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Abstract: Background: Inhalation exposure to carcinogenic metals such as cadmium (Cd) is a
significant global health concern linked to various cancers. However, the precise carcinogenic
mechanism underlying inhalation exposure remains elusive. Methods: In this study, CT26 mouse
colon cancer (CC) cells were implanted into BALB/c mice to establish CC mouse models. Some of
the CC mice were implanted with intestinal stents. The mice were exposed to atomized oxygen and
nitrogen (O2/N2) gas containing Cd. Results: Atmospheric Cd intensified inflammation in CC cells
and heightened Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase 1 (NOX1) activity,
which is an indirect measurement of increased reactive oxygen species (ROS) production. This
escalated ROS production triggered abnormal Wnt protein secretion, activated the Wnt/β-catenin
signaling pathway, and stimulated CC cell proliferation. No discernible body weight effect was seen
in the CC mice, possibly due to the later-stage tumor weight gain, which masked the changes in
body weight. Cd facilitated colon tumor restructuring and cell migration at the later stage. The
implantation of intestinal stents inhibited the expression of Superoxide Dismutase 1 (SOD1) in the
colon tumors of the CC mice, with no evident effects on the expression levels of NOX1, SOD2,
and Catalase (CAT) enzymes. Elevated ROS levels, indirectly reflected by enzyme activity, did not
substantially impact the Wnt/β-catenin signaling pathway and even contributed to slowing its
imbalance. Stent implantation eased the inflammation occurring in colon tumors by reducing CC
cell proliferation but it induced discomfort in the mice, leading to a reduction in food intake and
weight. Conclusions: Cd partially fosters CC tumorigenesis via the ROS-mediated Wnt/β-catenin
signaling pathway. The effect of Cd on the invasive effect of intestinal stents in the cancerous colon is
not significant.
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1. Introduction

In recent years, attention has increasingly turned towards the issue of air pollution,
which is paralleled by a growing body of research into the impact of air pollution on colon
cancer (CC). CC stands as the second leading cause of cancer-related deaths globally [1].
The risk factors linked to CC are primarily categorized into modifiable elements (such as
smoking, obesity, and diet) and non-modifiable factors (like family history, age, and sex).
Recent studies have illustrated that exposure to environmental pollutants, notably heavy
metals, could elevate the risk of CC. Among some common heavy metal pollutants are
cadmium, arsenic, lead, mercury, and chromium [2–4].

Cadmium (Cd), a hazardous metal that is prevalent in the environment and com-
monly used in industrial processes, is classified as a human carcinogen by the International
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Agency for Research on Cancer (IARC) [5,6]. Mounting evidence indicates that the presence
of Cd in aquatic environments can induce various adverse health outcomes in humans,
including cancers [7,8], cardiovascular diseases [9,10], and inflammatory conditions [11,12].
Nevertheless, the impact of Cd in the atmosphere on human health, particularly concerning
CC, remains elusive. Recent investigations have revealed a notable increase in plasma Cd
levels among CC patients compared to healthy individuals [13]. Additionally, studies have
demonstrated that Cd can prompt cellular transformation and carcinogenesis in human
colon cell line CRL-1807 models [14]. There are speculations that these cellular responses
are correlated with specific molecular mechanisms triggered by Cd exposure, such as the
induction of oxidative stress, β-catenin mutation, the upregulation of cyclooxygenase-2
(COX-2), and the initiation of proinflammatory responses. However, further research is
needed to comprehensively elucidate the intricate connections between Cd exposure and
the molecular pathways involved in CC development. While the molecular mechanisms
behind Cd-induced carcinogenesis necessitate further investigation, there is a consensus
that Reactive Oxygen Species (ROS) play a pivotal role in cellular damage triggered by
Cd, which subsequently culminates in cancer development. The Nicotinamide Adenine
Dinucleotide Phosphate (NADPH) Oxidase (NOX) complex stands as a critical physio-
logical system for ROS generation. Studies have revealed that Cd has the capability to
activate NOX to produce ROS, which disrupts the integrity of the outer mitochondrial
membrane, thereby engendering the production of superoxide radicals, hydroxyl radicals,
and hydrogen peroxide, and thus causing cell damage [15]. In the context of CC cells,
the Wnt/β-catenin pathway, which is controlled by ROS generated via NOX, regulates
the proliferation of CC cells [16]. Wnt ligands constitute a diverse and highly conserved
group of secreted proteins [17]. Their influence extends across various cellular processes,
encompassing cell proliferation, stem cell self-renewal, the determination of cell fate, the
establishment of cell polarity, and the orchestration of convergent extension behavior
during cell migration [18–20]. Each of these orchestrated consequences, steered by Wnt
signaling, is crucial for maintaining normal intestinal development. This pathway of-
ten exhibits differential regulation between normal and cancerous tissues, particularly in
cancers such as hepatocellular carcinoma, prostate cancer, and CC [21]. Within healthy
cells (Figure S1), in the absence of Wnt signaling, β-catenin is bound and regulated by a
multi-subunit complex consisting of recombinant axis inhibition protein (Axin), Adeno-
matous Polyposis Coli (APC), Casein Kinase 1α (CK1α), and Glycogen Synthase Kinase
3β (GSK3β). This complex promotes β-catenin phosphorylation, facilitating its interaction
with β-Transducin Repeat-Containing Proteins (β-TRCPs) and leading to subsequent ubiq-
uitination and degradation, thus maintaining low β-catenin expression levels. Conversely,
in cancer cells where Wnt signaling is active (Figure S2), Wnt signaling engages specific
receptors like frizzled proteins, leading to low-density Lipoprotein Receptor-related Protein
(LRP) phosphorylation. This culminates in the formation of the Wnt–Frizzled-LRP complex,
triggering disheveled (DVL) activation and conglomerate aggregation toward the receptor.
DVL activation intensifies GSK3β phosphorylation, thereby impeding β-catenin degrada-
tion [22]. Consequently, β-catenin accumulates in the nucleus, interacts with coactivators
like T-Cell Factor and Lymphoid Enhancer Factor (TCF/LEF), and stimulates downstream
Wnt target gene transcription, thus fostering cancer cell proliferation. Additionally, height-
ened ROS production incites an inflammatory cascade. The COX-2 pathway emerges as a
pivotal inflammatory pathway implicated in CC [23]. Substantial data highlight the signifi-
cantly elevated COX-2 gene expression in cancerous colon mucosa compared to healthy
tissues [24–26]. The primary contributor to the carcinogenic effect of COX-2 is believed to
be its chief metabolite, prostaglandin E2 (PGE2), which exerts its biological function by
binding to its target receptor, prostaglandin receptor 4 (EP4) [27]. In addition, Iba1 is a
macrophage/microglia-specific calcium-binding protein whose level can also reflect the
degree of cellular inflammatory response [28]. However, the precise molecular mechanism
by which Cd in the atmospheric milieu induces CC remains an area to be fully elucidated.
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Advancements in medical devices and technologies have led to the gradual adoption
of intestinal stents as the primary treatment for colon tract decompression. Evidence-based
medicine has validated the short-term safety and efficacy of this approach [29–31]. Never-
theless, significant concerns persist regarding long-term tumor prognosis in CC patients
who have undergone bowel stenting as a form of conversion therapy. Studies have in-
dicated that the preoperative placement of bowel stents in CC patients disrupts tumor
prognosis and potentially triggers tumor cell dissemination during the stent insertion
process [32]. Further studies are, therefore, needed to verify the effect of intestinal stents
on colon tumors. By studying the impact of intestinal stents on the CC pathology and Ma-
trix Metalloproteinase-2 (MMP-2), MMP-9, and 8-hydroxy-2′-deoxyguanosine (8-OHdG)
expression levels, the impact of intestinal stents on long-term tumor prognosis will be
explained from a molecular perspective. Among these enzymes, MMP-2 primarily partic-
ipates in tissue remodeling, cellular migration, and angiogenesis [33]. MMP-9 primarily
participates in the activation and migration of inflammatory cells [34]. 8-OHdG serves as a
commonly utilized biomarker to detect oxidative DNA damage resulting from oxidative
stress [35]. However, the impact of atmospheric Cd on the invasiveness of stents in the
cancerous colon remains largely unexplored.

Hence, this study employed CT26WT CC mouse models with implanted stents. These
mouse models were subjected to atomized air containing Cd via inhalation to mimic
atmospheric exposure, aiming to investigate the influence of Cd in the environment on
CC patients with implanted intestinal stents. The hypothesis posited here is that Cd in the
atmosphere fosters the proliferation and dissemination of CC cells through a mechanism
reliant on the NOX-ROS-COX-2-Wnt/β-catenin pathways. A preliminary verification of
this hypothesis is illustrated in Figure 1.
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2. Materials and Methods
2.1. Animal and Experimental Design

CT26 mouse CC cells, along with the culture medium, were procured from Wuhan
Pricella Life Technology Co., Ltd. (Wuhan, Hubei Province, China) These CC cells were
nurtured in 1640 complete medium containing 10% Fetal Bovine Serum (FBS) and 1% bis-
antibodies in a 5% carbon dioxide (CO2) incubator at 37 ◦C. Forty-five 6-week-old female
BALB/c mice were acquired from Beijing Sipeifu Biotechnology Co., Ltd. (Beijing, China)
and were housed in accordance with the institutional animal care guidelines. To facilitate
acclimation, the mice were allowed a week in the new environment before utilization. The
mice were housed in plastic cages (5 mice/cage) under the following conditions: a relative
humidity of 50 ± 10%, a 12/12 h light/dark cycle, and a temperature of 23 ± 2 ◦C.

For the implantation of CC cells, 1 × 107/mL of cells (200 µL/piece) was cultured on
the mucosa of the posterior colon wall in the mice, and tumor formation was observed over
a 2-week period utilizing a small-animal live imaging device (InVivo Smart-LF, VISQUE,
Seoul, Republic of Korea). The BALB/c mice were then randomly divided into 9 groups
based on body weight; the healthy groups included a blank group (H-Blank), a control
group (H-Control), and a Cd group (H-Cd). The groups with CC cells but without an
intestinal stent included a blank group (C-Blank), a control group (C-Control), and a Cd
group (C-Cd). The groups with CC cells and an intestinal stent included a blank group
(C-S-Blank), a control group (C-S-Control), and a Cd group (C-S-Cd). The mice in the
intestinal stent groups were implanted with metal spring coils (length of 5 mm, inner
diameter of 2 mm, outer diameter of 3 mm, and wire diameter of 0.2 mm) through the anus
and cultured for 2 weeks. The Cd groups were exposed to a simulated environment of
oxygen and nitrogen (O2/N2) mixed with atomized gas containing Cd for the subsequent 4
weeks. The blank groups were exposed to the actual environment without gas introduction,
while the control groups were exposed to a simulated environment with the introduction
of O2/N2 mixed with atomized gas. Throughout the experiment, the mice were weighed
twice weekly, and any signs of weight loss were closely monitored. At 27 weeks of age, all
mice were euthanized using CO2 asphyxiation, and whole-colon intestinal tissues were
collected. The tissue samples were promptly fixed in 10% formalin or frozen in liquid
nitrogen for further analysis.

A corresponding preliminary experiment was conducted before the formal experiment
in this study. The experimental design was tested for validity and efficacy. Groups of 5 mice
were verified to have ≥80% power on the primary endpoint, and it was confirmed that the
number of rats in each group was the minimum necessary to ensure that the experiment
was able to detect the intended effect. All experiments were conducted in accordance
with the biomedical research guidelines stipulated by the Experimental Biology Society
of Tianjin People’s Hospital and were approved by the Animal Use Experimental Ethics
Committee of Tianjin Union Medical Center.

2.2. Establishment of the Simulation Environment

The reference was drawn from the average concentration of Cd in the atmospheric
environment spanning from January 2016 to February 2017, specifically under heavy
pollution weather conditions (AQI > 200), in Heping District, Tianjin. During this period,
the average concentration was recorded at 4.33 ng/m3. As demonstrated in Formula (1),
the estimated quantity of Cd inhaled by humans in such an atmospheric environment
amounted to 46.76 ng per day, whereas the estimated intake for BALB/c mice in this
atmospheric environment was 0.13 ng per day. The formula is as follows:

E = C × B × t (1)

where E is the respiratory exposure to Cd in the atmospheric environment, in ng; C is
the average concentration of Cd in the atmospheric environment, in ng/m3; and B is the
respiratory rate, in m3/d. The respiratory rate of BALB/c mice is 19.16 mL/min [36], which
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is 0.03 m3/d, and the respiratory rate of humans is 10.8 m3/d [37]; t is the exposure time, in
d. The Cd solution used in the experiment to simulate a polluted atmospheric environment
was a solution derived from the Cd inductively coupled plasma (ICP) standard solution
obtained from O2si, USA. To align with the inhalation volume for both humans and BALB/c
mice, the Cd ICP standard solution was prepared at a concentration of 0.23 µg/mL. The
compressed air inlet of the medical nebulizer was connected to a fresh air cylinder (21%
O2/79% N2) to generate dispersion nebulization gas. The actual concentration of cadmium
in the atomized environment was 4.1~4.5 ng/m3.

2.3. In Vivo Imaging

The mice were anesthetized with gas. The mice were intraperitoneally injected with
D-luciferin sodium salt physiological saline solution (10 mg/mL) at a dose of 150 mg/kg.
Fifteen minutes after injection, the anesthetized mice were placed in an in vivo imaging
device for observation and imaging.

2.4. Histopathology

All tumor and mucosa specimens underwent hematoxylin and eosin (H&E) staining
for histopathological assessment. The samples were fixed with paraformaldehyde and then
decalcified in a decalcifying solution. The dehydration of the samples was performed by
using alcohol, and the removal of the tissues from the paraffin was carried out using a
xylene solution. The tissue samples underwent embedding by being dipped in a melted
wax solution and placed in an embedding frame. After being positioned appropriately
according to the embedding surface requirements, the samples were cooled on a −20 ◦C
freezing platform until the wax solidified. After solidification, the wax block was removed
from the embedding frame, trimmed, and placed on a paraffin microtome for slicing.
The resulting slices were floated on 40 ◦C warm water in a spreading machine to flatten
the tissue. Subsequently, the tissue was picked up with a glass slide and placed in a
60 ◦C oven for baking. Following baking, the slices were dewaxed in xylene twice and
dehydrated using absolute ethanol. Hydration of the sample sections was performed using
a series of ethanol concentrations (95%, 80%, and 70%) and distilled water. Subsequent
staining involved hematoxylin staining solution application, followed by differentiation.
The samples underwent dehydration, transparency treatment, and sealing. Observation
and imaging were conducted using a fluorescence microscope (ECLIPSE Ci, Nikon, Tokyo,
Japan) to analyze the stained tissue sections.

2.5. Immunohistochemistry

To achieve cell permeability and block endogenous peroxidase, the sample sections
underwent immersion in a blocking/permeabilization solution (at room temperature
and shielded from light). To uncover the antigen-determining area for antigen retrieval,
the slices were submerged in 0.01 M sodium citrate buffer (pH = 6.0) and heated in a
microwave oven until boiling, with the regular replenishment of the solution to prevent
desiccation. To obstruct the influence of non-specific proteins, the surrounding tissue
was outlined using a histochemical pen, followed by the application of 5% sheep serum
within the outlined area. The diluted primary antibody was directly added and allowed to
incubate overnight at 4 ◦C. Following this, the diluted secondary antibody was applied,
and the sections were placed in a constant-temperature oven at 37 ◦C. The subsequent
steps involved the addition of streptavidin peroxidase (SP) conjugates, placement in a
37 ◦C oven, and the introduction of diaminobenzidine (DAB). Staining progression was
observed under a fluorescence microscope while controlling the duration based on the
color observed. Subsequently, a hematoxylin staining solution was applied to stain nuclear
proteins, followed by the use of phosphate-buffered saline (PBS) to restore their blue
coloration. The samples underwent dehydration, transparency treatment, and sealing.
Observation and imaging were conducted using a fluorescence microscope to analyze the
stained tissue sections.
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2.6. Western Blot Analysis

Western blot analysis was conducted utilizing specific antibodies targeting β-catenin
(1:1000, BIOSS), phospho-GSK3β (1:1000, BIOSS), actin (1:3000, Affinity), SOD1 (1:1000,
Affinity), SOD2 (1:1000, Affinity), CAT (1:1000, BIOSS), and NOX1 (1:1000, Affinity).

2.7. Statistical Analysis

Differences between treatment groups were assessed through analysis of variance
(ANOVA). Statistical significance was determined at p < 0.05. For cases where significant
differences were observed, specific post hoc comparisons between treatment groups were
conducted using the Student–Newman–Keuls test. All statistical analyses were conducted
using SPSS software (version 27.0, SPSS Inc., Chicago, IL, USA). The data were assessed
for normality and homoskedasticity before performing the ANOVA (analysis of variance)
and the Student–Newman–Keuls test. Normality was tested using the Shapiro–Wilk
test, and the results showed that the data conformed to a normal distribution (p > 0.05).
Homoscedasticity was assessed using Levene’s test, and the results showed that each group
of data had similar variance (p > 0.05). These results showed that the data of this study met
the basic assumptions of ANOVA and the Student–Newman–Keuls test, thus providing a
reliable basis for subsequent statistical analysis.

3. Results
3.1. Colon Tumor Invasion and Metastasis Capabilities

The mice lost weight within 4 days after the CC cells were implanted, as shown in
Figure 2D,I. With tumor progression, a gradual adaptation was apparent. However, upon
the implantation of intestinal stents on day 23, the mice with CC cells experienced weight
loss, as indicated in Figure 2G,I. Interestingly, the injection of O2/N2 atomized gas and
Cd-O2/N2 atomized gas exhibited no notable impact on the mice’s body weight compared
to the control groups.
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As illustrated in Figure 3, there was extensive proliferation of the CC cells from the
third to the eighth week, resulting in an enhancement of fluorescence signals within the
colon tumor tissues. Notably, compared to the blank and control groups, the injection
of Cd-O2/N2 atomized gas further significantly intensified the proliferation of CC cells
(C-Blank: p < 0.01; C-Control: p < 0.001). However, upon the implantation of intestinal
stents, the proliferative capacity of CC cells showed a statistically significant decrease
(C-Blank: p < 0.01; C-Cd: p < 0.001).
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if there is no asterisk between the two columns, it means there is no statistical significance.

In comparison to the healthy mice, statistically significantly elevated expression levels
were observed for β-catenin (H-Blank and H-Control: p < 0.05; H-Cd: p < 0.001) and
phospho-GSK3β (H-Cd: p < 0.001) within the colon tumors of the CC mice, as depicted
in Figure 4. The injection of Cd-O2/N2 atomized gas further significantly augmented the
expression levels of β-catenin (C-Blank and C-Control: p < 0.001; C-S-Control: p < 0.05)
and phospho-GSK3β (C-Blank: p < 0.01; C-Control, C-S-Blank and C-S-Control: p < 0.05).
Conversely, the implantation of intestinal stents statistically significantly suppressed the
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expression of phospho-GSK3β (C-Cd: p < 0.05). However, its effect on the expression level
of β-catenin was not significant. In addition, the implantation of intestinal stents had no
statistically significant effect on the expression levels of β-catenin and phospho-GSK3β in
the colon tumors of the CC mice in the blank and control groups.
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was detected. (A) Expression of phospho-GSK3β and β-catenin in colon tumors was determined by
immunoblotting. Expression of actin served as an internal control. (B) Relative levels of β-catenin
and phospho-GSK3β in colon tumors. Data were means ± SEM of 5 mice. * p < 0.05, ** p < 0.01,
*** p < 0.001. Among them, if there is no asterisk between the two columns, it means there is no
statistical significance.

The assessment of colon tumor invasion and metastatic potential involved the exami-
nation and analysis of MMP-2 expression. In comparison to the healthy mice, statistically
significantly heightened MMP-2 expression was observed in the colon mucosa of the CC
mice (H-Blank and H-Cd: p < 0.01), as depicted in Figure 5. Notably, the injection of
Cd-O2/N2 atomized gas statistically significantly amplified MMP-2 expression in the colon
tumors of the CC mice relative to the blank and control groups (C-Control, C-S-Blank, and
C-S-Control: p < 0.05). The impact of intestinal stent implantation on MMP-2 expression
level was not statistically significant.
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(A) Immunohistochemical staining of MMP-2 in colonic mucosa in indicated treatments. Magni-
fication was 400×. (B) Immunohistochemical staining of MMP-2 in colonic tumors in indicated
treatments. Magnification was 400×. (C) Optical density was used to represent the expression of
MMP-2 in colon mucosa and tumors. Data were means ± SEM of 5 mice. * p < 0.05, ** p < 0.01. Among
them, if there is no asterisk between the two columns, it means there is no statistical significance.

3.2. Oxidative Stress

Carcinogenic metals are renowned for their capacity to induce ROS [38]. Due to
resource limitations that hindered the ability to conduct direct ROS measurements, this
study instead measured the activities of NOX1, SOD1, SOD2, and CAT enzymes, which
are key players in the cellular anti-oxidant defense system and in oxidative stress, to
indirectly illustrate changes in the production of ROS [39–41]. As depicted in Figure 6,
NOX1 expression levels were statistically significantly increased in the colon tumors of
the CC mice when compared to their healthy counterparts (H-Cd: p < 0.05). Notably, the
alterations in the expression levels of NOX1, β-catenin, and phospho-GSK3β followed a
similar pattern. Additionally, statistically significantly decreased expression levels were
observed for SOD1 (H-Blank: p < 0.05; H-Cd: p < 0.001), SOD2 (H-Cd: p < 0.01), and CAT
(H-Blank: p < 0.01; H-Control and H-Cd: p < 0.001) in these tumors. The effect on the
expression levels of NOX1 and SOD2 after the transplantation of CC cells into the mice in
the blank and control groups was not statistically significant. The injection of Cd-O2/N2
atomized gas further significantly suppressed the expression of SOD1 (C-Blank and C-
Control: p < 0.001; C-S-Blank: p < 0.05), SOD2 (C-Control: p < 0.05), and CAT (C-Blank and
C-Control: p < 0.01) in the colon tumors of the CC mice. The effect of Cd-O2/N2 atomized
gas on the expression levels of NOX1, SOD2, and CAT in the colon tumors of the CC mice
with intestinal stents implanted in them was not statistically significant. Conversely, the
implantation of intestinal stents statistically significantly inhibited SOD1 expression in the
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colon tumors of the CC mice (C-Blank: p < 0.01). However, the effect on the expression of
NOX1, SOD2, and CAT was not statistically significant. In addition, the implantation of
intestinal stents had no statistically significant effect on the expression of NOX1, SOD1,
SOD2, and CAT in the colon tumors of the CC mice exposed to a Cd-O2/N2 atomized
gas environment.
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Figure 6. The expression of NOX1, SOD1, SOD2, and CAT in colon tumors of mice in each group
was detected. (A) Expression of NOX1, SOD1, SOD2, and CAT in colon tumors was determined
by immunoblotting. Expression of actin served as an internal control. (B) Relative levels of NOX1,
SOD1, SOD2, and CAT in colon tumors. Data are means ± SEM of 5 mice. * p < 0.05, ** p < 0.01,
*** p < 0.001. Among them, if there is no asterisk between the two columns, it means there is no
statistical significance.

Relative to the healthy mice, statistically significantly elevated expression levels of
8-OHdG were observed within the colon mucosa of the CC-afflicted mice (H-Control and
H-Cd: p < 0.01), as illustrated in Figure 7. The injection of Cd-O2/N2 atomized gas further
significantly amplified the expression of 8-OHdG in the colon mucosa (C-Blank: p < 0.05).
The implantation of intestinal stents had no significant effect on the expression of 8-OHdG
in the colon mucosa of the CC mice.
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Figure 7. The expression of 8-OHdG in colon tumor and mucosa of mice in each group was de-
tected. (A) Immunohistochemical staining of 8-OHdG in colonic mucosa in indicated treatments.
Magnification was 100×. (B) Immunohistochemical staining of 8-OHdG in colonic tumor in indicated
treatments. Magnification was 100×. (C) Optical density was used to represent the expression of
8-OHdG in colon mucosa and tumor. Data are means ± SEM of 5 mice. * p < 0.05, ** p < 0.01. Among
them, if there is no asterisk between the two columns, it means there is no statistical significance.

3.3. Inflammation

As depicted in Figure 8, the colon mucosa of the healthy mice exhibited a well-
maintained structure characterized by neatly arranged glands and an absence of inflam-
matory cell infiltration. Conversely, the colon mucosa of the CC mice displayed evident
damage, with disordered glandular arrangement and noticeable infiltration of inflam-
matory cells. Remarkably, the mucosa of the CC mice implanted with intestinal stents
exhibited severe damage, featuring disorganized glands and pronounced inflammatory cell
infiltration. Notably, the tumors observed across in all groups of mice exhibited irregular
nuclear morphology and variable sizes. Cell arrangement appeared disordered, lacked a
distinct tissue structure, and showcased irregular intercellular spaces.

Relative to the healthy mice, statistically significantly heightened MMP-9 expression
was observed within the colon mucosa of the CC mice (H-Cd: p < 0.05), as depicted
in Figure 9. The implantation of CC cells had no statistically significant effect on the
expression levels of MMP-9 in the colon mucosa of the CC mice in the blank and control
groups. The injection of Cd-O2/N2 atomized gas statistically significantly suppressed the
expression of MMP-9 in the colon tumors of the CC mice (C-Blank: p < 0.05). However, the
effect on MMP-9 expression in the colon mucosa of the CC mice that had been implanted
with intestinal stents was not significant. Similarly, the implantation of intestinal stents
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statistically significantly suppressed MMP-9 expression in the colon tumors of the CC mice
(C-Control: p < 0.01; C-Cd: p < 0.05). Variations in MMP-9 expression were noted in the
colon tumors of the CC mice in the blank and control groups (p < 0.05).
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Figure 8. The pathology of colon tumor and mucosa of mice in each group was observed.
(A) Representative H&E staining demonstrating mucosa from indicated treatments (red arrow
indicates inflammatory cell infiltration). Magnification was 100×. (B) Representative H&E staining
demonstrating tumors from indicated treatments. Magnification was 100×.
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Figure 9. The expression of MMP-9 in colon tumors and mucosa of mice in each group was detected.
(A) Immunohistochemical staining of MMP-9 in colonic mucosa in indicated treatments. Magni-
fication was 400×. (B) Immunohistochemical staining of MMP-9 in colonic tumors in indicated
treatments. Magnification was 400×. (C) Optical density was used to represent the expression of
MMP-9 in colon mucosa and tumors. Data are means ± SEM of 5 mice. * p < 0.05, ** p < 0.01. If there
is no asterisk between the two columns, it means there is no statistical significance.
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As depicted in Figure 10, the expression of COX-2 was notably suppressed in the
colon tumors of the CC mice compared to their healthy counterparts (H-Cd: p < 0.01). The
implantation of CC cells had no statistically significant effect on the expression levels of
COX-2 in the colon mucosa of the CC mice in the blank and control groups. The injection
of Cd-O2/N2 atomized gas further significantly inhibited COX-2 expression within these
colon tumors (C-Blank: p < 0.01; C-Control: p < 0.05), but the effect on COX-2 expression
in the colon mucosa of the CC mice that had been implanted with intestinal stents was
not significant.
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Figure 10. The expression of COX-2 in colon tumor of mice in each group was detected. (A) Expression
of COX-2 in colon tumors was determined by immunoblotting. Expression of actin served as an
internal control. (B) Relative levels of COX-2 in colon tumors. Data are means ± SEM of 5 mice.
* p < 0.05, ** p < 0.01. If there is no asterisk between the two columns, it means there is no statistical
significance.

The implantation of CC cells had no significant effect on Iba1 expression. Notably,
the injection of Cd-O2/N2 atomized gas led to a statistically significant reduction in Iba1
expression in the colon mucosa (C-Control: p < 0.05) and tumors (C-Control: p < 0.01;
C-S-Blank: p < 0.05; C-S-Control: p < 0.01), as depicted in Figure 11. Significant variation in
the expression of Iba1 was observed in the colon mucosa of the blank and control groups
following stent implantation.
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Figure 11. The expression of Iba1 in colon tumors and mucosa of mice in each group was detected.
(A) Immunohistochemical staining of Iba1 in colonic mucosa in indicated treatments. Magnification
was 400×. (B) Immunohistochemical staining of Iba1 in colonic tumors in indicated treatments.
Magnification was 400×. (C) Optical density was used to represent the expression of Iba1 in colon
mucosa and tumors. Data are means ± SEM of 5 mice. * p < 0.05, ** p < 0.01. If there is no asterisk
between the two columns, it means there is no statistical significance among them.

4. Discussion

In this study, mouse models of CC were employed to investigate the implications
of exposure to the heavy metal Cd in the atmospheric environment on CC progression
and its impact on the invasiveness of intestinal stents within the cancerous colon. An
abnormal secretion of Wnt protein within CC cells triggered an unconventional activation
of the Wnt/β-catenin signaling pathway, culminating in the phosphorylation of GSK3β.
Consequently, this cascade hindered the ubiquitination process of β-catenin, resulting in
its intracellular accumulation and the subsequent promotion of CC cell proliferation [42].
The proliferation demands imposed on CC cells led to increased energy consumption,
contributing to an initial decline in body weight among the CC mice [43]. Subsequently,
in the later stages of the trial, an observable rise in tissue protein degradation within the
colon mucosa of the CC mice significantly contributed to the invasive nature of colon
tumors. Additionally, Cd amplified CC cell proliferation by further stimulating GSK3β
phosphorylation and leading to subsequent intracellular β-catenin accumulation. This find-
ing aligns with the observations made by Wei [44], who noted the role of Cd in advancing
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malignant tumors by inhibiting GSK3β activity while concurrently enhancing β-catenin
expression. Similarly, Chakraborty [45] suggested that Cd-induced alterations in cancerous
conditions plausibly occur through the Wnt signaling pathways. This enhancement did not
produce statistically significant changes in the body weight of the CC mice compared to the
healthy mice, likely due to the overshadowing effect of increased tumor tissue weight in
the later stages of the experiment. Additionally, in the latter phase of the study, Cd notably
facilitated colon tumor remodeling and instigated tumor cell migration. This corroborates
with Wang’s [46] findings, wherein Cd exposure induced MMP-2 mRNA expression and
consequently fostered the migration and invasion capabilities of human breast cancer cells.
The implantation of intestinal stents alleviated GSK3β phosphorylation and reduced intra-
cellular β-catenin accumulation, thereby slowing down CC cell proliferation. A stent takes
up part of the intestinal space and prevents colon tumors from expanding. Additionally,
intestinal stents can reduce the blood supply to colon tumors. Colon tumor growth requires
large amounts of oxygen and nutrients, and if the blood supply is reduced, the reproductive
capacity of CC cells will be inhibited [47]. This aligns with Matsuda’s [48] observations, sug-
gesting that the mechanical compression induced by intestinal stents could hinder cancer
cell proliferation in cases of malignant large bowel obstruction. However, the implantation
of intestinal stents induced gastrointestinal discomfort in the CC mice, resulting in reduced
food intake and weight loss. Furthermore, their implantation easily triggered inflammation
and infection, compelling the body to expend additional energy to manage the immune
response [49].

ROS generated by oxidative stress in the colon mucosa of the CC mice, indirectly
reflected by enzyme activity, induced oxidative DNA damage, significantly contributing
to the proliferation and spread of CC cells. This aligns with the conclusions drawn by
Nilsson [50]. Additionally, NOX1 activity was heightened within CC cells; this is an
indirect indicator of increased ROS, and increased ROS levels abnormally activate the
Wnt/β-catenin signaling pathway by disrupting Wnt protein secretion. Consequently, this
abnormal activation fosters the uncontrolled proliferation of CC cells [51–53]. Cd exacer-
bates ROS production by further amplifying NOX1 activity in CC cells, a phenomenon also
observed by Tyagi [54] and Lian [55]. The implantation of intestinal stents inhibited the ex-
pression of SOD1 in the colon tumors of the CC mice. However, the impact on NOX1, SOD2,
and CAT enzyme activities was not evident. SOD, which is categorized into three groups
(SOD1, SOD2, and SOD3), plays a crucial role in maintaining intracellular ROS home-
ostasis [56]. Specifically, SOD1 facilitates the dismutation of O2− into H2O2, a stable ROS
messenger that is pivotal for regulating oxidative stress and supporting oncogene-driven
cancer cell proliferation [57]. SOD2 scavenges superoxide radicals formed in the respiratory
electron transport chain, thereby impacting cell cycle signaling and cancer progression [58].
CAT acts as an enzymatic scavenger by catalyzing the breakdown of H2O2 into oxygen
and water, shielding cells from H2O2 toxicity and serving as a key element in the biological
defense system [59]. Consequently, it was indirectly demonstrated via measurements of
enzyme activity that there was no substantial increase in intracellular ROS after intestinal
stent implantation, suggesting a less pronounced impact on the Wnt/β-catenin signaling
pathway. This effect even contributes to the slowing down of the dysregulation of the
Wnt/β-catenin signaling pathway.

The CC mice exhibited colon mucosal damage, disordered glandular arrangement,
and infiltration of the inflammatory cells. However, upon the implantation of intestinal
stents, severe damage to the colon mucosa and a noticeable infiltration of inflammatory
cells were observed. Cd exhibited a dual impact on the immune response within the colon
mucosa of the CC mice. It inhibited the expression of Iba1, likely due to its induction of
oxidative stress, thus triggering the generation of oxygen free radicals in colon cells. This
unfavorable effect on immune cells resulted in the a reduced production of inflammatory
cytokines, thereby mitigating the inflammatory response [60]. Conversely, Cd promoted the
expression of Iba1 in the colon tumors of the CC mice. This indicated that Cd heightened
the inflammatory response in CC cells, consequently fostering the proliferation of colon
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tumor cells. It stimulated the activity of certain immune cells, notably macrophages, thereby
triggering inflammatory reactions and elevating the expression levels of immune markers
such as Iba1. A similar study by Yang [61] also reported increased gliosis, as indicated by
a rise in the number of Iba1-positive cells, following Cd poisoning. Moreover, intestinal
stents inhibited the expression of MMP-9 and COX-2 in colon tumors. This inhibition is
linked to the ability of intestinal stents to suppress the activity of inflammation-related cells,
possibly including those responsible for producing MMP-9 and COX-2 in colon tumors.
However, this speculation necessitates further validation and investigation.

There are several points in this study that require further investigation. First, there was
a difference in the expression of MMP-9 between the C-Blank and C-Control groups, but
there was no difference between the C-S-Blank and C-S-Control groups. This might be due
to the control group being exposed to O2/N2 atomized gas, which increased the proportion
of oxygen and nitrogen in the atmospheric environment under which the mice lived, which,
in turn, might lead to oxidative reactions in CC cells and promote the expression of MMP-9
in the tumors of the CC mice. The implantation of intestinal stents may inhibit this reaction.
However, there is currently a lack of research in this area. Therefore, more research is
needed to verify this speculation. Moreover, the expression of Iba1 was opposite to that of
MMP-9. This difference might occur due to the reaction of the metal stent with substances in
the actual atmospheric environment. Second, compared to the C-control and C-Cd mice, the
mice in the C-S-Control and C-S-Cd groups exhibited significantly lower MMP-9 expression
levels, but the mice in the C-S-Blank group showed a significantly lower expression level
than the C-Blank mice. There was no significant change in the expression level of MMP-9
across the groups. This might be due to the difference in gas composition in the actual
and simulated atmospheric environments. This study did not research the interaction of
substances in the actual atmospheric environment and gas components with cadmium,
intestinal stents, and colon cancer cells. Thus, further research is needed in the future.

5. Conclusions

The presence of the heavy metal Cd in an atmospheric milieu acts as a catalyst in
the progression of tumorigenesis within murine models of CC. The implementation of
intestinal stents demonstrates a mitigating effect on tumor incidence within these CC
murine models. Significantly, an aberrant activation of the ROS-mediated Wnt/β-catenin
signaling pathway emerges as a pivotal mechanism contributing to the facilitation of this
tumorigenic promotion. Cd partially fosters CC tumorigenesis via the ROS-mediated
Wnt/β-catenin signaling pathway. The effect of Cd on the invasive effect of intestinal stents
in the cancerous colon is not significant.
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