5–S7 bond cleavage (Path 4) is most likely to
occur in direct photodegradation, and this reaction produces P4a and P4b products.
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3.3. Indirect Photolysis of FLO in Water
3.3.1. Indirect Photolysis Mechanism of FLO and ·OH

Six reaction pathways of FLO with ·OH in water were predicted, and the reaction
type of these pathways was ·OH addition reaction (Figure 3). By calculation, the reactions
at the C1, C2, C3, C4, C5, and C6 sites on the benzene ring were predicted to be likely to
occur. Figure S3 shows the optimized geometries of Rs, TSs, and Ps at six reaction sites. The
distance between ·OH and the six reaction sites in the TSs of FLO is 2.011–3.006 Å. Figure 3
shows that all the reaction pathways (Path C1, Path C2, Path C3, Path C4, Path C5, and Path
C6) are exothermic, and the ∆H values range from −2.7 kcal/mol to −41.3 kcal/mol. The
addition reaction (Path C5) at the C5 site is the most exothermic (∆H = −41.3 kcal/mol),
indicating that the generated products C5_Pa and C5_Pb are the most stable.

OH is predicted to attack six C sites on the benzene ring (Path C1, Path C2, Path C3,
Path C4, Path C5, and Path C6) to generate C1_P, C2_P, C3_P, C4_P, C5_P, and C6_P. Zhang
et al. [17] also detected that phenolic products were formed after the electrophilic attack
of ·OH at the C site of benzene ring in FLO photodegradation experiments. The reaction
of ·OH attacking at the C2 site (Path C2) releases the least heat (∆H = −2.7 kcal/mol). Ea
values range from 2.7 kcal/mol to 7.8 kcal/mol, and lower Ea values indicated that ·OH
promotes the photolysis of FLO, which is consistent with the results of Li et al. [44]. The
Ea value for ·OH (Path C1) attacking at the C1 reaction site is the lowest (2.7 kcal/mol),
indicating that this reaction is the easiest to occur and most conducive to the formation of
C1_P. In addition, since the Ea value (7.8 kcal/mol) for ·OH attacking at C2 (Path C2) is the
maximum value of all the reactions of ·OH attacking at FLO, Path C2 is not conducive to
occur. A similar reaction was also shown at the C3 site. The Ea value for ·OH attacking at
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the C3 site (Path C6) is 7.3 kcal/mol. The data with little difference indicate that C2_P and
C3_P are likely to be generated simultaneously
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3.3.2. Indirect Photolysis Mechanism of FLO and ·NO3

Three possible pathways (Path C1N, Path C4N, and Path C6N) of the indirect pho-
todegradation of FLO by ·NO3 in water are shown in Figure 4, and the reaction type of these
pathways is an addition reaction. There are three possible reaction sites on the benzene
ring: C1, C4, and C6. Figure S4 shows the geometric optimization of Rs, TSs, and Ps for the
three reaction sites. The distance between ·NO3 and the three reaction sites in the TSs is
1.711–1.866 Å. Figure 4 shows that the three reaction pathways (Path C1N, Path C4N

, and
Path C6N) are endothermic, with ∆H values ranging from 4.4 kcal/mol to 4.8 kcal/mol.
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Figure 4. Indirect photodegradation pathways of FLO with ·NO3, along with computed activation
energies (Ea, kcal/mol) and enthalpy change (∆H, kcal/mol).

The relatively low Ea value (5.5 kcal/mol) indicates that ·OH is most likely to react at
the C1 site (Path C1N) and is most conducive to the formation of C1N_Pa. Similar reactions
were also shown at the C4 and C6 sites. The Ea values for adding ·OH at the C4 site (Path
C4N) and C6 site (Path C6N) are 6.1 kcal/mol and 5.9 kcal/mol, respectively. The data with
little difference show that sites C1, C4, and C6 are beneficial to react with ·OH.

3.3.3. Indirect Photolysis Mechanism of FLO and ·SO4
−

Four possible pathways (Path C1S, Path C3S, Path C4S, and Path C6S) of the indirect
photodegradation of FLO with ·SO4

− in water are shown in Figure 5, and the reaction type
is an addition reaction. Figure S5 shows the optimized geometries of Rs, TSs, and Ps for
the four reaction sites. The distance between ·SO4

− and the four reaction sites in the TSs is
1.910–1.964 Å. All the pathways (Path C1S, Path C3S, Path C4S, and Path C6S) are predicted
to be endothermic, with ∆H ranging from 4.5 kcal/mol to 8.2 kcal/mol (Figure 5).
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The lowest Ea value (12.7 kcal/mol) for Path C6S among all the four pathways indicates
that ·OH is most likely to react at the C6 site and is most conducive to the formation of
C6S_Pa. The Ea value for adding ·SO4

− to the C1 site was 15.9 kcal/mol (Path C1S), which
is the maximum value of all the four pathways. This indicates that the reaction of ·SO4

−

attacking at the C1 site (Path C1S) is not conducive to proceed.

3.3.4. Optimized Geometries of Complexes FLO–Ca2+/FLO–Mg2+/FLO–Zn2+

Figure S6 shows the optimized geometries of complexes FLO–Ca2+/FLO–Mg2+/FLO–
Zn2+. The calculation results show that the bond lengths of the complexes are different from
those of the monomer FLO. For example, the bond lengths of S7–O9/ S7–C5/C2–C11 in
complex FLO–Mg2+ are longer than those of FLO, conversely, the bond lengths of C11–C13
in complex FLO–Mg2+ are shorter than those of FLO (Figures 1a and S9).

Figure 1b shows the electronic absorption spectra of complexes FLO–Ca2+/FLO–
Mg2+/FLO–Zn2+ in water at the TDDFT/B3LYP/6-311+G(d,p) level of theory. The bond
length of Ca–O8 in the complex FLO–Ca2+ is the longest (2.329 Å) and the maximum
absorption wavelength is the smallest (189 nm) among all the three metal ions complexes.
The bond length of Zn–O8 in the complex FLO–Zn2+ is the shortest (1.926 Å), and the
maximum absorption wavelength is the largest (238 nm).

Compared with the monomer, there is a blue shift in the maximum electron absorbance
peak position of complex FLO–Ca2+, while there is a red shift in those of the complexes
FLO–Mg2+/FLO–Zn2+. Therefore, the metal ions Ca2+/Mg2+/Zn2+ have an effect on
the structure and UV absorption spectrum of FLO and may also have an effect on the
photodegradation of FLO.

3.3.5. Indirect Photolysis of Complexes FLO–Ca2+/FLO–Mg2+/FLO–Zn2+ with ·OH

Mechanism of Indirect Photolysis of Complex FLO–Ca2+ with ·OH in Water

Figure S7 shows the optimized geometries of complex FLO–Ca2+. Results show that
the complex FLO–Ca2+ has four possible geometries. By calculating the minimum value of
the potential energy surface, the most stable geometric structure (FLO–Ca2+–OPT3) with
the lowest single-point energy is obtained among the four structures (Figure S8). All of the
following calculations are based on the FLO–Ca2+–OPT3 structure.

Two possible pathways (Path C3Ca and Path C4Ca) of the indirect photolysis of complex
FLO–Ca2+ with ·OH are shown in Figure 6, and the reaction type is an addition reaction.
There are two possible reaction sites on the benzene ring: C3 and C4. Figure S7 shows the
optimized geometries of Rs, TSs, and Ps for the two reaction sites. The distance between
·OH and the two reaction sites in the TSs is 2.028 and 2.033 Å, and the difference is very
small. Both the two pathways (Path C3Ca and Path C4Ca) shown in Figure S7 are exothermic,
with ∆H values ranging from −8.8 to −9.3 kcal/mol.

The lower Ea value (3.8 kcal/mol) indicates that ·OH is more likely to react at the C3
site (Path C3Ca) than that at the C4 site. The Ea value for adding ·OH to the C4 site (Path
C4Ca) is 4.3 kcal/mol. For the complex FLO–Ca2+, the calculated Ea values for the two
pathways by ·OH (Path C3Ca and Path C4Ca) are lower than that for the indirect photolysis
of monomer FLO. This indicates that Ca2+ can promote the ·OH addition reaction at C3
and C4 sites. In addition, as shown in Figure 3, ·OH is more prone to attack the C4 site than
the C3 site for the indirect photolysis of monomer FLO. However, in the presence of Ca2+,
the Ea value for adding ·OH to the C3 site (Path C3Ca, Ea = 3.8 kcal/mol) is lower than that
for the C4 site (Path C4Ca, Ea = 4.3 kcal/mol). This indicates that Ca2+ can change the main
indirect photolysis pathway of FLO.
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Indirect Photodegradation Mechanism of Complex FLO–Mg2+ and ·OH in Water

The optimized geometries of complex FLO–Mg2+ are shown in Figure S9. The results
show that complex FLO–Mg2+ has five possible geometries. The most stable geometric
structure (FLO–Mg2+–OPT4 structure) with the lowest single-point energy is obtained among
the five structures (Figure S9). All calculations are based on the FLO–Mg2+–OPT4 structure.

Four possible pathways (Path C3Mg, Path C4Mg, Path C5Mg, and Path C6Mg) of the
indirect photodegradation of complex FLO–Mg2+ with ·OH are shown in Figure 7, and
the reaction type of these pathways is an addition reaction. Four reaction sites (C3, C4, C5,
and C6) on the benzene ring were predicted to undergo reactions. Figure S10 shows the
optimized geometries of Rs, TSs, and Ps for these four reaction sites. The distance between
·OH and the four reaction sites in the TSs is 1.998–2.049 Å. Figure 7 shows that the ∆H
values for all the pathways (Path C3Mg, Path C4Mg, Path C5Mg, and Path C6Mg) range from
−6.4 kcal/mol to −36.4 kcal/mol, and the four pathways are exothermic. The ∆H value
(−36.4 kcal/mol) for ·OH attacking at the C5 site is the lowest among the four pathways,
indicating that the products C5Mg_Pa and C5Mg_Pb are the most stable.

The Ea value (2.9 kcal/mol) for Path C4Mg of all the four pathways is the lowest and
indicates that ·OH is most likely to react at the C4 site. A similar reaction was also obtained
at the C6 site. The Ea value for adding ·OH at the C6 site is 4.3 kcal/mol. In addition,
the Ea value (6.8 kcal/mol) for ·OH attacking at the C3 site is the highest of all the four
pathways, so Path C3Mg is the most difficult for undergoing photolysis reactions with ·OH.
For C3 and C4 sites, the calculated Ea values of the indirect photolysis of the complex
FLO–Mg2+ with ·OH (Path C3Mg and Path C4Mg) are lower than those of monomer FLO
with ·OH(Path C3 and Path C4). In addition, Ea values for the Path C5Mg and Path C6Mg

of complex FLO–Mg2+ are higher than those of the reaction of monomer FLO with ·OH
at C5 and C6 sites(Path C5 and Path C6). This indicates that Mg2+ has a dual role in the
photolysis of FLO. Mg2+ can promote ·OH attacking at the C3 and C4 sites (Path C3Mg and
Path C4Mg) and inhibit ·OH attacking at the C5 and C6 sites (Path C5Mg and Path C6Mg).
In addition, Mg2+ can also change the main photolysis pathway of FLO with ·OH. In the
presence of Mg2+, the order of difficulty in the indirect photolysis with ·OH is C3 > C5 >
C6 > C4, and for monomer FLO, the order is C3 > C4 > C5 > C6.
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Mechanism of Indirect Photodegradation of Complex FLO–Zn2+ with ·OH in Water

The optimized geometries of complex FLO–Zn2+ are shown in Figure S11. The results
show that the complex FLO–Zn2+ has four possible geometries, and the most stable geo-
metric structure with the lowest single-point energy is FLO–Zn2+–OPT1 (Figure S11). Thus,
all calculations are based on the FLO–Zn2+–OPT1 structure.

Four possible pathways (Path C1Zn, Path C3Zn, Path C4Zn, and Path C6Zn) of the
indirect photodegradation of the complex FLO–Zn2+ with ·OH are shown in Figure 8, and
the reaction type is an addition reaction. Figure S12 shows the optimized geometries of
Rs, TSs, and Ps for the four reaction sites (C1, C3, C4, and C6). The distance between ·OH
and the four reaction sites is 2.013–2.036 Å. Figure 8 shows that ∆H values for all the four
pathways (Path C1Zn, Path C3Zn, Path C4Zn, and Path C6Zn) range from −9.4 kcal/mol
to −11.6 kcal/mol, and these pathways are exothermic. The ∆H value (−11.6 kcal/mol)
for ·OH attacking at the C6 site is the lowest among all the four pathways, indicating that
product C6Zn_P is the most stable.

The Ea values for ·OH attacking at the C1, C3, and C6 sites are all 3.1 kcal/mol, which
are lower than that for the C4 cite (4.5 kcal/mol). This indicates that ·OH is more likely to
react at the C1, C3, and C6 sites (Path C1Zn, Path C3Zn

, and Path C6Zn). In addition, the
calculated Ea values for Path C3Zn, Path C4Zn, and Path C6Zn of the complex FLO–Zn2+ are
lower than those for the indirect photolysis of monomer FLO with ·OH, and the Ea value for
Path C1Zn of complex FLO–Zn2+ is higher than that for the indirect photolysis of monomer
FLO with ·OH. This indicates that Zn2+ has a dual role in the indirect photolysis of FLO
with ·OH, i.e., Zn2+ can promote ·OH attacking at the C3, C4, and C6 sites and inhibit
·OH attacking at the C1 site. In addition, Zn2+ can also change the main photodegradation
pathway of FLO with ·OH, i.e., in the presence of Zn2+, the order of difficulty of ·OH
attacking at the different reaction sites in the indirect photodegradation of FLO with ·OH is
C4 > C6 = C1 = C3, which is different from that of monomer FLO (C3 > C4 > C6 > C1).
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4. Conclusions

This study provides a basis for further understanding the photodegradation mech-
anism of FLO in water. These mechanisms involve direct photodegradation, indirect
photodegradation with free radicals (·OH, ·NO3, and ·SO4

−), and the effect of metal ions
(Ca2+/Mg2+/Zn2+) on indirect photodegradation with ·OH. The calculation results show
that the direct photodegradation of FLO involves three reaction types (C–C/C–N/C–S
bond cleavage). The relatively high Ea value (94.8 kcal/mol) indicates that C17–C18 cleav-
age cannot easily occur during the direct photodegradation of FLO. The lower Ea value
(2.0 kcal/mol) indicates that C5–S7 cleavage is the main pathway of the direct photodegra-
dation process. The indirect photodegradation of FLO by free radicals is an addition
reaction. The ∆H (−41.3 kcal/mol) for adding ·OH at the C5 site is higher than that for
other sites on the benzene ring, indicating that the products such as 2,2-dichloro-N-(3-
fluoro-1-hydroxy-1-(4-hydroxyphenyl) propan-2-yl) acetamide are the most stable. The
indirect photodegradation of FLO by ·NO3 and ·SO4

− is endothermic. The NO3-addition
reaction is the most likely to occur at the C1 site, while the ·SO4-addition reaction is the least
likely to occur at the C1 site. The metal ion Ca2+ can promote the indirect photodegradation
with ·OH, and the metal ion Mg2+/ Zn2+ has a dual effect on the indirect photodegradation
with ·OH. Mg2+ can not only promote the ·OH addition reaction at C3 and C4 sites but
also inhibit the ·OH addition reaction at C5 and C6 sites. Zn2+ can not only promote the
·OH addition reaction at C3, C4, and C6 sites but also inhibit the ·OH addition reaction at
C1 site. In addition, in the presence of metal ion Mg2+, OH-addition is the most likely to
occur at the C4 site, but it is the least likely to occur at the C3 site. These results indicate
that the quantum chemical calculation method can be used to study the mechanism of the
water-based photochemical transformation of antibacterial drugs and to guide their safe
use and risk avoidance.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12020127/s1, Figure S1: Direct photodegradation pathways of
FLO, along with computed activation energies (Ea, kcal/mol) and enthalpy change (∆H, kcal/mol).
The numbers in parentheses are NBO charge and electron spin density (NBO charge, electron spin
density); Figure S2: Optimized geometries of reactants, transition states, and products in direct
photolysis pathways (Path 1, Path 2, Path 3, and Path 4) of FLO, along with selected bond lengths (Å);
Figure S3: Optimized geometries of reactants, transition states, and products in indirect photolysis
pathways (Path C1, Path C2, Path C3, and Path C4) of FLO with ·OH, along with selected bond
lengths (Å); Figure S4: Optimized geometries of reactants, transition states, and products in indirect
photolysis pathways (Path C1N, Path C4N, and Path C6N) of FLO with ·NO3, along with selected
bond lengths (Å); Figure S5: Optimized geometries of reactants, transition states, and products in
indirect photolysis pathways (Path C1S, Path C3S, Path C4S, and Path C6S) of FLO with ·SO4-, along
with selected bond lengths (Å); Figure S5: Optimized geometries of complexes FLO–Ca2+/FLO–
Mg2+/FLO–Zn2+, along with selected bond lengths (Å); Figure S7: Four optimized geometries
(OPT1, OPT2, OPT3, and OPT4) of complex FLO–Ca2+ along with selected bond length (Å). The
energies of geometries are relative to that of the most stable geometry FLO–Ca2+–OPT3; Figure S8:
Optimized geometries of reactants, transition states, and products in indirect photolysis pathways
(Path C3Ca and Path C4Ca) of complex FLO–Ca2+ with ·OH, along with selected bond lengths (Å);
Figure S9: Five optimized geometries (OPT1, OPT2, OPT3, OPT4, and OPT5) of complex FLO–Mg2+
along with selected bond length (Å). The energies of geometries are relative to that of the most stable
geometry FLO–Mg2+–OPT4; Figure S10: Optimized geometries of reactants, transition states, and
products in indirect photolysis pathways (Path C3Mg, Path C4Mg, Path C5Mg, and Path C6Mg) of
complex FLO–Mg2+ with ·OH, along with selected bond lengths (Å); Figure S11: Four optimized
geometries (OPT1, OPT2, OPT3, and OPT4) of complex FLO–Zn2+ along with selected bond length
(Å). The energies of geometries are relative to that of the most stable geometry FLO–Zn2+–OPT1;
Figure S12: Optimized geometries of reactants, transition states, and products in indirect photolysis
pathways (Path C1Zn, Path C3Zn, Path C4Zn, and Path C6Zn) of complex FLO–Zn2+ with ·OH,
along with selected bond lengths (Å).
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