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Abstract: Background: While mounting evidence suggests a connection between environmental
contaminants and sleep problems, it remains uncertain whether exposure to volatile organic com-
pounds (VOCs) specifically is associated with such problems. Methods: Data from the National
Health and Nutrition Examination Survey program’s five survey cycles (2005–2006, 2011–2018) were
used to conduct cross-sectional research. Data on short sleep duration (SSD) and self-reported trouble
sleeping were collected from questionnaire data. Data on urine VOCs were gathered from laboratory
data. The association between urinary VOCs and sleep problems was examined using weighted
generalized linear models and the restricted cubic spline (RCS), weighted quantile sum (WQS), and
quantile-based g-calculation (QGC) methods. Results: In all, a total of 4131 general adult individuals
were included in this study. The prevalence of SSD and self-reported trouble sleeping was 34.11%
and 25.03%, respectively. 3,4-MHA, AAMA, AMCC, SBMA, and MA were risk factors for SSD after
adjusting several covariates, with the largest effect being AMCC (OR = 1.47, 95% CI: 1.08, 2.02). Risk
factors for sleep issues included AAMA, AMCC, CEMA, CYMA, DGBMA, 2HPMA, 3HPMA, MA,
and PGA, with AMCC having the highest impact with an OR of 1.69 (95% CI: 1.28, 2.22). Both the
WQS model and the QGC model showed that the co-exposure to VOCs was positively associated with
SSD and self-reported trouble sleeping, with AMCC being the most influential VOC. Conclusions:
According to our research, high levels of single or mixed urine VOCs are linked to a higher prevalence
of SSD and self-reported trouble sleeping in the general adult population of the United States. Further
prospective and experimental studies are needed in the future to validate these potential relationships
and explore the underlying mechanisms.

Keywords: volatile organic compounds; short sleep duration; sleep problems

1. Introduction

Sleep, constituting a significant portion of human life, is a vital and distinctive func-
tional state of the brain with profound implications for public health and economic well-
being [1] A good night’s sleep extends beyond merely reducing fatigue and sleepiness,
encompassing positive effects on cardiovascular health, metabolic function, immune re-
sponse, cognitive abilities, and emotional well-being [2]. However, with the accelerated
pace of life and increased pressure, people’s sleep time and sleep quality are greatly affected.
Sleep problems have 7.6% overall prevalence, according to data analyzed from a survey
carried out in 70 countries [3]. According to the findings of a national survey, Australian
adults frequently experience sleep disorders [4]. The age-adjusted prevalence of sleep diffi-
culties in the US general population trended upward from 2005 to 2018 [5]. Sleep problems,
especially sleep deprivation, are risk factors for obesity, diabetes, cardiovascular disease,
dementia, anxiety and depression, declined fertility, and cancer, as well as increased risk of
death [6–8]. Sleep problems have become a public health issue that cannot be ignored, and
it is necessary to explore the risk factors for sleep problems.
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A multitude of factors influence sleep, including lifestyle, environmental circum-
stances, psychological state, health problems, and drug use [9]. Recently, attention has been
drawn to environmental risk factors for sleep problems, and several recent studies have
reported associations between environmental pollutants and sleep problems. Short-term
environmental pollution is associated with sleep disorders in Chinese older individuals,
according to Tang et al. [10]. Short sleep duration (SSD) during adolescence has been
associated with higher urine quantities of phthalate metabolites [11]. Organophospho-
rus pesticide exposure is associated with a higher prevalence of SSD in the general adult
population in the United States [12]. Chronic pesticide exposure is associated with sleep
disorders [13]. Many studies have found higher-than-allowable volatile organic compound
(VOC) concentrations in bedrooms during sleep due to poor ventilation, which might cause
sleep problems [14,15].

VOCs are common and complex organic pollutants in the air, and the most common
groups of VOCs include alkanes, olefins, aromatics, halocarbons, and carbonyls [16]. Many
industrial activities, smokestacks, exhaust emissions from cars and other types of vehi-
cles, the incineration of waste and combustion systems, fuels, chemical manufacturing
processes, and more are among the main sources of VOCs [17]. In addition, volatile or-
ganic compounds are also produced by metabolic reactions in the human body. VOCs can
affect the human respiratory system, nervous system, digestive system, urinary system,
hematopoietic system, endocrine system, and immune system in a variety of ways such
as inflammatory response and oxidative stress, and they may even lead to cancer [18,19].
According to Zhuang et al., benzene and ethylbenzene are positively correlated with de-
pression [20]. Adolescent male rats exposed to benzene and m-xylene showed impaired
learning capacity, motor impairments, and anxiety-like behavior [21]. Increased benzene
concentrations were associated with an increased incidence of central nervous system
symptoms in residents of Gulf countries [22]. Although the neurological risks of VOCs
have been extensively studied, research is still needed on the relationship between urinary
VOCs and sleep problems.

Therefore, the present study was conducted to investigate the relationship between
urinary VOC metabolites and sleep problems using the weighted generalized logistic
model, restricted cubic spline (RCS), the weighted quantile sum (WQS) model, and the
quantile-based g-calculation (QGC) method using data from the National Health and
Nutrition Examination Survey (NHANES).

2. Materials and Methods
2.1. Study Data

The National Center for Health Statistics (NCHS) of the Centers for Disease Control
and Prevention conducts the cross-sectional NHANES to assess the health and nutrition
status of Americans. The NHANES runs on a two-year cycle, with all participants providing
informed consent. The NHANES was approved by the NCHS Research Ethics Review
Committee.

All related data were downloaded from https://www.cdc.gov/nchs/nhanes/index.htm
(accessed on 20 August 2023). Because only five cycles (2005–2006, 2011–2012, 2013–2014,
2015–2016, and 2017–2018) measured the amount of VOC metabolites in urine, we used
these five cycles of publicly accessible data from the NHANES for this investigation.
The NHANES randomly selected a sample of one-third of the population to assess their
urine VOC metabolites. Throughout the five cycles, 48,933 participants signed up for the
NHANES, of which, 12,435 complete results were obtained from the testing of urine VOC
metabolites. Of these, 4227 participants < 20 years of age were excluded from the analysis.
After excluding individuals who lacked results from the Sleep Problems Questionnaire
(n = 38) and those who lacked data on other covariates (n = 4039), 4131 individuals were
ultimately enrolled in the study for analyses of the association between urinary VOCs and
sleep problems in US adults (Figure S1).

https://www.cdc.gov/nchs/nhanes/index.htm
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2.2. Exposure Ascertainment

Participants’ urine was collected using a sterile collector by trained professionals and
stored in a polypropylene centrifuge tube or polystyrene cryotube vial, before which, partici-
pants did not need to fast or eat a special diet. Urine samples were transported at −20 ◦C and
subsequently frozen at −70 ◦C until analysis. The detection of VOC metabolites in human
urine was achieved using ultra-high-performance liquid chromatography–electrospray tan-
dem mass spectrometry (UPLC-ESI/MSMS). Please visit the webpage at https://wwwn.cdc.
gov/nchs/data/nhanes/2015-2016/labmethods/UVOC_UVOCS_I_MET.pdf (accessed on
20 August 2023) for more information about laboratory techniques for the detection of urine
volatile organic compounds.

Throughout five cycles, the NHANES detected 26 different VOC metabolites in
urine. They adjusted values below the lower limit of detection (LOD) to correction values
(LOD/sqrt [2]) based on laboratory documentation. We removed 11 VOC metabolites
because these metabolites accounted for more than one-third of the correction value [23].
Finally, the analysis comprised 15 urine VOC metabolites in total (Table 1).

Table 1. VOC metabolites included in the study and corresponding abbreviations.

VOC Metabolites Abbreviation

2-methylhippuric acid 2MHA
3- and 4-methylhippuric acid 3,4-MHA

N-acetyl-S-(2-carbamoylethyl)-L-cysteine AAMA
N-acetyl-S-(N-methylcarbamoyl)-L-cysteine AMCC

2-aminothiazoline-4-carboxylic acid ATCA
N-acetyl-S-(benzyl)-L-cysteine SBMA

N-acetyl-S-(2-carboxyethyl)-L-cysteine CEMA
N-acetyl-S-(2-cyanoethyl)-L-cysteine CYMA

N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine DHBMA
N-acetyl-S-(2-hydroxypropyl)-L-cysteine 2HPMA
N-acetyl-S-(3-hydroxypropyl)-L-cysteine 3HPMA

Mandelic acid MA
N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine MHBMA3

Phenylglyoxylic acid PGA
N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine HPMMA

2.3. Outcome Ascertainment

SLQ050 in the NHANES questionnaire was as follows: Ever told doctor had trouble
sleeping? Those who answered yes were considered to have self-reported sleep problems.
The questionnaire data for SLD012 (sleep hours—weekdays or workdays) were used to
determine whether participants had SSD. The National Institutes of Health advised adults
to sleep 7–8 h every day, with SSD being defined as getting less than 7 h of sleep [24].

2.4. Covariates

Age, gender, race, education level, marital status, physical activity, drinking alcohol,
smoking, household income to poverty level (PIR), body mass index (BMI), and urinary
creatinine were all gathered and set as covariates for statistical analysis. Based on the
grouping of NHANES questionnaire data, race information included Mexican American,
other Hispanic, non-Hispanic white, non-Hispanic black, and other races. Education
levels were classified as less than 9th grade, 9th–11th grade, high school graduate/GED
or equivalent, some college or AA degree, and college graduate or above. Marital status
was classified as married, widowed, divorced, separated, never married, and living with
a partner. Physical activity was categorized as never, moderately physically active, and
strenuously physically active. Based on previous research, activities that cause a small
amount of sweating or a moderate increase in breathing or heart rate are considered
to be moderately physically active [25]. Activities that caused significant increases in
respiration or heart rate or excessive sweating were considered to be strenuously physically

https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/UVOC_UVOCS_I_MET.pdf
https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/UVOC_UVOCS_I_MET.pdf
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active [25]. Serum cotinine was used to adjust for participant tobacco exposur [20]. Alcohol
consumption was classified as having more than 12 drinks per year (yes) or less than
12 drinks per year (no).

2.5. Statistical Analysis

Continuous variables are described as weighted means ± standard error, and categor-
ical variables are described as percentages. Urinary VOC metabolites were described as
median (quartiles) and were log-transformed with a base of 10 in subsequent analyses to im-
prove normality. Differences between groups were explored using t-tests, chi-square tests,
or Wilcoxon rank-sum tests. Weighted generalized linear models were applied to estimate
the association between urinary VOC metabolites and SSD and sleep difficulties. Odds
ratios (ORs) and 95% confidence intervals (CIs) were used to describe these results. Model
1 did not adjust for other factors. Model 2 adjusted for creatinine, sex, age, educational
level, race, marriage, PIR, BMI, serum cotinine, drinking alcohol, and physical activity.

Using a restricted cubic spline (RCS) that was adjusted for the aforementioned covari-
ates, it was possible to determine potential nonlinear correlations between dose–response
associations between VOC metabolites and sleep problems. Using weighted quantile sum
(WQS) regression analysis and quantile-based g calculation (QGC) modeling, we evaluated
the influence of co-exposure to VOCs on sleep in order to quantify the total effect of the
15 VOC metabolites on sleep problems as well as the contribution of each VOC. However,
the limitation of the WQS model is that it believes that the exposure between multiple
mixtures is additive and that the association between exposure and outcome is consistent
and linear [26]. So, we also used the QGC model to assess the change in the incidence of
sleep problems when 15 VOC metabolites were simultaneously elevated by a quarter. The
QGC model, combined with the adaptability of g calculations, can be used to assess the
cumulative effects of multiple pollutants in different directions [27].

All statistical analyses were performed using R version 4.1.0 (Bioconductor, NY, USA).
Weighted generalized logistic regression, RCS, WQS, and QGC analyses were performed
using the “survey” package, “rms” package, “gwqs” package, and “qgcomp” package,
respectively [27]. p values of <0.05 were considered statistically significant.

3. Results
3.1. General Characteristics of the Included Population

As shown in Table 2, all participants were categorized into SSD or non-SSD subgroups
and trouble-sleeping or non-trouble-sleeping subgroups. A total of 4131 participants
were included, including 1409 with SSD and 1034 with trouble sleeping. The SSD and
non-SSD subgroups were statistically different in terms of PIR, serum cotinine, creatinine,
gender, race, and education. Statistically significant differences existed between the trouble-
sleeping and non-trouble-sleeping groups with respect to age, BMI, gender, race, marital
status, physical activity, and alcohol consumption. SSD and trouble sleeping were more
prevalent among the non-Hispanic white and non-Hispanic black groups.

As shown in Table 3, the remaining 12 VOCs were higher in SSD participants than
in non-SSD participants, except for three VOCs, AMCC, ATCA, and 2HPMA. For the
trouble-sleeping and non-trouble-sleeping subgroups, AMCC, CEMA, CYMA, MHBMA3,
and HPMMA were higher in the urine of trouble-sleeping participants than that of non-
trouble-sleeping participants, and there were no statistically significant differences in the
other VOCs.
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Table 2. Baseline data of included participants.

Baseline Data Non-SSD
(n = 2722)

SSD
(n = 1409) p Value

Non-Trouble
Sleeping
(n = 3097)

Trouble
Sleeping
(n = 1034)

p Value

Age (year, SD) 47.10 (0.63) 47.93 (0.56) 0.219 46.20 (0.58) 51.47 (0.67) <0.001 †,**
BMI (kg/m2, SD) 28.63 (0.24) 28.16 (0.16) 0.062 28.02 (0.16) 29.06 (0.22) <0.001 †,**

PIR (SD) 2.97 (0.07) 3.18 (0.06) 0.014 * 3.10 (0.05) 3.14 (0.07) 0.595 †
Serum cotinine (ng/mL, SD) 73.39 (5.61) 52.49 (3.26) 0.001 ** 56.15 (3.56) 66.79 (5.76) 0.129 ‡

Creatinine (µg/mL, SD) 118.26 (2.52) 109.36 (2.04) 0.006 ** 113.94 (2.09) 107.62 (3.01) 0.108 ‡
Gender

Male 1349 (49.56) 776 (55.07) <0.001 ** 1639 (52.92) 486 (47.00) 0.016 *Female 1373 (50.44) 633 (44.93) 1458 (47.08) 548 (53.00)
Race

Mexican American 470 (17.27) 212 (15.05)

<0.001 **

571 (18.44) 111 (10.74)

<0.001 **
Other Hispanic 194 (7.13) 111 (7.88) 234 (7.56) 71 (6.87)

Non-Hispanic white 1269 (46.62) 534 (37.90) 1256 (40.56) 547 (52.90)
Non-Hispanic black 466 (17.12) 419 (29.74) 675 (21.80) 210 (20.31)

Other 323 (11.87) 133 (9.44) 361 (11.66) 95 (9.19)
Educational level

Less than 9th grade 284 (10.43) 114 (8.09)

<0.001 **

327 (10.56) 71 (6.87)

0.105
9–11th grade 331 (12.16) 209 (14.83) 415 (13.40) 125 (12.09)

High school graduate 613 (22.52) 324 (23.00) 691 (22.31) 246 (23.79)
Some college or AA degree 738 (27.11) 453 (32.15) 839 (27.09) 352 (34.04)
College graduate or above 756 (27.77) 309 (21.93) 825 (26.64) 240 (23.21)

Marital status
Married 1530 (56.21) 687 (48.76)

0.098

1684 (119.52) 533 (37.83)

<0.001 **

Widowed 184 (6.76) 90 (6.39) 197 (13.98) 77 9 (5.46)
Divorced 264 (9.70) 185 (13.13) 289 (20.51) 160 (11.36)
Separated 65 (2.39) 50 (3.55) 75 (5.32) 40 (2.84)

Never married 448 (16.46) 263 (18.67) 568 (40.31) 143 (10.15)
Living with partner 231 (8.49) 134 (9.51) 284 (20.16) 81 (5.75)

Body activity
None 1004 (36.88) 517 (36.69)

0.785
1179 (38.07) 342 (33.08)

0.016 *Moderate 836 (30.71) 422 (29.95) 924 (29.84) 334 (32.30)
Vigorous 882 (32.40) 470 (33.36) 994 (32.10) 358 (34.62)

Drinking alcohol
Yes 2043 1048 0.664 2264 827 <0.001 **No 679 361 833 207

SSD, short sleep duration; SD, standard deviation; BMI, body mass index; PIR, the ratio of family income to poverty.
Student’s t-test or Kruskal–Wallis tests were used for the comparison of the continuous variables according to
the data distribution and the Chi-square test for the categorical variables. † Student’s t-test, ‡ Kruskal–Wallis
** p < 0.01; * p < 0.05.

Table 3. The concentrations of volatile organic compound metabolites (VOCs) in the urine of non-SSD
and SSD subgroups, as well as non-trouble-sleeping and trouble-sleeping subgroups.

VOCs
(ng/mL)

Non-SSD
(n = 2722)

SSD
(n = 1409) p Value

Non-Trouble
Sleeping
(n = 3097)

Trouble Sleeping
(n = 1034) p Value

2MHA 27.80 (12.60, 72.40) 35.6 (16.5, 88.5) <0.001 ** 28.9 (13.2, 73.8) 33.7 (13.3, 83.6) 0.289
3,4-MHA 180.0 (77.2, 488.0) 242.0 (104.0, 592.0) <0.001 ** 202.0 (81.7, 504.0) 207.0 (89.3, 547.0) 0.369
AAMA 47.2 (24.7, 93.1) 58.0 (29.2, 120.0) <0.001 ** 49.9 (25.7, 99.6) 53.2 (27.2, 102.0) 0.407
AMCC 139.0 (66.9, 294.0) 174.0 (88.2, 371.0) 0.061 139.0 (67.8, 297.0) 185.0 (87.8, 363.0) <0.001 **
ATCA 90.3 (36.6, 193.0) 104.0 (42.4, 201.0) 0.128 94.2 (36.4, 197.0) 99.8 (44.7, 193.0) 0.300
SBMA 5.8 (2.9, 11.3) 6.7 (3.5, 12.4) 0.002 ** 6.1 (3.2, 11.9) 5.9 (3.0, 11.1) 0.273
CEMA 86.9 (41.2, 163.0) 106.0 (51.6, 199.0) <0.001 ** 88.9 (41.6, 168.0) 98.9 (49.0, 190.0) 0.049 *
CYMA 1.8 (0.9, 5.9) 1.9 (1.2, 25.5) <0.001 ** 1.8 (0.9, 5.7) 1.8 (1.0, 22.8) 0.006 **

DHBMA 281.0 (152.0, 477.0) 325.0 (178.0, 518.0) <0.001 ** 293.0 (154.0, 491.0) 301.0 (174.0, 493.0) 0.329
2HPMA 29.7 (14.6, 61.3) 34.7 (17.4, 67.2) 0.016 31.0 (15.4, 62.0) 33.4 (15.6, 63.4) 0.465
3HPMA 223.0 (108.0, 451.0) 254.0 (130.0, 581.0) <0.001 ** 234.0 (112.0, 465.0) 235.0 (116.0, 562.0) 0.133

MA 127.0 (68.2, 222.0) 150.0 (78.1, 263.0) <0.001 ** 132.0 (70.7, 233.0) 133.0 (72.8, 241.0) 0.313
MHBMA3 4.77 (2.33, 10.60) 5.7 (2.8, 14.3) <0.001 ** 4.8 (2.4, 10.6) 5.5 (2.7, 13.7) 0.018 *

PGA 174.0 (78.9, 317.0) 201.0 (97.1, 355.0) <0.001 ** 178.0 (81.5, 331.0) 187.0 (95.2, 326.0) 0.547
HPMMA 216.0 (108.0, 443.0) 247.0 (132.0, 523.0) <0.001 ** 219.0 (113.0, 446.0) 260.0 (126.0, 516.0) 0.035 *

VOC metabolite distribution data in urine are expressed as median (interquartile). ** p < 0.01; * p < 0.05.
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3.2. Association between Each Kind of VOC and Sleep Problems

After adjusting for covariates, 3,4-MHA, AAMA, AMCC, SBMA, and MA were risk
factors for SSD with odds ratios (ORs) of 1.27 (95% CI: 1.03, 1.57), 1.44 (95% CI: 1.04, 1.98),
1.47 (95% CI: 1.08, 2.02), 1.30 (95% CI: 1.02, 1.64), and 1.38 (95% CI: 1.91, 1.00), with the
largest effect being caused by AMCC. AAMA, AMCC, CEMA, CYMA, DGBMA, 2HPMA,
3HPMA, MA, and PGA were the risk factors for trouble sleeping, with ORs of 1.49 (95%
CI: 1.06, 2.11), 1.69 (95% CI: 1.28, 2.22), 1.51 (95% CI: 1.14, 1.98), 1.33 (95% CI: 1.16, 1.54),
1.66 (95% CI: 1.07, 2.59), 1.44 (95% CI: 1.14, 1.82), 1.56 (95% CI: 1.13, 2.16), 1.44 (95% CI: 1.16,
1.79), and 1.41 (95% CI: 1.11, 1.78), respectively, with the largest impact being caused by
AMCC (Table 4).

Table 4. Associations of VOC concentrations with SSD and trouble sleeping in generalized linear
regression models.

VOCs
Model 1 Model 2

OR (95% CI) p Value OR (95% CI) p Value

SSD

2MHA 1.39 (1.17, 1.64) <0.001 ** 1.17 (0.95, 1.45) 0.136
3,4-MHA 1.44 (1.24, 1.68) <0.001 ** 1.27 (1.03, 1.57) 0.027 *
AAMA 1.63 (1.33, 2.01) <0.001 ** 1.44 (1.04, 1.98) 0.026 *
AMCC 1.58 (1.29, 1.93) <0.001 ** 1.47 (1.08, 2.02) 0.016 *
ATCA 1.14 (0.98, 1.33) 0.083 1.12 (0.95, 1.33) 0.177
SBMA 1.37 (1.13, 1.66) 0.001 ** 1.30 (1.02, 1.64) 0.032 *
CEMA 1.56 (1.29, 1.89) <0.001 ** 1.30 (0.97, 1.74) 0.081
CYMA 1.25 (1.13, 1.38) <0.001 ** 1.13 (0.97, 1.32) 0.118

DHBMA 1.52 (1.21, 1.91) <0.001 ** 1.17 (0.76, 1.80) 0.471
2HPMA 1.22 (1.01, 1.48) 0.037 * 0.99 (0.77, 1.27) 0.951
3HPMA 1.45 (1.21, 1.73) <0.001 ** 1.14 (0.89, 1.46) 0.283

MA 1.61 (1.30, 1.99) <0.001 ** 1.38 (1.91, 1.00) 0.048 *
MHBMA3 1.39 (1.18, 1.63) <0.001 ** 1.11 (0.88, 1.41) 0.379

PGA 1.32 (1.12, 1.55) 0.001 * 1.08 (0.89, 1.31) 0.458
HPMMA 1.46 (1.24, 1.72) <0.001 ** 1.19 (0.94, 1.50) 0.158

Trouble sleeping

2MHA 1.11 (0.90, 1.37) 0.323 1.21 (0.95, 1.55) 0.124
3,4-MHA 1.11 (0.91, 1.35) 0.296 1.22 (0.96, 1.54) 0.100
AAMA 1.11 (0.86, 1.42) 0.434 1.49 (1.06, 2.11) 0.022 *
AMCC 1.45 (1.17, 1.80) <0.001 ** 1.69 (1.28, 2.220 <0.001 **
ATCA 1.14 (0.94, 1.39) 0.175 1.12 (0.90, 1.39) 0.317
SBMA 0.86 (0.70, 1.08) 0.191 0.83 (0.65, 1.05) 0.119
CEMA 1.28 (1.01, 1.63) 0.039 1.51 (1.14, 1.98) 0.004 **
CYMA 1.19 (1.05, 1.34) 0.005 ** 1.33 (1.16, 1.54) <0.001 **

DHBMA 1.17 (0.87, 1.55) 0.298 1.66 (1.07, 2.59) 0.025 *
2HPMA 1.19 (0.96, 1.48) 0.120 1.44 (1.14, 1.82) 0.002 **
3HPMA 1.15 (0.89, 1.49) 0.271 1.56 (1.13, 2.16) 0.007 **

MA 1.23 (1.02, 1.49) 0.032 * 1.44 (1.16, 1.79) 0.001 **
MHBMA3 1.07 (0.88, 1.30) 0.478 1.09 (0.88, 1.36) 0.518

PGA 1.25 (1.01, 1.55) 0.042 * 1.41 (1.11, 1.78) 0.005 **
HPMMA 1.25 (1.01, 1.55) 0.042 * 1.41 (1.11, 1.78) 0.583

SSD, short sleep duration; VOCs were log-transformed; OR > 1 means positive correlation, and OR < 1 means
negative correlation. Model 1: no adjustment; Model 2: adjusted for creatinine, sex, age, educational level, race,
marriage, PIR, BMI, serum cotinine, drinking alcohol, and physical activity. ** p < 0.01; * p < 0.05.

According to the results of the RCS (Figure 1), the metabolites of 14 VOCs were
positively associated with SSD, except for 2HPMA. AMCC, CEMA, 2HPMA, 3HPMA, MA,
and HPMA were positively associated with trouble sleeping.
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3.3. Association between Co-Exposure to VOCs and Sleep Problems

The QGC results showed that co-exposure to VOC metabolites was positively associ-
ated with SSD (β = 0.14, p = 0.028) and trouble sleeping (β = 0.23, p = 0.005), with AMCC
having the largest positive weights of 0.25 and 0.32, respectively (Figure 2). The results
of WQS modeling similarly showed that co-exposure to VOC metabolites was positively
associated with SSD (β= 0.23, p = 0.003) and trouble sleeping (β = 0.25, p = 0.003). The VOC
with the greatest impact on the association of combined exposure to VOCs with SSD was
AMCC (weight = 0.29), followed by SBMA (weight = 0.24) and AAMA (weight = 0.14). The
VOC with the greatest influence on the relationship between combined exposure to VOCs
and trouble sleeping was also AMCC (weight = 0.30), followed by CEMA (weight = 0.29)
and AAMA (weight = 0.10) (Figure 3).
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4. Discussion

In this study, we investigated the relationship between sleep problems and urine VOC
metabolites using the NHANES dataset. A total of 4131 subjects were included in the study
and analyzed using 15 metabolites of VOCs in urine. The results of the study showed that
among the 15 VOCs, some of the VOC metabolites were positively associated with SSD and
most of the VOC metabolites were positively associated with trouble sleeping. Furthermore,
we confirmed that co-exposure to VOCs resulted in a significant increase in the prevalence
of SSD and trouble sleeping in adults by the WQS model and QGC model analysis.

This study found that, among the general adult population in the United States, ex-
posure to VOCs was associated with SSD and trouble sleeping. Several previous studies
have also reported associations between environmental pollutants and sleep health. Some
studies have found that exposure to metal fumes was associated with sleep disorders in
shipyard welders [28]. Exposure to cooking oil fumes from home cooking was associated
with poor sleep quality in middle-aged Chinese people [29]. And one study found that
children exposed to conventional biomass stoves had a higher frequency of sleep apnea
symptoms [30]. Pollutants in the environment are generally thought to influence sleep
outcomes through changes in central nervous system regulation and/or respiratory physi-
ology [31]. First, VOCs may have a direct effect on the central nervous system, resulting in
altered and dysregulated neurochemical expression [32]. Specifically, the penetration of
VOCs into the brain alters serotonin levels [28], disrupts the protective epithelial barrier,
and destroys nerve cells [31,33]. These alterations may interfere with brain function and
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cause sleep problems. Second, VOCs may harm respiratory cells, leading to inflammation,
infections, or the greater restriction and obstruction of airflow, resulting in respiratory-
related sleep problems and poor sleep quality [31]. Furthermore, VOCs affect the human
endocrine system, causing an endocrine disturbance [34]. The endocrine system is closely
associated with sleep problems, and abnormal hormonal homeostasis may significantly
affect sleep patterns [35]. One study found that phthalates alter brain circuits and hinder
the maturation of hormone-mediated systems, causing sleep difficulties in adolescents [11].
Another study discovered that bisphenol A may impair upper airway muscle function,
resulting in obstructive sleep apnea [36].

In essence, RCS fits the spline function RCS by selecting the position and number of
nodes, so that the continuous variable presents a smooth curve in the whole value range
to realize the exploration of nonlinear relations [37]. People are often exposed to multiple
VOCs, and it is more than imperative to explore the effects of exposure to a mixture of
VOCs on sleep. We used both the WQS model and the QCG model to quantify and visualize
the effects on sleep when mixtures of VOCs are co-exposed. Both models could assess the
contribution of each pollutant to the outcome in mixed exposure. The WQS model consisted
of 1000 bootstrap samples per group, divided into training (40%) and verification (60%) sets,
without limiting the direction of association between mixture and outcome [12]. However,
due to the assumption of direction consistency, there may be some deviation in the model
estimation results. At the same time, the WQS model defaults to linear correlation between
variables and outcomes and addition between variables, but most studies do not support
this assumption [38]. To address the above limitations, we employed the QGC model,
which combines the simple reasoning of the WQS regression model with the adaptability of
g calculations to evaluate the cumulative effects of multiple variable chemicals in different
directions [27]. However, it must be noted that the length of the QGC weight bar chart
could only be compared with each other in the same direction, and the left and right sides
of the chart could not be compared with each other [27]. Darker colors on the right side
indicate that mixed exposure to VOCs is positively associated with sleep problems.

We found that AMCC was the risk factor with the greatest positive weight for SSD and
trouble sleeping. AMCC is a dimethylformamide (DMF) metabolite. DFM is an excellent
solvent for acetylene extraction and the production of polyacrylonitrile fibers, which are
widely utilized in the industries of imitation leather, organic synthesis, dyestuffs, medicines,
petroleum refining, and resins. Previous research has revealed that DFM causes liver
damage, renal damage, lung damage, brain damage, and immunological dysfunction [39].
We found that AMCC, a key metabolite of DMF, was connected with sleep problems in this
study, and we concluded that DMF is a possible risk factor for SSD and trouble sleeping.
DFM, like other environmental contaminants, may cause sleep disorders by affecting the
respiratory and neurological systems. However, the particular physiological pathways
that relate DFM and AMCC to sleep problems are unknown, and more in vivo research is
required to investigate the toxicity mechanisms.

Apart from AMCC, CEMA has the largest influence on sleep problems. Acrolein is
CEMA’s parent chemical. Acrolein has numerous applications, including diapers, acry-
late polymers, paints, and coatings, as well as bactericides in the pharmaceutical, water
treatment, and petroleum industries [40]. Acrolein metabolism in the human body remains
unclear. In rats, it is first transformed to acrylic acid by the creation of methyl esters, then
to 3HPMA via glutathione binding, and it is ultimately oxidized to generate CEMA and
excreted in urine [41]. Our results found that 3HPMA as an intermediate product also
had a significant effect on sleep problems. However, as acrolein levels rise in the body, so
does the conversion of 3HPMA to CEMA, and urine CEMA may be a better biomarker of
acrolein exposure levels than 3HPMA [40]. Excessive acrolein exposure may be a risk factor
for trouble sleeping, but CEMA and 3HPMA have not been linked to SSD. By triggering the
release of peptides in innervating nerve terminals, acrolein can cause respiratory, ocular,
and gastrointestinal discomfort [41]. Acrolein exposure causes increased apoptosis in alve-
olar macrophages, increased mucus secretion, increased pulmonary edema, and enhanced
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bronchial reactivity, according to toxicological investigations [41]. Acrolein may contribute
to trouble sleeping through these mechanisms.

AAMA and MA were also found to be positively linked with SSD and sleep issues.
Acrylamide and styrene are the parent chemicals of AAMA and MA, respectively. Acry-
lamide is the raw ingredient needed to make polyacrylamide, which is mostly utilized in
water purification and treatment, pulp processing, and pipe internal coating. Acrylamide
and its metabolite, glycidylamine, have neurotoxic, genotoxic, and carcinogenic qualities,
affecting peripheral nerve signaling, enzymatic and hormonal control, muscle function,
reproduction, and other processes [42]. Styrene monomer is widely used in the plastic and
synthetic rubber industries, and clinical studies have shown that styrene is toxic to both the
central and peripheral nervous system, and chronic exposure to styrene leads to alterations
in neurobehavioral and neurophysiological measures [43]. AAMA and MA may lead to
sleep problems by damaging the nervous system, but further studies are needed to clarify
the specific physiological mechanisms.

To prevent sleep problems, the use of cleaning products containing VOCs should be
avoided at home, in hospitals, or in nursing homes. Healthcare workers should avoid
releasing volatile VOCs after storing or using perfume. There are still several limitations in
this study. First, since this research design was cross-sectional, it was unable to determine
the cause-and-effect relationship between exposure to VOCs and sleep issues. More cohort
and experimental studies are needed in the future to establish a causal relationship between
the two. Second, because the metabolic processes of many VOCs in the body are not well
understood, further research needs to be carried out on the accuracy of using some single
VOCs in urine to indicate relative VOC exposure. However, the direct detection of VOCs in
breath and blood does not always yield accurate results due to the volatility of VOCs [44].
VOCs in urine have a more stable and longer biological half-life than VOCs in blood [45].
Therefore, identifying VOCs in urine is thought to yield more reliable test findings [23].
Future studies could benefit from direct measures of environmental VOC concentrations.
Third, because a considerable fraction of the eligible study population lacked covariate data,
there could be selection bias. Fourth, while the study adjusted for several covariates, there
may be unmeasured factors (e.g., occupational exposures, indoor air quality) that could
have confounded the observed associations. Additionally, measurement errors may have
arisen due to, for example, not using standard tools like the Chicago Screening interview
or similar to determine the presence of sleep disorders. These questionnaires measure not
only the time to fall asleep, but also the latency period from sleep to sleep, the number of
times one wakes up during the night, and subjective feelings of fatigue or rest after sleep.
It is also highly recommended to use objective measurement methods such as actigraphs to
improve the accuracy of studies in the future. Finally, given the study’s focus on the US
adult population, the findings may not be directly applicable to other populations or age
groups. Studies in diverse settings are warranted.

5. Conclusions

We analyzed the association between urinary VOC metabolites and SSD and sleep
difficulties using the NHANES dataset. Our findings found that 3,4-MHA, AAMA, AMCC,
SBMA, and MA are risk factors for SSD; AAMA, AMCC, CEMA, CYMA, DGBMA, 2HPMA,
3HPMA, MA, and PGA are risk factors for sleep difficulties. Mixed urinary VOC metabo-
lite levels were associated with the increased prevalence of SSD and trouble sleeping in
the general adult population in the US, with AMCC having the greatest impact on this
relationship. This has important implications for preventing VOC pollution and protecting
sleep health. Further prospective and experimental studies are needed in the future to
validate these potential relationships and explore the underlying mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics12030222/s1, Figure S1: The flow gram of screening out eligible
participants from six survey cycles (2005–2006, 2011–2012, 2013–2014, 2015–2016, 2017–2018) of the
National Health and Nutrition Examination Survey (NHANES) program.
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