
Citation: Xu, Y.; Zhang, C.; Zou, H.;

Chen, G.; Sun, X.; Wang, S.; Tian, H.

Persulfate–Based Advanced

Oxidation Process for Chlorpyrifos

Degradation: Mechanism, Kinetics,

and Toxicity Assessment. Toxics 2024,

12, 207. https://doi.org/10.3390/

toxics12030207

Academic Editors: Xueqing Shi,

Weilong Song, Binghan Xie and

Roberto Rosal

Received: 20 February 2024

Revised: 5 March 2024

Accepted: 7 March 2024

Published: 9 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Persulfate–Based Advanced Oxidation Process for Chlorpyrifos
Degradation: Mechanism, Kinetics, and Toxicity Assessment
Youxin Xu 1,2, Chenxi Zhang 2, Haobing Zou 2, Guangrong Chen 2, Xiaomin Sun 3, Shuguang Wang 1,4,* and
Huifang Tian 1,*

1 Institute of Environmental Biotechnology and Functional Materials, School of Environmental Science and
Engineering, Shandong University, Qingdao 266237, China; xuyouxin@wfust.edu.cn

2 Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science
and Technology, Weifang 262700, China; sdzhangcx@gmail.com (C.Z.); A15910058268@outlook.com (H.Z.);
guangrongchen2004@outlook.com (G.C.)

3 Environment Research Institute, Shandong University, Qingdao 266237, China; sxmwch@sdu.edu.cn
4 Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University,

Qingdao 266237, China
* Correspondence: wsg@sdu.edu.cn (S.W.); hftian@sdu.edu.cn (H.T.)

Abstract: Persulfate-based advanced oxidation process has been proven to be a promising method
for the toxic pesticide chlorpyrifos (CPY) degradation in wastewater treatment. However, due to
the limitation for the short-lived intermediates detection, a comprehensive understanding for the
degradation pathway remains unclear. To address this issue, density functional theory was used to an-
alyze the degradation mechanism of CPY at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p)
level, and computational toxicology methods were employed to explore the toxicity of CPY and
its degradation products. Results show that hydroxyl radicals (·OH) and sulfate radicals (SO4

•−)
initiate the degradation reactions by adding to the P=S bond and abstracting the H atom on the ethyl
group, rather than undergoing α-elimination of the pyridine ring in the persulfate oxidation process.
Moreover, the addition products were attracted and degraded by breaking the P–O bond, while the
abstraction products were degraded through dealkylation reactions. The transformation products,
including 3,5,6-trichloro-2-pyridynol, O,O-diethyl phosphorothioate, chlorpyrifos oxon, and acetalde-
hyde, obtained through theoretical calculations have been detected in previous experimental studies.
The reaction rate constants of CPY with ·OH and SO4

•− were 6.32 × 108 and 9.14 × 108 M−1·s−1 at
room temperature, respectively, which was consistent with the experimental values of 4.42 × 109

and 4.5 × 109 M−1 s−1. Toxicity evaluation results indicated that the acute and chronic toxicity to
aquatic organisms gradually decreased during the degradation process. However, some products still
possess toxic or highly toxic levels, which may pose risks to human health. These research findings
contribute to understanding the transformation behavior and risk assessment of CPY in practical
wastewater treatment.

Keywords: chlorpyrifos; persulfate-based advanced oxidation process; degradation mechanisms;
theoretical prediction; ecotoxicity assessment

1. Introduction

Chlorpyrifos (CPY) is a type of organophosphorus pesticides with broad-spectrum bio-
logical activity, which is widely used in various agricultural and horticultural crops as well
as in households to combat biting and stinging pests [1–3]. In 2018, the annual production
of CPY reached 28,600 tonnes, and the global demand for this insecticide has an increasing
trend year by year [4]. According to the classification of the World Health Organization,
CPY belongs to the second category of pesticides with moderate toxicity [5]. The half-life of
CPY ranges from 10 to 120 days, depending on the surrounding environment [6]. Decades
of monitoring researchers have reported that CPY levels in seawater, rivers, groundwater,
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and even rainwater in different countries exceed permissible levels [7,8]. The concentration
of CPY can reach to 303.8 µg·L−1, far exceeding the environmental allowable limits in the
United States and Canada [4]. Researchers have found that CPY can cause liver and gill tis-
sue damage in carp with low concentrations in aquatic environments [9]. Furthermore, once
exposed in CPY, humans and animals can also cause reproductive and developmental neu-
rotoxicity risks [10–13]. Because of the persistence and potential ecological hazards of CPY
in water environments, methods for its removal have been attracted considerable attention.

Different techniques such as adsorption, microbial degradation, and nanophotocataly-
sis have been proven effective in removing CPY from water environments [14–16]. However,
these methods have certain limitations. Adsorption materials may pose environmental
risks [17,18], microbial degradation processes are relatively slow [19,20], and nanophoto-
catalysis materials also face issues with recovery and reusability [21,22]. In recent years,
persulfate-based advanced oxidation processes (AOPs) have gained increasing attention.
This is because sulfate radicals (SO4

•−) generated by persulfate have longer half-lives,
higher redox potentials, and better selectivity compared to hydroxyl radicals (·OH) [23,24].
Shah et al. prepared Fe-ZnO using the sol-gel method and used it in activating the per-
sulfate process; results demonstrated that the generation of high concentrations of SO4

•−

and ·OH have strong oxidation effect on CPY degradation [25]. Xie et al. found that
CPY presents a rapid removal rate and almost completely degraded with the ultrasound-
activated persulfate process [26]. This study proposed that the removal mechanism of CPY
could be divided into two possible degradation pathways. The first possible pathway is
the α-dechlorination of pyridine molecular fragments under the attack of ·OH; the second
possible degradation pathway is the breaking of the bond between phosphorus and oxygen
connected to the pyridine ring by ·OH, resulting in the formation of chloropyridine and
diethylthiophosphoric acid. Shang et al. explored the degradation effect of the combination
of microwave and persulfate on CPY in soil and explored the oxidation of SO4

•− and ·OH,
speculating on the process of oxidation, dealkylation, and dealkylation-hydroxylation [27].
However, due to the limitations in detection instruments, the existence of some short-lived
intermediates during the degradation process may be not be detected. Therefore, the
specific degradation pathways are still unclear and require further research and discussion.

Density functional theory (DFT) has been widely applied to study the chemical re-
action mechanisms through elementary reactions [28,29]. DFT calculations can verify the
existence of short-lived intermediates during the reaction process. Zhou et al. investi-
gated the reaction mechanism and potential degradation products of CPY induced by ·OH
in the atmosphere at the level of MPWB1K/6-311+G(3df,2p) //MPWB1K/6-31G(d) [30].
Theoretical studies indicate that ·OH addition to P atom, dehydrogenation of the -CH2-
portion, and hydroxylation at the C atom in the pyridine ring are energetically favorable
pathways for the reaction of CPY with ·OH. The main products of atmospheric oxidation
are chlorpyrifos oxide, SO2, 3,5,6-tetrachloro-2-pyridinol, and O,O-diethyl phosphoroth-
ioate. Zhao et al. studied the degradation reaction mechanisms of two representative
organophosphorus pesticides, namely mevinphos and monocrotophos, in the presence of
·OH in the atmosphere and water using quantum chemical methods [31].

The study aimed to establish the reaction rate constants, the degradation mechanism,
and degradation products of CPY with SO4

•− and ·OH from persulfate using quantum
chemical methods. With the degradation of CPY and the generation of the degradation
products, it is anticipated that the eco-toxicity may made changes. Computational toxi-
cology method is a valuable technique for the rapid screening of toxic substances, which
can be used for the toxicity prediction of transformation products of organic pollutants
in water environments [32,33]. In this study, the computational toxicology method is em-
ployed to predict the eco-toxicity of CPY and its products in water environments, aiming to
estimate their potential environmental risks. The obtained theoretical results will help us
better understand the degradation of CPY in sulfate-based AOPs and cover the shortage of
experimental data in the CPY degradation processes.
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2. Computational Methods
2.1. Mechanism Calculations

In this study, the quantum chemical calculations for all the geometry optimizations
involved in the degradation process were performed using the Gaussian 16 program [34].
The geometric configurations of all the reactants, intermediates (IM), transition states
(TS), and products (P) were optimized at the M06-2X/6-31+G(d,p) level. M06-2X has
been proven to be a reliable method for calculating the transformation mechanisms and
kinetics of organic pollutants [35]. Additionally, frequency analysis was performed on the
optimized structures with the same method and basis set level to ensure that the structures
corresponded to local minima and transition states with only one imaginary frequency. The
rationality of the transition state structures was thoroughly confirmed by intrinsic reaction
coordinate (IRC) analysis, which connected each transition state with its corresponding
reactants and products [36]. Furthermore, to obtain more accurate energies, single-point
energy calculations were carried out at the M06-2X/6-311++G(3df,3pd) level for all the
structures. In order to account for the solvent effect in the entire system, the SMD model
was employed [37]. This model is a novel continuum solvent model based on the self-
consistent reaction field (SCRF) theory, where “d” stands for “density” and represents the
utilization of the entire solute electron density without defining partial atomic charges. It is
considered a more accurate method and has been successfully applied in some aqueous
reactions involving SO4

•− and ·OH [38,39].

2.2. Kinetics Calculations

The kinetics results could be obtained from the KisThelP program, which is based on
the Transition State Theory (TST) with Wigner tunneling correction [40,41]. Equation (1)
shows the thermodynamic equivalent (kTST) using KiSThelP [40]:

kTST(T) = σ
kbT

h
(

RT
p0 )

∆n
e
− ∆G0, ̸=(T)

kbT (1)

where σ is the reaction path degeneracy, kb is the Boltzmann’s constant, T is the temperature,
h is the Planck’s constant, and ∆G0, ̸=(T) represents the standard Gibbs free energy of
activation for the considered reaction.

When the reaction involved precursor complex (PRC), the reaction rate constants were
calculated using the following formula [42]:

R1 + R2←→
Keq

PRC−→
k1

P (2)

k = Keq × k1 (3)

where Keq represents the equilibrium constant for fast pre-equilibrium between the reac-
tants and k1 represent the unimolecular reaction. The thermodynamic expression of the
Keq is employed in KiSThelP, as described in Equation (4) as follows [40]:

Keq = e−
∆G0(T)

RT (4)

In the formula, ∆G0(T) is the associated standard reaction Gibbs energy at temperature
T and R is the ideal gas constant.

2.3. Eco-Toxicity Assessment

The toxicity assessment of CPY and its degradation products were determined using
the quantitative structure-activity relationship (QSAR) based Ecological Structure Activity
Relationship (ECOSAR V2.2) predictive model [43]. Fish, dephnia, and green algae were
selected as aquatic organisms to evaluate acute and chronic toxicity risks. The acute toxicity
for fish and daphnia was determined using the median lethal concentration (LC50), which
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means 50% lethal concentration of fish and daphnia after 96 and 48 h exposure, respectively.
The acute toxicity for green algae was determined with the median effect concentration
(EC50), which means 50% effective concentration of green algae after 96 h exposure. The
chronic toxicity value (ChV) was used to reflect the chronic toxicity for three aquatic
organisms. In addition, the toxicity evaluation software tool (TEST V5.1.1) was used to
assess the bioaccumulation factor, developmental toxicity mutagenicity of CPY, and its
degradation products [44].

3. Results and Discussion

To validate the computational model, the bond lengths of the CPY molecule at the
M06-2X/6-31+G(d,p) level were calculated (Table S1). The calculated results are in good
agreement with experimental values, with deviations of the calculated bond lengths from
the experimental values within 5% [45]. These results demonstrate the reliability of the
computational level and the CPY model.

3.1. CPY Structure Analysis

In order to have a clear and description, all atoms have been labeled, and the structure
of CPY is shown in Figure 1a. It can be seen that CPY contains a pyridine ring, a P=S bond,
and two ethyl groups. To predict the reaction site, the average localized ionization energy
of CPY was calculated, and the results of Fukui function and dual descriptor were analyzed,
as shown in Figure 1b,c.

Toxics 2024, 12, x FOR PEER REVIEW 4 of 16 
 

 

The toxicity assessment of CPY and its degradation products were determined using 

the quantitative structure-activity relationship (QSAR) based Ecological Structure Activ-

ity Relationship (ECOSAR V2.2) predictive model [43]. Fish, dephnia, and green algae 

were selected as aquatic organisms to evaluate acute and chronic toxicity risks. The acute 

toxicity for fish and daphnia was determined using the median lethal concentration 

(LC50), which means 50% lethal concentration of fish and daphnia after 96 and 48 h expo-

sure, respectively. The acute toxicity for green algae was determined with the median ef-

fect concentration (EC50), which means 50% effective concentration of green algae after 

96 h exposure. The chronic toxicity value (ChV) was used to reflect the chronic toxicity for 

three aquatic organisms. In addition, the toxicity evaluation software tool (TEST V5.1.1) 

was used to assess the bioaccumulation factor, developmental toxicity mutagenicity of 

CPY, and its degradation products [44]. 

3. Results and Discussion 

To validate the computational model, the bond lengths of the CPY molecule at the 

M06-2X/6-31+G(d,p) level were calculated (Table S1). The calculated results are in good 

agreement with experimental values, with deviations of the calculated bond lengths from 

the experimental values within 5% [45]. These results demonstrate the reliability of the 

computational level and the CPY model. 

3.1. CPY Structure Analysis 

In order to have a clear and description, all atoms have been labeled, and the struc-

ture of CPY is shown in Figure 1a. It can be seen that CPY contains a pyridine ring, a P=S 

bond, and two ethyl groups. To predict the reaction site, the average localized ionization 

energy of CPY was calculated, and the results of Fukui function and dual descriptor were 

analyzed, as shown in Figure 1b,c. 

 

Figure 1. (a) The structure of Chlorpyrifos. (b) Molecular surface electrostatic potential distribution 

diagram of CPY. (c) Condensed f 0 andCDD indices for CPY. 

Figure 1. (a) The structure of Chlorpyrifos. (b) Molecular surface electrostatic potential distribution
diagram of CPY. (c) Condensed f 0 andCDD indices for CPY.

Figure 1b shows that the bluer the color, the more negative the electrostatic potential;
and the redder the area, the more positive the electrostatic potential. Additionally, when
the molecular surface electrostatic potential value became smaller, the electron reactivity
became stronger, resulting in electrophilic and radical reactions. Figure 1b also shows that
the electrostatic potential map of CPY confirmed that the P=S bond region is a relatively
electron-deficient active region, which is easily attacked by active radicals. The pyridine
ring and ethyl regions of CPY tend to be attacked by nucleophiles.

Figure 1c shows the Fukui function (f 0) and dual descriptor analysis (CDD). The region
with the highest f 0 is the easiest one to be attacked by active radicals, and for the CDD, the
region with the largest negative value is the easiest to be attacked by electrophiles [46]. The
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most prominent area of f 0 is located at S22, indicating that these sites should be easy to be
attacked by active radicals. In addition, according to the CDD, S22 is the most negative site,
which means that the site should be the easiest to be attacked by electrophiles. Therefore,
both methods indicate that the P=S bond in CPY is the most vulnerable to be attacked by
·OH and SO4

•−.
Furthermore, ·OH and SO4

•− have strong oxidizing properties, and they can easily
undergo addition reactions with unsaturated bonds and abstraction reactions with H
atoms [28,29]. Therefore, it is considered that the addition reactions of radicals with the
P=S bond and pyridine ring, as well as the abstraction reactions with H atoms.

3.2. The Reaction of CPY with the ·OH

Figures 2 and 3 show the addition and abstraction reactions of CPY with ·OH, re-
spectively. The optimized chemical conformations of TS for CPY with ·OH are shown in
Figure S1. Here, ∆G ̸= represents the Gibbs free energy barrier, and ∆rG represents the
Gibbs free energy change of the reaction.

The addition reaction of the ·OH with the P=S bond in CPY first forms PRC1, releasing
6.62 kcal mol−1 of heat. The configuration of PRC1 is shown in Figure S1. Then, it proceeded
through transition state TS1-1(OH), which had a very low Gibbs free energy barrier of
only 1.96 kcal mol−1. The ∆rG is −14.34 kcal·mol−1, indicating that the reaction could
occur spontaneously.
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Figure 2. The Gibbs free energy barrier ∆G ̸= (kcal·mol−1) and the Gibbs free energy change ∆rG
(kcal·mol−1) at 298 K for ·OH addition pathways with CPY.



Toxics 2024, 12, 207 6 of 16Toxics 2024, 12, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 3. The Gibbs free energy barrier ΔG≠ (kcal·mol−1) and the Gibbs free energy change ΔrG 

(kcal·mol−1) at 298 K for ·OH abstraction pathways with CPY. 

In addition, the ·OH could also abstract H atoms from CPY, including the H atoms 

on the two ethyl groups and the H atom on the pyridine ring. All the abstraction reactions 

have been calculated (Figure 3). By comparing the ΔG≠ and ΔrG, it be observed that the 

barriers for the H atoms on the ethyl groups are relatively low, ranging from 1.42 to 4.84 

kcal·mol−1, while the barrier for the pyridine ring was relatively high at 13.72 kcal·mol−1. 

All the energy changes were negative, indicating that spontaneous reactions could be oc-

curred at room temperature. 

Overall, from a thermodynamic perspective, except for the reaction with N7 atoms 

having a high ΔG≠ and being non-spontaneous, the other addition and abstraction reac-

tions could occur spontaneously. 

  

C

C

C

C

N

C

O

P

S

O

O

C2H5

C2H5

Cl

Cl

H

Cl

C

C

C

C

N

C

O

P

S

O

O

C2H5

C

Cl

Cl

H

Cl

H

C

H

H

H

C

C

C

C

N

C

O

P

S

O

O

C2H5

C

Cl

Cl

H

Cl

H
C

H

H

H

C

C

C

C

N

C

O

P

S

O

O

C2H5

C

Cl

Cl

H

Cl

H
C H

H

H

C

C

C

C

N

C

O

P

S

O

O

C2H5

C

Cl

Cl

H

Cl

H C

H

H

H

C

C

C

C

N

C

O

P

S

O

O

C2H5

C

Cl

Cl

H

Cl

H C

H H

H

C

C

C

C

N

C

O

P

S

O

O

C

C2H5

Cl

Cl

H

Cl

H

C

H

H

H

C

C

C

C

N

C

O

P

S

O

O

C

C2H5

Cl

Cl

H

Cl

H

C

H

H

H

C

C

C

C

N

C

O

P

S

O

O

C

C2H5

Cl

Cl

H

Cl

H

H

C

H

H

C

C

C

C

N

C

O

P

S

O

O

C

C2H5

Cl

Cl

H

Cl

H

H

C

H

H

C

C

C

C

N

C

O

P

S

O

O

C

C2H5

Cl

Cl

H

Cl

H

H

C

H

H

C

C

C

C

N

C

O

P

S

O

O

C

C2H5

Cl

Cl

Cl

H

H

C

H

H

H

CPY

IM1-8

IM1-9

IM1-10

IM1-11

IM1-12

IM1-14

IM1-18

IM1-13

IM1-15

IM1-17

IM1-16

ΔG≠ =1.42

ΔrG=-20.80

TS1-8(OH)

+OH +OH

-H2O

ΔG≠ =1.49

ΔrG=-22.76

TS1-9(OH)

-H2O

ΔG≠ =1.85

ΔrG=-16.82

TS1-10(OH)

-H2O

ΔG≠ =4.84

ΔrG=-16.22

TS1-11(OH)

-H2O

ΔG≠ =1.70

ΔrG=-17.15

TS1-12(OH)

-H2O

ΔG≠ =1.69

ΔrG=-20.70

TS1-13(OH)

-H2O

ΔG≠ =4.35

ΔrG=-20.99

TS1-14(OH)

-H2O

ΔG≠ =2.87

ΔrG=-17.18

TS1-15(OH)

-H2O

ΔG≠ =4.28

ΔrG=-16.90

TS1-16(OH)

-H2O

ΔG≠ =3.07

ΔrG=-16.98

TS1-17(OH)

-H2O

ΔG≠ =13.72

ΔrG=-4.05

TS1-18(OH)

-H2O

Figure 3. The Gibbs free energy barrier ∆G ̸= (kcal·mol−1) and the Gibbs free energy change ∆rG
(kcal·mol−1) at 298 K for ·OH abstraction pathways with CPY.

Since the pyridine ring has six delocalized π electrons, the ·OH could attach to atoms
C2, C3, C4, C5, C6, and N7. By comparing the Gibbs free energy barriers, it is found that the
addition to the C atoms had relatively low barriers ranging from 2.23 to 3.46 kcal·mol−1,
and the free energy changes were negative, leading to spontaneous reactions. However,
the addition to the N7 atom had a higher ∆G ̸= of 18.87 kcal·mol−1 and a positive ∆rG of
15.30 kcal·mol−1, indicating that it could not occur spontaneously at room temperature.

In addition, the ·OH could also abstract H atoms from CPY, including the H atoms on
the two ethyl groups and the H atom on the pyridine ring. All the abstraction reactions have
been calculated (Figure 3). By comparing the ∆G ̸= and ∆rG, it be observed that the barriers
for the H atoms on the ethyl groups are relatively low, ranging from 1.42 to 4.84 kcal·mol−1,
while the barrier for the pyridine ring was relatively high at 13.72 kcal·mol−1. All the
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energy changes were negative, indicating that spontaneous reactions could be occurred at
room temperature.

Overall, from a thermodynamic perspective, except for the reaction with N7 atoms
having a high ∆G ̸= and being non-spontaneous, the other addition and abstraction reactions
could occur spontaneously.

3.3. The Reaction between CPY and the SO4
•−

The mechanism of the reaction initiated by SO4
•− was similar to that of CPY with ·OH,

including addition reactions and H abstraction reactions. The ∆G ̸= and ∆rG for SO4
•−

addition pathways and abstraction pathways with CPY are shown in Figures 4 and 5,
respectively. The optimized chemical conformations of TS for CPY with SO4

•− are shown
in Figure S2.
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Figure 4. The Gibbs free energy barrier ∆G ̸= (kcal·mol−1) and the Gibbs free energy change ∆rG
(kcal·mol−1) at 298 K for SO4

•− addition pathways with CPY.

For the addition reaction of SO4
•−, the most likely site is the P=S bond, with a

∆G ̸= of 0.80 kcal·mol−1, and releasing 6.98 kcal·mol−1 of energy. Additionally, the ad-
dition reactions to the C atoms in the pyridine ring had low barriers ranging from 0.88
to 7.38 kcal·mol−1. However, the addition reaction to the N7 atom had a high ∆G ̸= of
23.71 kcal·mol−1 and a positive ∆rG, indicating that it could not occur spontaneously at
room temperature.

Furthermore, as shown in Figure 5, SO4
•− can abstract H atoms connected to the C

atoms, forming HSO4
•−. By comparing the ∆G ̸= for the H abstraction reactions at different

positions, the H atom connected to the C atom bonded with O was most easily abstracted,
with barriers ranging from 3.32 to 4.51 kcal·mol−1. Next is the abstraction from the methyl
group, with a barrier between 6.97 to 10.52 kcal·mol−1. Moreover, the H atom on the
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pyridine ring was the most difficult to abstract, with a ∆G ̸= of 20.59 kcal·mol−1 and a
positive ∆rG, indicating it could not occur spontaneously at room temperature.

Overall, from the view of thermodynamics, except for the addition reaction to N7,
the abstraction of H atoms on the pyridine ring had high ∆G ̸=, which was not easy to
occur spontaneously at room temperature, the other addition and abstraction reactions
could occur spontaneously. For a further exploration and evaluation for the likelihood
of the reactions and the contribution of each reaction pathway, kinetic calculations for
each elementary reaction comparing the magnitudes of the rate constants to determine the
optimal pathway were performed.
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3.4. Rate Constants Calculation

The rate constants (k) for the initiation reactions of CPY by ·OH and SO4
•− were

calculated at 298 K, including all possible addition and abstraction reactions. The calculated
results are shown in Table 1, where kadd represents the rate constants for addition reactions
of ·OH or SO4

•−, kabs represents the rate constants for abstraction reactions of ·OH or
SO4

•−, and Γ represents the branching ratio. The formula for calculating Γ is given by
Γ = ki/ktotal, where ktotal is the sum of the rate constants for addition and abstraction
reactions of ·OH and SO4

•− with CPY.

Table 1. The total and separated rate constant (k) and branch ratio (Γ) for in the reaction of CPY with
·OH and SO4

•− at 298 K in water system.

Reaction k298K (M−1 ·s−1 ) Γ(%) Reaction k298K (M−1 ·s−1) Γ(%)

CPY+·OH→vdW→IM1-1 3.11 × 108 20.12 CPY+SO4
•−→IM1-1(SO4) 3.89 × 101 0

CPY+·OH→IM1-2(OH) 2.03 × 103 0 CPY+SO4
•−→IM1-2(SO4) 9.62 × 102 0

CPY+·OH→IM1-3(OH) 5.93 × 102 0 CPY+SO4
•−→IM1-3(SO4) 1.61 × 10−1 0

CPY+·OH→IM1-4(OH) 5.71 × 103 0 CPY+SO4
•−→IM1-4(SO4) 3.30 0

CPY+·OH→IM1-5(OH) 8.12 × 103 0 CPY+SO4
•−→IM1-5(SO4) 8.02 × 102 0

CPY+·OH→IM1-6(OH) 2.60 × 103 0 CPY+SO4
•−→IM1-6(SO4) 7.58 0

CPY+·OH→IM1-7(OH) 2.30 × 10−8 0 CPY+SO4
•−→IM1-7(SO4) 1.03 × 10−7 0

kOH
add 3.11 × 108 20.12 kSO4

add 1.81 × 103 0
CPY+·OH→IM1-8+H2O 1.51 × 108 9.78 CPY+SO4

•−→IM1-8+HSO4
·- 1.76 × 108 11.36

CPY+·OH→IM1-9+H2O 7.80 × 107 5.05 CPY+SO4
•−→IM1-9+HSO4

·- 7.02 × 108 45.43
CPY+·OH→IM1-10+H2O 1.08 × 107 0.70 CPY+SO4

•−→IM1-10+HSO4
·- 2.94 0

CPY+·OH→IM1-11+H2O 3.52 × 105 0.02 CPY+SO4
•−→IM1-11+HSO4

·- 8.77 × 105 0.06
CPY+·OH→IM1-12+H2O 4.47 × 106 0.29 CPY+SO4

•−→IM1-12+HSO4
·- 3.35 × 106 0.22

CPY+·OH→IM1-13+H2O 6.78 × 107 4.39 CPY+SO4
•−→IM1-13+HSO4

·- 2.71 × 107 1.75
CPY+·OH→IM1-14+H2O 3.33 × 106 0.21 CPY+SO4

•−→IM1-14+HSO4
·- 4.52 × 106 0.29

CPY+·OH→IM1-15+H2O 3.04 × 106 0.20 CPY+SO4
•−→IM1-15+HSO4

·- 8.36 × 103 0
CPY+·OH→IM1-16+H2O 2.96 × 105 0.02 CPY+SO4

•−→IM1-16+HSO4
·- 2.03 × 103 0

CPY+·OH→IM1-17+H2O 1.68 × 106 0.11 CPY+SO4
•−→IM1-17+HSO4

·- 8.14 × 103 0
CPY+·OH→IM1-18+H2O 2.67 × 10−3 0 CPY+SO4

•−→IM1-18+HSO4
·- 1.75 × 10−4 0

kOH
abs 3.21 × 108 20.77 kSO4

abs 9.14 × 108 59.11

When the temperature is 298 K, the Γ of different reaction pathways are as follows:
the abstraction reaction between SO4

•− and C9 atom had the highest Γ (45.43%), followed
by the addition reaction between P=S bond and ·OH (20.12%); the abstraction reaction
between SO4

•− and C8 atom (11.36%), and the abstraction reactions between ·OH and
C8 atom, and ·OH and C8 atom (9.78% and 5.05%, respectively). Lastly, there were the
abstraction reactions between the ·OH and C13 atom, and between the SO4

•− and C13 atom,
accounting for 4.39% and 1.75%, respectively. The rest of the reaction pathways could be
considered negligible. The calculated total rate constants for the reactions of CPY with ·OH
and SO4

•− were 6.32 × 108 and 9.14 × 108 M−1· s−1 at 298 K, which was consistent with
the experimental values of 4.42 × 109 and 4.5 × 109 M−1·s−1 [47]. Results indicated that
the calculated results and subsequent theoretical analysis were reliable and valuable.

Pathways with high branching ratios are favorable starting channels [31]. Thus, the
corresponding intermediates IM1-1(OH), IM1-8, IM1-9, and IM1-13 were selected as the
subjects of study to explore the subsequent reactions of CPY.

3.5. Subsequent Reactions
3.5.1. Subsequent Reactions of IM1-1(OH)

Due to the attack of ·OH, the intermediate IM1-1(OH) became highly reactive with
unpaired electrons, thus becoming reactive and capable of generating stable products
through its own bond-breaking reactions and H atom abstraction from water (H2O). The
subsequent reactions were illustrated in Figure 6, which involved three pathways. The first
pathway involved the cleavage of the P1–O21 bond, resulting in the formation of products
P1 (3,5,6-trichloro-2-pyridynol) and the IM2 radical. The IM2 radical further abstracted an
H atom from H2O to produce the stable product P2 (O,O-diethyl phosphorothioate). The
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second pathway involved the cleavage of either the P1–O23 or P1–O26 bond. Since these
two bond cleavage modes were symmetrical, only the cleavage of the P1–O23 bond was
described here. The process led to the formation of P3 and the IM3 radical, which stabilized
into product P4 (ethanol) through H atom abstraction reactions. The third pathway involved
a bimolecular reaction, where the S atom with unpaired electrons abstracted an H atom
from H2O, followed by the elimination of H2S to produce P5 (chlorpyrifos oxon). All
products except P4 have been detected by HPLC-TOF-MS/MS in the combination system
of microwave and persulfate [27]. By comparing the energy barriers of these three pathways,
the cleavage of the P1=O21 bond was the most favorable, making it the optimal pathway,
which was consistent with the experimental detection of a significant amount of P1 [26,27].
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3.5.2. Subsequent Reactions of IM1-8, IM1-9, and IM1-13

The reactions of M1-8, IM1-9, and IM1-13 were very similar, as they all involve
barrierless addition with large amount of ·OH present in the solution. As shown in Figure 7,
the ∆rG of this process was highly negative, making it easily spontaneous. Subsequently,
P7, P8, and P6 (acetaldehyde) are obtained through dealkylation reactions. The ∆G ̸= for
these processes range from 16.61 to 18.90 kcal·mol−1, indicating that these reactions are
possibly occurred, especially under high-temperature conditions. Corresponding products
were also detected in related experimental studies [27].
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In conclusion, in the persulfate-based AOP system, both ·OH and SO4
•− played

important roles in the degradation of CPY. The main initiating reactions involved the
addition of ·OH to the P=S bond and the H atoms abstraction reactions with the C atoms
connected to the P atom. The addition products undergo P1–O21 bond cleavage between
the pyridine ring and the P atom, leading to the formation of P1. The abstraction products
mainly underwent dealkylation reactions to complete the degradation processes.

3.6. Toxicity Assessment

In this study, the computational toxicity software ECOSAR V2.2 and TEST V5.1.1 were
used to assess the eco-toxicity of CPY and its degradation products. Although conducting
toxicity experiments is irreplaceable, computational toxicology can conveniently provide
a large number of toxicity characteristic values at the screening level. It is widely used
in ecological toxicity assessment due to its convenience, speed, cost-effectiveness, and
independence from specific experimental animals. Liu et al. used the ECOSAR model to
predict the acute and chronic toxicity changes of CPY and its degradation products with
ferrate [48]. The results showed that most of the products generated in the later stage of
the reaction were classified as non-toxic to all tested organisms. And the dechlorination,
·OH substitution, C–O bond cleavage, and P=S bond oxidation are highly effective in
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detoxifying CPY. Shah et al. used the ECOSAR toxicity model on the photocatalytic of
CPY to predict the toxicity of its transformation products [25]. The formation of toxic
intermediate compounds helps remind researchers to evaluate the toxicity of CPY and the
transformation products, and the formation of non-toxic acetate esters as the final product
indicates that the treatment technique has significant capabilities for detoxifying CPY.

The ECOSAR ecological toxicity model was used to predict the acute toxicity of
CPY and its degradation products to fish, dephnia, and green algae. Table S2 lists the
classification criteria for acute and chronic toxicity, while Table S3 lists the acute and
chronic toxicity values of CPY and its degradation products. As can be seen, the calculated
LC50 value of CPY to fish and daphnia are 38 and 0.19 µg·L−1, respectively, which are in
good agreement with the experimental measured results of 25.78 µg·L−1 for mozambique
tilapia and 0.235 to 0.512 µg·L−1 for daphnia [49,50]. The calculated EC50 value of CPY
to green algae is 176 µg·L−1, which is slightly lower than the 769 µg·L−1 value measured
in the experiment [51]. This also demonstrates the accuracy of the computational toxicity
prediction method.

Based on the toxicity classification of the Globally Harmonized System (GHS), CPY is
defined to be highly toxic compounds [52]. As shown in Figure 8, the toxicity evolution
diagram was plotted based on the toxicity classification of the GHS. The acute and chronic
toxicity changes indicated that the acute and chronic toxicity of the main degradation
products to fish, dephnia, and green algae were lower than that of the parent CPY. However,
P1, P2, and P3 still exhibited toxic or highly toxic levels. Therefore, a careful assessment of
the potential environmental risks posed by the degradation products is still needed.
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The TEST software was used to predict the developmental toxicity and mutagenicity
of CPY and its products. Table S4 shows that CPY and its products were non-mutagenic.
Developmental toxicity could disrupt the homeostasis, normal growth, differentiation,
and development of organisms, suggesting that P3, P5, P7, and P8 may have adverse
effects on biological development. However, eco-toxicity and health effects were not only
dependent on exposure levels but also on bioaccumulation. The bioaccumulation factors
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of CPY and its products were much lower than 5000, indicating low bioaccumulation [53].
Low bioaccumulation would not further affect the eco-toxicity and health effects of the
compounds. This also suggests that the persulfate-based AOP system could be an effective
method to eliminate chlorpyrifos contamination in water environment.

4. Conclusions

In this study, the mechanism of CPY degradation in water environment using
persulfate–based AOPs was investigated using the DFT method. The ecological toxic-
ity of CPY and its products was also evaluated. Results indicated that the ·OH and SO4

•−

generated from persulfate activation could undergo addition and abstraction reactions
with CPY. Thermodynamic and kinetic research indicated that the addition of ·OH to the
P=S bond and the abstraction of H atom from the C connected to P atom by both types of
active radicals were the main initiating reactions. The reaction rate constants of CPY with
·OH and SO4

•− were 6.32 × 108 and 9.14 × 108 M−1·s−1 at room temperature, respectively,
which were strongly consistent with experimental data. The addition products underwent
the cleavage reaction of the P–O bond between the pyridine ring and the P atom, leading
to the formation of the main product of P1. The abstraction products mainly underwent
dealkylation reactions to complete the degradation. The acute and chronic toxicities of the
main eight degradation products to fish, dephnia, and green algae were found to be lower
than those of the parent CPY. However, products of P1, P2, and P3 still exhibited toxic
or highly toxic levels, which may pose risks to human health. However, due to their low
bioaccumulation, their ecological toxicity and health effects may be limited. Overall, these
findings provide theoretical support for the application of persulfate-based AOP system
for the removal of eliminating chlorpyrifos contamination in water environment.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics12030207/s1, Figure S1: The optimized chemical conformations of
TS for CPY with ·OH; Figure S2: The optimized chemical conformations of TS for CPY with SO4

•−;
Table S1: The bond lengths of the calculated values and the experimental values of CPY; Table S2:
The grading standards of the acute and chronic toxicity. The unit is mg·L−1.; Table S3: The toxicity
value of the main transformation intermediates and products in the degradation of CPY. The unit is
mg·L−1.; Table S4: Estimated health effects of CPY and its transformation intermediates and products
during the degradation process.
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