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Abstract: The main objective of this study is to thoroughly evaluate the diversity and sources of heavy
metals in the school environment. Specifically, this study examines the presence of heavy metals in the
dust found and collected from 24 schools in Vilnius. Employing hierarchical cluster analysis, principal
component analysis, and positive matrix factorization, we identified combustion-related activities
as primary contributors to elevated metal concentrations, notably zinc, scandium, and copper, with
PM2.5/PM10 ratios indicating a combustion source. They reveal significant differences in the levels
of elements such as arsenic (4.55–69.96 mg/kg), copper (51.28–395.37 mg/kg), zinc, and lead, which
are affected by both local environmental factors and human activities. Elevated pollution levels were
found in certain school environments, indicating environmental degradation. Pollution assessment
and specific element pairings’ strong positive correlations suggested shared origins or deposition
processes. While this study primarily assesses non-carcinogenic risks to children based on a health
risk assessment model, it acknowledges the well-documented carcinogenic potential of substances
such as lead and arsenic. The research emphasizes the immediate necessity for efficient pollution
management in educational environments, as indicated by the elevated hazard index for substances
such as lead and arsenic, which present non-carcinogenic risks to children. This research offers
important insights into the composition and origins of dust pollution in schools. It also promotes the
need for broader geographic sampling and prolonged data collection to improve our understanding of
pollution sources, alongside advocating for actionable strategies such as environmental management
and policy reforms to effectively reduce exposure risks in educational settings. Furthermore, it aims
to develop specific strategies to safeguard the health of students in Vilnius and similar urban areas.

Keywords: dust pollution; trace elements; indoor dust; dust exposure; environmental health risk;
particulate matter; risk assessment; urban pollution; elemental analysis

1. Introduction

Dust, which is composed of solid particles in the form of fine powder (less than
100 µm), is commonly referred to as particulate matter (PM). It is highly polluting due to
its ability to be easily transported through the air [1–3]. In urban areas, street dust plays a
significant role in pollution. It is a complex mixture of particles that can contain various
components such as organic matter, heavy metals, inorganic substances, mold spores,
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dander, and pollen. These particles can be resuspended into the air by vehicle movement
and wind, thus becoming a major source of atmospheric pollution. They can settle on
impermeable surfaces within cities, including roads and roofs [4–7]. A global study, such
as the analysis of urban dust in six Mexican cities, emphasizes the widespread presence of
heavy metal pollution and its associated health hazards, particularly for children [8].

According to Aguilera et al. [9], arsenic (As), cadmium (Cd), chromium (Cr), copper
(Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) are present in city
street dust at concentrations higher than the median of the world soil background values.
Pb, Zn, and Cu, while common in road transportation emissions, exhibit potential toxicity
based on dose and exposure route, emphasizing the nuanced nature of environmental
impact assessments. [10]. Consequently, high-traffic areas often exhibit elevated concen-
trations of heavy metals in street dust [1]. Poor vehicle maintenance, frequent stops, and
slow driving below 30–40 km/h can result in excessive fuel consumption [11], negatively
impacting both the environment and the physical health of drivers [12].

Indoor dust poses a significant concern for individuals who work, live, or spend a
majority of their time indoors. This dust is a combination of particulate matter derived
from both interior and exterior sources, and it can accumulate within indoor environments.
Indoor dust serves as a notable source of metal exposure for people and this dust originates
from various internal sources, including cooking, smoking, sweeping, wall erosion, rubber
carpet materials, painting, building and furniture materials, consumer products, and other
interior activities. On the other hand, external pollution sources contribute to indoor dust
through the infiltration of emissions from traffic, auto repair, welding, waste burning,
playground dust, and so on [2,3]. Comparative studies of indoor dust pollution across
various global locations reveal significant variations in heavy metal concentrations. For
instance, studies show elevated levels of Cr, Cu, Zn, Pb, and Fe in indoor dust from
Malaysia, Iraq, Hong Kong, and Nigeria, among others [2,3,13–15]. Such variations are
indicative of the widespread and diverse nature of indoor dust pollution, necessitating a
deeper understanding of its sources and impacts on human health. Indoor dust in schools
can have a significant impact on the health of children who study in classrooms. Children
may be exposed to these heavy metals present in indoor dust through various routes such
as inhalation, direct consumption of contaminated soils or food, and skin contact with
polluted school materials [16]. Children are more vulnerable to the effects of heavy metals
than adults. This vulnerability arises due to their behaviors, like hand-to-mouth contact,
crawling activities, and their faster respiratory rate. These factors increase the likelihood
of children ingesting heavy metals present in dust and inhaling more contaminated air
compared to adults; also, As, Cd, Cr, and Pb are common environmental contaminants
that might cause cancer as well as development disorders [17]. Although there has been
much research on the worldwide presence of heavy metal pollution in urban environments,
specifically in street dust as well as indoor dust, there is a significant lack of awareness
regarding this matter in Lithuanian research, particularly in the context of schools.

The primary contribution of this work is in its thorough examination of metal contam-
ination in indoor dust within schools in Vilnius, a topic that has been rarely explored in
Lithuanian research. The lack of research in local studies provides a distinct chance for our
investigation to clarify the origins and composition of indoor dust pollution in educational
environments, which is an important issue that is frequently disregarded. Our hypothe-
sis suggests that the indoor dust found in these schools has increased concentrations of
heavy metals, which originate from a diverse range of both external and internal sources
of pollution.

The objective of our study is to not only measure these levels but also investigate their
possible non-carcinogenic impacts on children. Our research aims to bring attention to the
overlooked problem of long-term dust pollution in schools in Lithuania, specifically in the
Vilnius region. We seek to provide new insights into the impact of this pollution on the
health and safety of students in this area.
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2. Materials and Methods
2.1. Sample Collection and Analysis

In various articles, different methodologies have been employed to collect dust sam-
ples from various locations. Some studies utilized vacuum cleaners and their bags as the
collection method [13,18–20]. Other authors collected dust samples from multiple areas
such as classroom floors, windowsills, playgrounds, balconies, doorsteps, stairs, entryways,
fans, air conditioner filters, bookshelves, wall corners, desks, chairs [2,3,21–23].

In 2022, our research team collected dust samples from 24 schools (Figure 1) that were
chosen based on specific criteria. Although most of the schools included in our study
are located in the central area of Vilnius, a few of them are placed outside the city center,
ensuring a full representation of different geographic positions in our research.
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Figure 1. Geographical location and the area where the study was conducted.

The process of selection offered priority to schools located near well-identified pol-
lution sources, considering that Vilnius does not have major industrial contributors to
pollution. The main focus of our criteria was on the heating plant, highways and railway
infrastructure, which are the largest contributors to pollution in the city, and all the schools
included in this study are located within a maximum proximity of 250 m from roads,
highways, and railways according to their locations. Vilnius mostly relies on vehicular
traffic for transportation, resulting in a wide range of transportation frequencies. In 2021,
the automobile ownership rate in Vilnius was roughly 450.89 cars per 1000 inhabitants.
This calculation is based on the presence of 365,577 cars and a population of 810,797 in
the city [24]. Although there are no data on the exact transportation frequencies for each
school, the high proportion of car ownership implies that there is a considerable amount of
daily vehicular activity in the city. This information is important for assessing the potential
exposure to environmental elements around schools.
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We specifically chose schools built between 1930 and 2012 to ensure a diverse range
of building ages and histories. This historical period includes various architectural eras,
which mirrored the evolution of construction materials and methodologies throughout
the years. The majority of these institutions have undergone renovations at different
periods, which may impact the composition of interior dust. The selection criteria were
designed to represent a comprehensive representation of dust accumulation in Vilnius,
taking into account various architectural eras and maintenance approaches. The samples
were obtained from areas typically overlooked by cleaners, like the space behind radiators,
the top of bookcases, corners, windowsills, and inaccessible parts of gymnasiums. Our
main focus was on the accumulation of dust over a long period of time.

The collected dust samples were analyzed using Niton XL2 XRF Analyzer (XRF) spec-
trometry by Thermo Fisher Scientific (Waltham, MA, USA) [9,25]. Prior to analysis, the
samples were prepared by breaking them into smaller pieces and mounting them on a
sample holder. To ensure the integrity of our analysis, it was crucial that the capsules
be clean and free from any contaminants that could interfere with the results. Each time
the device was activated, calibration and system checks were conducted using standard
samples with established concentrations. The apparatus was exclusively operated within
a laboratory stand, setting the analysis duration to 600 s to maximize accuracy through
exposure to three distinct characteristic energy lines. The accuracy of chemical element
analysis varied, ranging from 10% for elements such as Cr, Cu, Zn, Zr, Sr, Rb, Mn, Fe, Ti, to
20% for As, Pb, Cd. Additionally, the device underwent inter-calibration with the SPEC-
TRO XEPOS (SPECTRO Analytical Instruments GmbH, Kleve, Germany) energy dispersive
X-ray fluorescence (ED-XRF) spectrometer at the Lithuanian Geological Survey, ensuring
high measurement accuracy. XRF’s non-destructive nature (no acid treatment) allowed for
the reuse of samples in multiple devices. However, results indicated up to a 20% significant
systematic discrepancy. XRF is a commonly used method for analyzing the elemental
composition of samples [26]. XRF spectrometry offers advantages such as element-specific
detection and eliminates the need for the pre-treatment of the samples [25]; this technology,
when used with adequate sample preparation and understanding of its limitations, can
provide precise and reliable results as a valuable complement to laboratory analyses in the
field of geochemical and environmental analysis, such as sample preparation differences,
moisture content, matrix effects, and analytical interferences [27–30]. Mercury concentra-
tions analyzed with the Niton XL2 Analyzer and SPECTRO XEPOS were undetectable;
hence, analyses were limited to elements consistently detected by both instruments.

2.2. Pollution Assessment
2.2.1. Geo-Accumulation Index (Igeo)

The Geo-Accumulation Index (Igeo) was initially introduced by Müller for evaluating
metal concentrations in the 2-micron fraction of sediments. This index utilizes international
standard shale values as a reference [31].

Igeo = log2
Cn

Bn × 1.5
(1)

The concentration of a specific element in dust is denoted as Cn. The constant value of
1.5 is used to account for natural variations in element content and to detect even minimal
anthropogenic influences. The geochemical background value is represented as Bn. Müller
classified the Geo-Accumulation Index into seven classes, ranging from class 0 to class 6.
The highest class, class 6, signifies an enrichment factor at least 100 times higher than the
background values [31].
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2.2.2. Contamination Factor

The contamination factor (CF) is a method used to assess the level of contamination of
indoor dust by a particular metal. It is calculated using the following equation [32]:

CF =
CSample

CBackground
(2)

The CF provides a quantitative measure of the extent to which the concentration of a
specific metal in indoor dust deviates from the background concentration. The background
value of trace elements in the Earth’s crust is denoted as CBackground, while the concentration
of the elements found in the samples is represented by CSample. Background values for
indoor and outdoor dust have not been established in this investigation. Alternatively,
Vilnius and global background values for soils have been used [8]. The contamination
factor (CF) can be classified as follows: CF < 1 indicates low contamination, CF between
1 and 3 represents moderate contamination, CF between 3 and 6 indicates considerable
contamination, and CF greater than 6 suggests very high contamination [32]. According to
studies [8,32], these categories are founded on accepted environmental research standards
and offer a methodical way to assess the degree of contamination in urban dust.

2.3. Modified Degree of Contamination

Modified degree of contamination (mCd) is a global contamination index that evalu-
ates the degree of contamination of sediments, integrating all the toxic metals evaluated in
the ecosystem [33]. mCd quantifies the absolute degree of contamination in a soil sample by
dividing the sum of the contamination factors (Cf) of selected metals by the total number of
measured metals (n). We used this approach and implemented it for our dust samples. This
approach provides an average total value for various contaminants. The mCd is further
classified into seven different classes to categorize the level of contamination [34].

The modified degree of contamination (mCd) is categorized into different levels of
contamination: uncontaminated to very low (mCd ≤ 1.5), low (1.5 < mCd ≤ 2), mod-
erate (2 < mCd ≤ 4), high (4 < mCd ≤ 8), very high (8 < mCd ≤ 16), extremely high
(16 < mCd ≤ 32), and ultra-high (mCd > 32) [33].

mCd =
∑n

i=1 Cf
n

(3)

2.4. Pollution Load Index

The Pollution Load Index (PLI) is a measure that assesses the overall pollution load
resulting from the presence of hazardous metals at a specific site. The PLI is calculated
by considering the contamination factor (CF) for each element present. CF represents the
degree of contamination for each individual element.

By calculating the PLI for a particular location, information about the cumulative
pollution load caused by all the hazardous metals can be obtained. When the PLI is less
than 1, it indicates that there is no pollution present at the site. A PLI value of 1 suggests
that only baseline levels of pollutants are present, implying minimal pollution. However, if
the PLI exceeds 1, it indicates that the quality of the site has deteriorated due to pollution.

This methodology for assessing pollution load using the PLI, based on CF values, was
discussed in a study conducted by Gope et al. [32] in 2017.

PLI for a site = (CF1 × CF2 × . . . × CFn)
1
n (4)

PLI for a zone = (PLIsite 1 × PLIsite 2 × . . . × PLIsite n)
1
n (5)

2.5. Enrichment Factor

The enrichment factor (EF) is used to assess anthropogenic contaminant deposition
on surface soil. It compares the concentration of a metal of interest to that of a stable
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reference element [35]. For EF calculations, we used Fe. Fe has been used by many authors
working on marine and estuarine sediments [31,35]. EF values between 1 and 3 suggest
natural weathering processes, while values above 3 indicate significant contributions from
non-crustal sources like pollution. EF provides a measure of dust contamination, with
values below 1 indicating no enrichment and values above 50 indicating extremely severe
enrichment [31].

EF =
[Cx/ Cref] Sample

[Cx / Cref]Background
(6)

2.6. Health Risk Assessment Model

The models used in this study to assess the risk of toxic metal exposure in school dust
in adults and children are based on models developed by the US Environmental Protection
Agency. The target receptors, primarily adults who work at school and children, are exposed
via the following primary pathways: direct ingestion of dust (Ding), inhalation of dust
particles through mouth and nose (Dinh), dermal contact absorption (Dder) (Table 1) [36].

Ding = C × IngR × EF × ED
BW × AT

× CF (7)

Dinh = C × IngR × EF × ED
PEF × BW × AT

(8)

Ddermal = C × SL × SA × ABS × EF × ED
BW × AT

× CF (9)

Table 1. Exposure parameters used for the health risk assessment through different exposure
pathways for dust [36–38].

Parameters and Units Child Adult

C Concentration of the element (mg/kg)

IngR the ingestion rate (mg/day) 200 100

SA the surface area of the skin exposed to
heavy metals (cm2) 2800 5700

AF the skin adherence factor (mg/cm2); 0.2 0.7

ABS dermal absorption factor (unitless) 0.001 0.001

InhR the inhalation rate (m3/day); 7.6 20

PEF the particle emission factor (m3/kg) 1.4 × 109 1.4 × 109

EF the exposure frequency (days/year); 285 285

ED the exposure duration (year); 6 30

BW the body weight (kg) 15 70

AT the average time (days);

For carcinogens 25,550 25,550

For non-carcinogens 2190 10,950

CF the conversion factor 1 × 10−6 1 × 10−6

VF volatilization factor m3/kg 32,675.6 32,675.6

The hazard quotient (HQ) and hazard index were used to evaluate the non-carcinogenic
effects of metals (HI). A heavy metal’s HQ is calculated by dividing its ADD by its reference
dose (RfD) for the same exposure pathway (s). The reference dose (RfD) (mg/kg day)
(Table 2) is the highest daily dose of a metal from a particular exposure pathway, for both
adults and children, that is thought not to significantly increase the risk of adverse effects
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on sensitive people over the course of their lifetime. It is assumed that there will not be any
negative health impacts if the ADD is less than the RfD, HQ ≤ 1, but if the ADD surpasses
the RfD, HQ ≥ 1, it is expected that there will be negative health effects. The hazard index
(HI) is the total risk of a single non-carcinogenic factor through all three paths of exposure.
The value of HI ≤ 1 indicates that there is no risk of non-carcinogenic effects, whereas
HI ≥ 1 suggests that there is a chance of negative health impacts, and that chance grows as
HI values rise [39].

HI = ∑ HQi = ∑
ADDi

RfDi
(10)

Table 2. Used RfD values.

Element RfD Ingestion RfD Dermal RfD Inhalation

As 0.0003 0.000123 0.000301

Cu 0.04 0.0402 0.012

Zn 0.3 0.3 0.35

Zr 0.00008 - -

Sr 0.6 0.12 0.6

Pb 0.0035 0.00053 0.0035

Cr 1.5 0.006 0.00003

V 0.007 0.007 0.00007

Fe 0.7 0.7 0.8

2.7. Geospatial Mapping, Statistical Analysis and Data Computation

The Python programming language was used to perform statistical analyses and data
computations. The geographic mapping software, ArcGIS Pro 10.8.1, was used to study
and show the distribution of particulate matter (PM) throughout Vilnius. Maps were
created using the Inverse Distance Weighted (IDW) interpolation approach, which relied
on the PM concentration values. We chose IDW due to its capacity to precisely depict
spatial fluctuations in PM concentrations, since it utilizes a linear combination of data
points weighted inversely according to their distance. This method is especially efficient in
emphasizing regions with significant pollution in close proximity to the selected schools,
thus enabling a more accurate assessment of the risk linked to PM exposure.

Principal component analyses (PCA) are a common method to reduce data and to
identify a few latent factors (principal components, PCs) that capture the relationships
among observed variables. A PCA can transform a set of correlated variables into a smaller
set of orthogonal factors, facilitating the interpretation of a complex multidimensional sys-
tem by showing the correlations among the original variables [40]. Hierarchical Clustering
Analysis (HCA) is a technique that applies to data analysis tasks. The cluster analysis
required standardizing the values with z-scores first, and then calculating the Euclidean
distances among the heavy metal values. The hierarchical clustering used Ward’s method
as the linkage criterion [41]. It aims to identify clusters of data points that share common
characteristics or features. HCA can use different measures of similarity or dissimilarity
to determine how close or far apart the data points are. The algorithm starts with treat-
ing every data point as an individual cluster. Next, in every iteration, it combines the
two clusters that have the smallest distance or similarity measure between them. HCA can
be visualized using dendrograms. A correlation matrix is a concise and informative way
to summarize the linear associations among multiple variables in a dataset. It is a square
matrix with each element showing the correlation coefficient between a pair of variables,
ranging from −1 to 1. A positive coefficient indicates a positive linear relationship, while a
negative coefficient indicates a negative linear relationship [3]. Clusters were determined by
a k-means clustering algorithm and we used elbow and silhouette methods to understand
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optimal clusters. The silhouette coefficient varies from −1 to 1, and a model with a higher
silhouette coefficient typically has more cohesive clusters [42].

A multivariate factor analysis tool called positive matrix factorization (PMF) was
utilized to identify the sources of heavy metal pollution. This efficient analysis method
involved breaking down the matrices of sample concentration figures into factor profile
matrices and factor influence matrices. The sources of pollution were determined by
analyzing the resulting profiles [43]. The PMF model was analyzed using EPA PMF 5.0 and
was applied in this study to identify the origins and spatial distribution of metals in the
soil. Initially, the model was set up with 3, 4, and 5 factors, and a random seed number was
selected from 20 iterations to begin the analysis. The determination of the optimal number
of factors was based on finding the lowest and most reliable Q true value. The search for
an appropriate residual matrix E involved finding the minimum Q value, which helped
establish the suitable number of factors. The PMF analysis resulted in the optimal output,
providing the lowest Q value [34,44,45].

3. Results and Discussion
3.1. Heavy Metal Concentrations in School Environments

Diverse metal concentrations were found in the dust samples we analyzed from
24 schools in Vilnius, a city with a high traffic density but no direct industrial sources.
Important discoveries include a notable variation in elemental concentrations, indicating
different sources of contamination, such as As, Cu, Zn, and Pb. In contrast to As, Cu
concentrations showed greater fluctuation, ranging from 51.28 mg/kg to 395.37 mg/kg.
This variation, as seen in our comprehensive information (see Table S1 and Figure 2),
is consistent with worldwide trends found in comparable settings. The variations in
element concentrations between schools highlight the diversity of pollution sources in
urban environments and the impact of local environmental variables.
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Comparative analysis using Table S2 in the Supplementary Materials, which presents
metal concentrations from various global indoor and outdoor environments, reveals inter-
esting contrasts. For example, the As concentration in our samples ranged from 4.55 mg/kg
to 69.96 mg/kg, while in South Africa’s School B it was 0.78 mg/kg and in Sydney
17.6 mg/kg. Such comparisons underline the influence of geographical and environmental
factors on metal levels in dust, providing a broader context for understanding the results
from Vilnius schools.
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3.2. Contamination Factor, Modified Contamination Factor and Pollution Load Index Values

The results of the contamination factor (CF) are shown in Figure 3. The CF values
for Zn, Cu, and As showed a range of contamination levels, from very high to moderate
(1.82–27.984). Zn was notably the most contaminated. Zr and Rb, on the other hand,
showed little contamination. Significant contamination was found in a number of schools,
especially in S2, S14, and S23, according to the modified contamination factor (mCF) study,
which is shown in Figure 4. Figure 5’s Pollution Load Index (PLI) additionally identified
schools with high pollution levels, specifically S2, S14, and S23, showing deteriorating
environmental conditions in these locations.
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3.3. Enrichment Factor

To evaluate the level of metal contamination across various schools, we calculated
the enrichment factor (EF). Figure 6 depicts the enrichment factor of samples for each
element across the areas. We found that most areas ranged from not being polluted to being
extremely polluted. Notably, elements such as Cu, Zn, and Sc exhibited extremely severe
enrichment, followed by As and Pb, which had above severe enrichments. Conversely,
Zr and Rb had no enrichment to moderate enrichment. Of all the elements, Zn and Cr
had the highest enrichment, as observed across all samples. Interestingly, similarities were
observed across all school samples.
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3.4. Geo Accumulation Index

Figure 7 shows the Geo-Accumulation Index (Igeo) heatmap, which shows different
amounts of contamination in different samples. Zn was found to be highly contaminated
(Igeo > 5) in multiple samples (1, 2, 8, 11, 12, 14, 20, and 23). Igeo readings for Pb, Cr, and As
indicated important pollution, although not to as excessive an amount as Zn. Samples S23
and S16, however, revealed extreme Cu and Sc contamination. This analysis emphasizes
how important it is to assess heavy metal pollution in environments such as schools using
the Geo-Accumulation Index.
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3.5. Pearson Correlation

Significant positive correlations between different metal pairs are shown in the cor-
relation matrix (Figure 8), which may indicate links between the metals’ presence in the
samples. As and Pb, for instance, had a significant positive correlation of 0.92, suggest-
ing that their sources or deposition processes may be similar. Other elements that had
significant positive connections were Pb and V, and Sr and Sc, so on. Conversely, several
element pairs showed weak to moderate correlations, indicating linkages that were not as
strong. Comprehension of the complex interactions and common sources of these metals in
educational environments requires a comprehension of these findings.

3.6. Principal Component Analysis

One way to extract information on heavy metals is to use multivariate statistical
methods, such as the principal component analysis (PCA) that Figure 9 illustrates. The
correlation results showed a high complexity among the elements, which required further
analysis to classify them and determine their origins [41]. PCA was an effective method
to identify the pollution sources in this study. These techniques have been shown to be
effective for this goal. PCA has been frequently used to detect pollution sources because it
efficiently reduces the number of variables and so facilitates examination of the correlations
between the observed variables. Significant correlations between heavy metal pairings,
in general, indicate a common or combined origin, whereas weak correlations indicate
separate origins [41].
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Figure 8. Pearson correlation coefficient matrix.

A three-dimensional PCA figure shows more of the data variation than a two-dimensional
one. For example, the three-dimensional PCA plot in this case explains about 70.2% of
the total variance, while the two-dimensional plot explains only 51.6%. However, a three-
dimensional PCA figure can also be harder to understand, so we decided to use and keep
a two-dimensional PCA instead. Aside from dimensionality, many crucial factors impact
the observed variance, such as environmental fluctuations at sampling sites, the age of
buildings and building materials, temporal changes in pollutant levels in schools over
time, and variations in sample characteristics. Data preprocessing, including normalization,
also impacts the outcomes. These factors are crucial for a thorough comprehension of the
variance explained by our PCA plots.

The elements showed distinct clustering patterns on the PCA plot, reflecting their
correlations across the schools. K-means clustering confirmed three categories of elements
after using elbow and silhouette methods to find optimal clusters. Cluster 1 consisted of
Cu, Zn, Zr, Rb, and V, Cluster 2 of Sr and Sc, and Cluster 3 of As, Pb, Cr, and Fe. PCA
and the cluster analysis revealed common origins or similar transport pathways for the
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elements that belong to the same cluster. This implies that the elements of Cluster 1 may
have similar sources or undergo similar environmental processes as Clusters 2 and 3.

Given that all samples were collected from schools, and there were no municipal
incineration or industrial sites involved in the city where the samples were taken, the
similarities become even more notable. To fully understand why particular elements stand
out, more research would be required. These differences can be the result of different
sources for these elements or different distributional processes.
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3.7. Hierarchical Clustering Analysis

Figure 10 presents dendrograms and the optimal clusters for these dendrograms, de-
rived through the elbow and silhouette methods. In our study, we employed the Euclidean
distance to assess similarity. The hierarchical clustering analysis results, which incorporated
the Ward linkage algorithm, are exhibited as dendrograms.
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Figure 11 illustrates the similarities and dissimilarities for all school samples. Based
on the optimal clusters, there are three main groups within the school samples. S2, S14 and
S23 are placed in the first cluster, indicating that their compositions are quite similar; this
also proves the corrected pollution assessments, where you could see higher pollutions.
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S16, which stands out from the other samples, was given its own cluster by the clustering
algorithm and, along with the remaining samples, was split into three main groups, each
containing various subgroups. Also, in Figure 11, we treated all school samples as a
single entity and constructed a dendrogram for each element. We made the decision to
separate our data into three unique clusters. The clustering algorithm’s findings showed
the following groupings: Sr, Sc was in Cluster 1. As, Pb, Cr, and Fe were part of Cluster 2,
while Cu, Zn, Zr, Rb, and V created Cluster 3. The samples within each cluster exhibited
similar patterns of distribution for some elements. For example, Sr and Sc in Cluster 1
had consistent patterns across samples, suggesting that they might be influenced by the
same factors or operations. The elements in Clusters 2 and 3 also showed comparable
distributions to each other, but different from those of the elements in the other clusters. This
could indicate multiple sources or processes affecting how these elements are distributed.
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The comparison between PCA and HCA clustering revealed identical findings with
the same cluster groups. This enhances the robustness of our results and the interpretability
of these clusters, as it suggests that the elements of each cluster may originate from the
same location or be affected by the same anthropogenic or environmental factors.

Road dust contamination is largely attributed to tire wear, brake lining and road
surface abrasion, leading to the presence of various heavy metals [46,47]. Metals stemming
from vehicles, such as Cu, Zn, Cd, and Pb, primarily originate from wear and tear rather
than combustion processes [48]. Specifically, asphalt and sandpaper-like effects contribute
to As levels; As can also increase in the environment through the use of arsenic-based
pesticides. The heavy metal concentrations in road dust are significantly affected by vehicle
operation and road type. Brake dust, containing elements like Fe, Zn, Pb, Cu, and Cr,
further adds to the contamination, with Cu and Cr being key tracers of non-exhaust brake
and tire wear emissions [47,48]. Road travel has historically been a major source of Pb
emissions, notably in Europe, where lead gasoline was widely used. The 2010 lead gasoline
ban is expected to result in a considerable reduction in airborne Pb emissions [41,46].

The absence of proper ventilation, combined with the increased use of products
like batteries, cell phones, and lights, worsens indoor air quality by limiting pollutant
dilution [49]. Many batteries exceed EU limits for mercury and cadmium content, and,
frequently, those containing excessive levels of mercury and/or lead are not properly
labeled [50]. Furthermore, compact fluorescent lamps (CFLs) and LED bulbs are found
to have high concentrations of Cu, Pb, and other heavy metals, posing risks to indoor air
quality [51].
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Elements like As, Cu, Zn, Pb, Cr, and Sc are likely dominated by anthropogenic input,
which aligns with their relatively high enrichment factor (EF) values, indicating pollution in
school samples. This pollution is likely due to the proximity of schools to roads, highways,
and railways. To understand this more fully, we must examine the locations, pathways,
and potential exposures within these schools.

3.8. Source Apportionment of Metals Using PMF

Figure 12 shows factors, and Factor 1 mostly represents Zn with contribution of V,
Pb, Cr, Cu and As. Zn can be released into the environment through various sources
such as electronics, construction, vehicular exhaust and tire debris, road dust, fossil fuel
burning, and industrial gases [43,44]. Zinc-based products are commonly used as a coating
or plating substance to protect other metals against corrosion. This is widespread in the
construction industry, as steel structures are frequently zinc-coated to avoid rusting [52].
Hence, materials used in schools can contribute to a high level of Zn.

Figure 12. PMF factors from EPA application.

Factor 2 described the significant loading of Fe and Cu. Fe can be released into
the environment from various sources, including cars, industrial activities, fossil fuel
combustion, and waste disposal. In cars, Fe is commonly used in brake pads and discs, and
as these parts wear down, iron particles can be released. Iron is also present in the exhaust
system of cars, including in the exhaust pipes and catalytic converters. Industrial activities
such as iron and steel production, metalworking, and welding can also release iron into the
environment [44,53]. Road dust particles containing Fe from nearby roads and highways,
emissions from nearby train stations and iron-containing waste products can release Fe into
the environment through waste disposal. Fossil fuel combustion is another source of Fe
emissions [44]. Cu is commonly used in Cu–brass automotive radiators because of its high
thermal conductivity and resistance to corrosion. It is also present in car lubricants. As the
mechanical parts of vehicles degrade over time, copper is emitted into the surrounding
environment [54], or industrial gasses [44].

Factor 3 was mostly influenced by Cr, Zr, Rb, and the contribution of Cu, As, Sc
and V. Factor 3 can be released into the environment through industrial processes such as
mining, smelting coal and oil combustion, the migration of rainwater through soil cracks,
road dust emissions, the wear and tear of asbestos linings and cement dust, as well as
Cr-coated metals and waste disposal sites like landfills and hazardous waste sites. In
heavy traffic road dust, Cr was identified because of brake linings [43,55]. Anthropogenic
sources of Zr include the manufacturing and utilization of zirconium-based products
like paints, ceramics, alloys, catalytic converters in new cars and refractory bricks, as
well as the disposal of these products [56]. Rb is widely present in the Earth’s crust and
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its anthropogenic sources include the manufacturing and utilization of rubidium-based
compounds in various industries, as well as the disposal of these compounds and coal
burning [57].

Factor 4 provided insight for the high loadings of Pb, As and Fe (metal processing,
coal-fired power generation, wood preservatives, waste disposal reasons). Dust particles
containing Pb and As can originate from nearby road dust, as well as ongoing construction
activities. Anthropogenic As deposition is mainly caused by atmospheric pollution and the
use of phosphate fertilizers; this could be the cause of weather conditions. Smoke emitted
from industrial units or power plants can carry metal particles that settle on the ground
and contribute to road dust. These metal particles eventually become suspended in the
air and settle on the ground, joining the existing dust particles [43,58]. Lead-based paint
found on aging school structures and the degradation of building materials contribute to
the presence of Pb in the environment; Lithuania was one of the largest exporters of paints
by volume in 2008 and 2009 in Europe [59]. Also, Pb were identified among the heavy
traffic road dust [55].

Factor 5 is characterized by a strong association with Sr, Sc and with the contribution
of Rb and V. The production and disposal of electronic devices, particularly fluorescent
lamps, can contribute to elevated levels of Sr in dust. This is particularly relevant in
schools where fluorescent lamps are commonly used, and broken lamps can release even
higher concentrations of Sr [60]. V can be derived from domestic heating and automotive
traffic [61]. The major application of Sc is as an alloy with metals like Al, Mg, Zr; in our
case, this could be the reason [62].

It is important to mention that urban road dust is associated with road traffic, which
combines contributions of vehicular non-exhaust emissions (tire wear and brake abrasion)
and road pavement/furniture [44]. Furthermore, all the schools in the Vilnius area are
located in close proximity to various sources of potential pollution. While there are no
prominent industrial zones, the presence of power plants, roads, highways, and train
stations suggests these as potential pollution sources. Additionally, certain elements
may be transported through wind dispersion, while local sediment can also contribute to
pollution levels.

The results of the hierarchical cluster analysis (HCA) may align with the results of the
principal component analysis (PCA) and positive matrix factorization (PMF). Techniques
such as correlation matrix analysis, PCA, PMF and HCA are commonly used to identify
the sources of heavy metal pollution in indoor dust. Also, the combination of Pearson cor-
relation, PCA, HCA, and PMF studies reveals regular patterns in the interactions between
distinct variables, helping to identify common causes or similar environmental behaviors.
For example, the high positive correlations between elements such as As and Pb, Zn and
V, and Sr and Sc and so on, together with their clustering in the same PMF factors, imply
common sources or similar transit and deposition processes.

3.9. Particulate Matter Ratio

Figures 13 and 14 show a clear trend of an increasing PM2.5/PM10 ratio over time.
PM2.5/PM10 ratios can provide a series of important information such as the cause of
pollution, the air pollution process, and the impact on life and health. Generally, a lower
PM2.5/PM10 ratio indicates coarse particles are dominant, which is more attributed to
natural sources. In contrast, higher PM2.5/PM10 ratios indicate that the air pollution is
more from anthropogenic sources [63]. Larger ratios indicate more combustion-related
pollution (such as car exhaust or burning), and lower ratios indicate more mechanical or
natural causes (such as dust or pollen).

In Europe, with a higher level of urbanization, the PM2.5/PM10 ratios are between
0.39 and 0.74, with the lowest values occurring in Southern Europe and the highest values
occurring in Eastern Europe [64]. A regional study of mixed agricultural and industrial
development in the state of São Paulo, Brazil, showed that the PM2.5/PM10 ratios were in
the range of 0.33–0.47. In Saudi Arabia in the Middle East, which is obviously affected by
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the desert and arid climate, the PM2.5/PM10 ratios were 0.25–0.52, and the average value
was only 0.3 [63].

The graph also reveals some variation in the ratio, with certain periods of time having a
larger ratio than others. While the effects of seasonality, vehicular emissions, and residential
heating significantly influence the ratios of PM2.5 to PM10, we cannot disregard the role of
weather conditions. Even if the pollution source remains the same, variations in weather
can lead to substantial differences in pollution levels [65]. The PM2.5/PM10 ratio is often
greater than 0.5, which is considered high. This means that the air quality in the area
is likely to be poor, which could have negative health effects, particularly for persons
with respiratory disorders. The graph reveals some ratio peaks in the time frame. This
could point to events or periods with exceptionally high levels of combustion-related
pollution. These extreme values highlight the possibility of instances in which the ratio
deviates greatly from the average, demonstrating the impact of unique emission sources or
environmental variables on particle composition.
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Figure 15 illustrates the wind rose for Vilnius, indicating potential routes through
which winds could transport pollution. Therefore, the PM2.5/PM10 ratios are affected
by multiple factors such as the underlying surface, human activities, possibly regional or
long-range transport and meteorological conditions, resulting in large spatial–temporal
variations [63].
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3.10. Hazard Index for Health Risk

Figure 16 presents the total hazard index (HI) for both adults and children. A value
above 1 signifies a non-carcinogenic health risk. Graph A displays the results for adults,
with all values falling below 1. Additionally, As and Pb present a health risk for chil-
dren in schools S2 and S14. All other elements have values below 1, indicating no
non-carcinogenic risk.

However, Graph B, which represents the child HI, shows that for Zr, all values exceed
1. The Zr content in the adult human body is about 420 mg [68]. It is important to
consider common Zr-containing products, especially in laboratory equipment and ceramic
components of electronic devices [69], paper coatings [70], knives, scissors, and golf irons
due to their strong and biocompatible nature [71]. Authorities should regulate the use and
disposal of zirconium-containing products to minimize exposure to zirconium pollution.
This may involve implementing appropriate waste management procedures for zirconium-
containing items in schools and conducting frequent environmental health assessments to
monitor zirconium levels in the air and dust.
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Metal concentrations in various schools were found to vary significantly, highlighting
the need to consider location, construction materials, and environmental conditions when
measuring metal deposition. The presence of large amounts of metals on the school
premises raises issues about children’s expected safety and health standards.

According to the study findings, many of the schools were only a few meters away
from frequently used roadways, and some schools were close to train stations, implying that
motor vehicles emissions, lubricating oil and grease, and the abrasive wear of rail tracks
were most likely the primary source of these metals. The finding implies that pollution
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from motor vehicles may have had a major impact on the presence of these metals in
schools. Additionally, metal concentrations may have been influenced by emissions from
surrounding restaurants and residential areas, as well as the pollution from power plants
through burning fuels.

4. Limitations

This study, examining the presence of heavy metal contamination in dust within
schools in Vilnius, provides valuable insights. However, it is subject to various limitations.
The variety of schools available in Vilnius may not fully represent the complete spectrum
of educational environments, which could impact the generalizability of the findings. The
methodology for collecting and analyzing dust samples, despite its rigor, faces limitations
in sample contamination risks and the sensitivity of analytical methods, which could
impact the accuracy of metal concentration measurements. The main aim of this study was
to evaluate the long-term accumulation of dust and heavy metal pollution in the school
environment. However, it did not particularly investigate any changes that occur with the
seasons. Gaining comprehension of these seasonal variations could offer supplementary
understanding of the temporal patterns of dust and heavy metal accumulation. Hence,
although our discoveries provide significant insights into the amounts of pollution over an
extended period, doing further studies that incorporate a seasonal analysis could augment
our comprehension of these environmental elements. The health risk assessment, relying on
specific assumptions and models, may not comprehensively represent complex real-world
exposure scenarios, thereby making the projected risks indicative rather than definitive.
Furthermore, it is important to use caution when applying these findings to other situations,
taking into account the distinct geographical, environmental, and socio-economic aspects
of the schools that were studied. Recognizing these constraints is essential for presenting
a balanced perspective on the possible presence of heavy metal pollution in educational
environments and its impact on children’s health. Further investigation is required to
overcome these limitations and gain a more thorough understanding of the situation.

Strategies for Reducing Exposures and Mitigating Heavy Metal Concentrations

• Enhanced cleaning protocols involve implementing strict cleaning routines to con-
stantly eliminate dust and particle debris that may accumulate heavy metals. Areas
with strong student activity require special care for policy reforms that mandate the
implementation of best practices in cleaning and maintenance within schools to mini-
mize exposure to heavy metals. This could include guidelines for cleaning methods
that reduce the resuspension of dust particles and the use of cleaning products that do
not contribute to indoor pollution.

• To mitigate the inhalation risks associated with contaminated dust, regulations or
guidelines could be developed to mandate the installation and maintenance of high-
efficiency particulate air (HEPA) filters in school ventilation systems. Installing high-
efficiency filters in school ventilation systems can effectively collect airborne particles
and limit the risk of inhaling contaminated dust [72,73]. These policies could outline
specific performance standards for filters based on the local environmental context
and the unique needs of educational facilities.

• Green infrastructure involves using green spaces like gardens and green roofs around
school buildings to serve as natural filters for air pollutants, decreasing the infiltration
of outdoor pollution into inside areas [74,75].

• Developing educational programs to teach students and staff about environmental
health risks and preventive activities to promote a culture of safety and awareness.

• Policies promoting collaboration between schools, municipal authorities, environmen-
tal agencies, and community organizations can lead to comprehensive approaches
to tackle environmental pollution sources. Such policies could establish frameworks
for shared responsibility and action, including pollution monitoring, community
awareness programs, and the implementation of local pollution control measures.
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• Mandatory health and safety audits, including environmental health assessments
in schools, can identify and manage heavy metal pollution sources. Policies could
require regular audits by certified environmental health professionals to assess the
levels of heavy metals in school environments and recommend mitigation measures.
These audits could be supported by a central database managed by educational
or environmental health authorities to track pollution levels and mitigation efforts
over time. Establishing clear guidelines for these assessments, including frequency,
methods, and follow-up actions, will be crucial for their success.

• Countries planning school renovations should adopt regulations for the effective
removal and management of accumulated dust, leveraging insights from this study
to minimize heavy metal exposure risks. Sharing best practices on heavy metal dust
mitigation across borders can guide the implementation of safer renovation protocols,
ensuring educational environments worldwide are protected from contamination.

5. Conclusions

This study offers a pivotal examination of metal contamination in the indoor dust
found in schools in Vilnius, which is an area that has not been extensively investigated
in Lithuanian research. The results of our study support the idea that there is a higher
presence of heavy metals in the dust, which mostly originates from different sources of
pollution, both external and internal. Significant variations were seen in elements such
as arsenic (As), copper (Cu), zinc (Zn), and lead (Pb) among different schools, indicating
the influence of local environmental conditions and human activities. The utilization of
advanced statistical techniques, see Table S3 from Supplementary Materials, that under-
score the complex interplay of pollution sources affecting school environments included
hierarchical cluster analysis, principal component analysis, and positive matrix factoriza-
tion, which played a crucial role in the identification of these sources of contamination and
their potential health hazards, particularly for children. The study highlights the urgent
requirement for efficient pollution control methods in school environments, as indicated by
the elevated hazard index of hazardous elements such as Pb and As. Our research provides
valuable information about the composition and sources of dust pollution in educational
environments. However, it also emphasizes the necessity for wider geographical sam-
pling and longer-term data collecting to address some limitations. Further studies should
prioritize enhancing our comprehension of pollution origins and formulating precise mea-
sures to protect the well-being of students in Vilnius and comparable metropolitan regions.
Our research suggests that implementing a comprehensive strategy involving improved
cleaning procedures, high-efficiency ventilation filters, green infrastructure, educational
initiatives, community involvement in pollution control, and regular environmental health
evaluations can effectively decrease heavy metal exposure in schools, thus creating a safer
educational setting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12030224/s1, References [76,77] are cited in the Supple-
mentary Material. Table S1: Mean concentration of sampled schools in mg/kg ; Table S2: Dust
concentrations found in similar research.; Table S3: Potential pollution sources for HCA, PCA and
PMF factors.
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