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Abstract: Biochar (BC) is a carbonaceous material obtained by pyrolysis at 200–1000 ◦C in the limited
presence of O2 from different vegetable and animal biomass feedstocks. BC has demonstrated great
potential, mainly in environmental applications, due to its high sorption ability and persistent free
radicals (PFRs) content. These characteristics enable BC to carry out the direct and PFRs-mediated re-
moval/degradation of environmental organic and inorganic contaminants. The types of PFRs that are
possibly present in BC depend mainly on the pyrolysis temperature and the kind of pristine biomass.
Since they can also cause ecological and human damage, a systematic evaluation of the environmental
behavior, risks, or management techniques of BC-derived PFRs is urgent. PFRs generally consist
of a mixture of carbon- and oxygen-centered radicals and of oxygenated carbon-centered radicals,
depending on the pyrolytic conditions. Here, to promote the more productive and beneficial use of
BC and the related PFRs and to stimulate further studies to make them environmentally safer and
less hazardous to humans, we have first reviewed the most common methods used to produce BC,
its main environmental applications, and the primary mechanisms by which BC remove xenobiotics,
as well as the reported mechanisms for PFR formation in BC. Secondly, we have discussed the
environmental migration and transformation of PFRs; we have reported the main PFR-mediated
application of BC to degrade inorganic and organic pollutants, the potential correlated environmental
risks, and the possible strategies to limit them.

Keywords: biochar (BC); pyrolysis; biochar-derived permanent free radicals (PFRs); reactive oxygen
species (ROS); PFR-mediated BC applications; environmental risk

1. Introduction

Biochar (BC) is a stable carbon-rich black solid substance produced from vegetable
or animal biomass feedstocks when pyrolyzed. Pyrolysis is a procedure that involves
the heating of substrates at 200–1000 ◦C under oxygen-limited conditions [1]. The term
“biochar” derives from the combination of “bio-,” which stands for “biomass,” and “char,”
meaning “charcoal.” In recent years, BC has received widespread attention due to its
potential application in carbon sequestration, soil amendment/remediation, wastewater
treatment, and catalysis [2–11]. In particular, several ground-breaking studies have been
carried out to investigate the potential of BC in alternative energy production and in the
recovery of value-added chemicals/by-products [3]. In this regard, Lee et al. have used
BC as briquettes and electrodes for microbial fuel cells (MFCs) finalized for alternative
energy production [5]. Zhang et al. have employed BC as an additive/catalyst in anaerobic
digestion and transesterification reactions for biogas [6], while Behera et al. employed BC
to produce biodiesel [4]. Environmental applications of BC for reducing gaseous emissions,
mainly by carbon and nitrogen sequestration, are also gaining attention [8].

BC has been applied to prevent eutrophication by recovering excessive nutrients,
including nitrogen and phosphorus, from wastewater [11], while the agronomic application
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of BC, due to its characteristics of high cation exchange capacity (CEC) and specific surface
area (SSA), have recently been reported by Zhao et al. [10]. Batch and column sorption
experiments have shown that certain types of BC have good adsorption performance for
heavy metals, dyes, or phosphate from aqueous solutions and are being investigated as
cost-effective, promising, and eco-friendly alternative adsorbent materials [12]. Addition-
ally, BC has demonstrated high efficiency in removing pharmaceuticals [13], pesticides [14],
polycyclic aromatic hydrocarbons (PAHs) [15], and petroleum derivatives [16]. Also, the
metal ion absorbent capacity of BC has been extensively reported in both the absence
and presence of fulvic acid and humic acid [17]. As a soil improver, BC can reduce soil
acidity and help maintain soil moisture and nutrient levels. Through its carbon seques-
tration action, BC performs climate restoration. Moreover, due to its strong adsorption
capacity, BC can remove environmental xenobiotics, thus preventing their uptake in plants,
animals, and humans [18–21]. Additionally, BC derived from the thermal treatment of
organic material generally contains persistent free radicals (PFRs) bound to the external
or internal surfaces of its solid particles [22,23]. Such BC-bound PFRs, which are reactive
due to unpaired electrons, can persist for minutes and up to several months, in contrast to
traditional transient radicals [24], thus conferring on BC the capacity to degrade organic
pollutants through the generation of other reactive oxygen species (ROS) and sulfate radi-
cals [25–27]. In this context, BC-bound PFRs have been investigated to activate persulfate
(S2O8

2−) to obtain sulfate radicals, which have efficiently degraded phenolic compounds
and polychlorinated biphenyls [28], acid orange 7 [29], and sulfamethoxazole [30,31]. In
the presence of PFRs, hydrogen peroxide (H2O2) or oxygen (O2) have been activated to
produce hydroxyl radicals (OH•) and superoxide radicals (O2•−), which succeeded in
efficiently degrading chloro-biphenyl [32], diethyl phthalate [33,34], and ciprofloxacin [35].
By the PFR-mediated activation of peroxyl mono sulfate (PMS), radical species such as
SO4•−, •OH, and O2•−, as well as non-radical species such as 1O2 formed, which were the
main contributors in the antibiotics’ degradation [36]. On the other hand, by stimulating
the production of ROS, PFRs can inhibit seed germination and retard the growth of roots
and shoots [37]. Additionally, BC production itself may cause the release of xenobiotics
such as polycyclic aromatic hydrocarbons (PAHs), toxic inorganic elements, and dioxins,
thus posing potential risks to human health and the environment [1]. The scientific commu-
nity should evaluate BC and BC-bound PFRs’ positive and negative impacts before their
extensive ecological application. Although the environmental behavior and risks of BC
and BC-associated PRFs are increasingly attracting research attention, in the last ten years
(the year 2024 excluded), studies into their toxicity remain very limited (96 publications),
compared to those concerning PFRs in general (542 publications) and their degradation
capability (402 publications) (Figure 1).
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However, to safeguard the environment from BC-related PFRs’ potential adverse
effects, it is necessary to comprehensively and systematically consider their environmental
risks, formation mechanisms, and controlling factors [27], as well as the corresponding
possible mitigation actions. Studies have shown that the type of biomass feedstock used
to produce BC is pivotal in determining the physicochemical properties of the resulting
BC, which also strongly affect the formation and characteristics of PFRs. To date, the types
of biomasses used to prepare BC and involved in the investigation of BC-bound PFRs
mainly include lignocellulosic biomasses (hemicellulose, cellulose, and lignin) from sources
such as pine needles, wheat straw, lignin, cow manure, rice husk, and maize straw [38–40].
Additionally, cow dung (CD), sheep manure (SM), lotus stem (LS), and eggshell (ES)
biomasses, representative of farm wastes, have been reported to provide BC containing
PFRs [41]. Bamboo is an emerging starting material that is perfect for synthesizing BC
and activated carbon (AC) due to its inexpensive cost, high biomass yield, and accelerated
growth rate [42,43]. However, only a few researchers and scientists have used bamboo as a
unique source for developing BC so far, as established by the number of publications on
bamboo-derived BC developed in the last ten years (current year excluded) (331) vs. those
on BC derived from different sources (13,630) (Figure 2).
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Among the 331 publications on bamboo-derived BC, most were about their adsorption
activity (119), followed by those on their degradation capacity (87). At the same time, few
studies were conducted on their possible toxic action (Figure 3).
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In this scenario, to promote the more productive and beneficial use of BC and the
related PFRs and stimulate further studies to make them environmentally safer and less
hazardous to humans, we have first reviewed the most common methods used to produce
BC and its main environmental applications, as well as the reported mechanisms for
PFR formation in BC. The main factors influencing the physicochemical properties of BC
have also been reported. Secondly, we have discussed the environmental migration and
transformation of PFRs, the main PFR-mediated applications of BC to remediate inorganic
and organic pollutants described in the last five years, the correlated potential risks to
the environment and humans, and the possible strategies to limit them. To confirm the
relevance and essentiality of the present paper, a recent survey of the PubMed dataset
has evidenced that, although the number of studies on BC-related PFRs has increased
in the last few years, they are still very limited compared to those on BC in general (134
vs. 11646 from 2014 to the present). Additionally, the review articles on BC-associated
PFRs that, by gathering information on the topic, could stimulate more research on it are
indeed limited (16). Some recent examples could be considered works by Zhang et al.,
Liu et al., Luo et al., and Yi et al. [1,44–46]. In this scenario, this review can be considered
essential because it offers an all-round and complete overview of both BC and BC-related
PFRs, via an extensive discussion on both their beneficial impact and the possible risks to
humans and the environment that could derive from their widespread and indiscriminate
application. In the case of the present paper, we have provided a reader-friendly work
where the information has mostly been organized into easy-to-read tables, schemes, and
statistical graphs that could have a profound impact on its readers’ understanding.

2. Biochar (BC)

The constant growth in world population translates into a continued increase in the
global energy requirement by all sectors and a dramatic decrease in fossil fuels, the primary
energy source [47–49]. Furthermore, the effect of the resulting CO2 emissions on the
environment determines additional global energy issues, which make the replacement of
fossil fuels necessary and urgent [50]. In this regard, biochar (BC), mainly obtained from
organic waste and possessing the capability of sequestering carbon, represents a rich carbon
source and an alternative to fossil fuels [51,52]. Table S1 in the Supplementary Materials
reports the biomasses commonly used for BC production [53–66].

BC obtained by the combustion of various biomasses, as reported in Table S1, has
been demonstrated to possess unparalleled physicochemical properties such as a large
surface area, high porosity, the presence of several functional groups, high cation exchange
capacity (CEC), long-term stability, etc. (Figure 4). Such properties make BC suitable for
various applications, including, but not limited to, carbon sequestration, soil amendment,
energy storage, and catalysis [67–75] (Table S1). Additionally, BC is cost-effective, has
an eco-friendly nature, and is endowed with reusability (Figure 4) [76,77]. Mainly, BC is
increasingly gaining attention from many researchers as a material to efficiently remove
various environmental contaminants, including antibiotics, thus reducing the emergence of
microbial resistance [72,74].
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Among the biomass waste materials appropriate for BC production, crop residues
from agriculture, forestry, municipal solid waste, food, and animal manure have high
potential [78–83].

2.1. Main Methods of Producing Biochar

As reported in the following Table 1, BC can be prepared rapidly using thermochem-
ical conversion techniques such as pyrolysis, hydrothermal carbonization, gasification,
flash carbonization, and torrefaction [84,85], with pyrolysis the most widely adopted
(Section 2.1.1).

Table 1. Main BC production methods, temperature conditions, and yields.

Temperature (◦C) Residence Time Biochar (%) Bio-Oil (%) Syngas (%) Refs

Pyrolysis 200–700 0.5–2 s 35 30 35
[86]

500–1000 Hours/day 12 75 13

HC 180–300 1–16 h 50–80 5–20 2–5 [87]

Gasification 750–900 10–20 s 10 5 85 [88]

Torrefaction 290 10–60 min 80 0 20 [89]

Flash carbonization 300–600 <30 min 37 -- -- [90]

HC = Hydrothermal carbonization.

2.1.1. Pyrolysis

Pyrolysis is a thermochemical process wherein the organic compounds present in
the biomass are decomposed at a specific temperature [91]. Mainly, during pyrolysis, the
thermal decomposition of organic materials occurs in an oxygen-free or oxygen-limited
environment within a temperature range of 250–1000 ◦C [92]. In these conditions, the ligno-
cellulosic components of biomass, such as cellulose, hemicellulose, and lignin, go through
chemical reactions like depolymerization, fragmentation, and cross-linking, depending on
the adopted temperatures. There are three principal possible products, including solid,
liquid, and gas physical state materials. The solid products comprise BC and ash, while the
liquid ones encompass bio-oils and tar, and the gaseous products (syngas) comprise carbon
dioxide, carbon monoxide, hydrogen, and C1-C2 hydrocarbons [86]. As shown in Figure 5,
during pyrolysis, the process parameters, including temperature, the type and nature of
the biomass, residence time, heating rate, pressure, etc., could strongly affect BC yield and
its physicochemical characteristics [93,94]. Moreover, although BC samples derived from
different biomasses are all entirely made of carbon content and ash, their elemental com-
position, as well as their physical characteristics and properties, could differ enormously
based on the type of biomass, reaction conditions, and type of reactor used during the
carbonization process [95] (Figure 5). Consequently, every experimental condition and the
starting raw material should be considered as a proof-of-concept of the future industrial
application of BC.

The most widely used reactors for the chemical transformation of different biomasses
include paddle kilns, bubbling fluidized beds, wagon reactors, tubular ovens, and agitated
sand rotary kilns. However, temperature remains the primary operating process condition
that governs the yield in BC, vs. those of the oily and gaseous products. Usually, BC yield
decreases and syngas production increases when the pyrolysis temperature is improved [96].
Based on the heating rate, temperature, residence time, and pressure, pyrolysis can be
categorized as fast or slow, as summarized in Table S2 in the Supplementary Materials [97].
Generally, fast pyrolysis is employed to maximize the liquid product yield, while slow
pyrolysis is employed to maximize the solid product yield [98].
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2.2. Biochar Characterization and Main Properties

The characterization of BC to determine its elemental composition is carried out by
performing elemental analyses. Otherwise, its physicochemical, surface, and structural
characterization is carried out by determining its surface functional groups, stability, and
structure by employing various modern techniques reported in Table S3 in the Supplemen-
tary Materials [57].

As mentioned, the source of feedstock and the heat treatment temperatures during
preparation are two significant factors that determine the physiochemical properties of BC.

The properties of pristine biomass that mainly influence the related BC include mois-
ture content, ash content, calorific value, the percentage of lignin, cellulose, hemicellulose,
fractions of fixed carbon, and volatile components [98]. High-yield BC with high porosity
is achievable using biomasses possessing more lignin and less cellulose. Additionally, the
volatile component, water content, particle size, and shape of the original biomass can also
affect the properties of BC [98]. Table 2 reports the general chemical and physical features
of BC, while Table S4 in the Supplementary Materials reports some characteristics of BCs
produced from specific feedstocks at various production temperatures [99].

Table 2. Main chemical and physical features of BCs.

Properties Discussion

C
he

m
ic

al
pr

op
er

ti
es

Atomic ratio ⇓ O/C and H/C ratio for untreated biomass

Elemental composition
⇑ Carbon content (> 95%) *
⇓ Hydrogen content (< 5%) *
⇓ Oxygen content (< 2%) *

Energy content ⇑ Energy content with temperature
(From 15–20 MJ/kg a to 30–35 MJ/kg b at 700 ◦C

Fixed carbon (FC) **
Volatile matter (VM)

⇑ in FC (from 10% a to 90% b at 700 ◦C)
⇓ in VM (from 90% a to 10% b at 700 ◦C)
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Table 2. Cont.

Properties Discussion

Structural composition

Partially decomposed cellulose c

Near totally decomposed hemicellulose c

Partially decomposed lignin c

Release of O2 and H2
⇓ Oxygenated functional groups in BC (OH and C=O

groups) *
⇑ Highly stable aromatic structures in BC *
(with maximum aromaticity at 500–800 ◦C)

⇑ Alkalinity and ability to neutralize acids in soils *
⇑ Unpaired negative charges that enable BC to accept

protons

pH value ⇑ pH value (from 5–7.5 a to 10–12 b at > 500 ◦C)
⇑ Ash

Cation exchange capacity (CEC) ⇑ CEC for BCs produced at relatively ⇓ low temperatures

Ash content
(SiO2, CaO, K2O, P2O5, Al2O3, MgO) ⇑ With temperature

Self-heating degradation during storage

⇓ Highly volatile content in BC
⇓ Risk of self-heating
⇑ Thermal stability

⇓ Risk of spontaneous combustion
⇓ Water content and microbial

Ph
ys

ic
al

pr
op

er
ti

es

Density and porosity

⇑ Weight-based energy density * at ⇑ temperature
⇓ Bulk density * (the volume-specific weight of a bulk

material in a heap or pile)
⇑ Porosities at ⇑ temperature

Surface area ⇑ Total surface area * (<800 ◦C)
⇓ Total surface area * (>800–1000 ◦C)

Pore volume distribution
Pore size distribution

⇑ Total pore volume * with ⇑ temperature
Macropores (1000–0.05 µm)
Mesopores (0.05–0.002 µm)
Micropores (0.05–0.0001 µm

(more than 80% of the total pore volume)

Hydrophobicity
Water-holding capacity (WHC)

⇑ Hydrophobicity
⇓ Affinity to water

⇑ Porosity and amount of water that can be absorbed

Mechanical stability ⇓ Mechanical stability during carbonatization
⇓ Structural complexity during carbonization

Grindability ⇑ Grindability compared to the parent material

Thermal conductivity
Heat capacity

⇓ Thermal conductivity in BC
(from 1300 J/(kgK) a to 1000 J/(kgK) b at 500 ◦C)

Electromagnetic properties ⇑ Conductivity
⇑ Electromagnetic shielding efficiency

* Depending on pyrolysis temperature: a higher degree of carbonatation at higher temperatures; ** after removing
the volatile components, the carbon content that remains in the solid structure is called fixed carbon; a row
biomass; b BC; c depending on biomass and pyrolysis temperatures involved (<650 ◦C decomposes almost all of
the holocellulose (cellulose and hemicellulose); the temperatures required for decomposing lignin are several
hundred degrees higher than those for holocellulose; CEC is defined as the number of exchangeable cations (e.g.,
Ca2+, Mg2+, K+, Na+, NH4

+) that a material can capture, which directly depends on the surface structure and the
presence of functional groups providing surface negative charges; ⇑ = high, higher, or an increase; ⇓ = low, lower
or a decrease.
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The Question of Temperature

As already reported, the pyrolysis temperature and feedstock greatly influence the
physicochemical properties of BC, including pH, specific surface area, pore size, CEC,
volatile matter, ash, and carbon content. CEC and volatile matter decrease with increasing
pyrolysis temperature, whereas pH, specific surface area, ash, carbon content, and pore
volume increase with an increase in pyrolysis temperature [100]. Increasing temperature
also causes a decrease in the number of acidic functional groups, especially carboxylic
functional groups, and causes the appearance of carbonylic functional groups and alka-
linity [101]. In particular, unpaired negative charges forming during pyrolysis at higher
temperatures enable BC to accept protons [101]. Although BC’s alkalinity increases with
higher pyrolysis temperatures, thus improving its capacity to neutralize acids in soils,
lower temperatures are necessary to preserve functional groups and obtain BC with higher
CEC [102]. Low water content in BC, which reduces the possible microbial activity, pro-
moting self-healing and degradation, is achievable at a higher temperature. However, the
highly porous structure of BC obtained in such conditions causes the ready adsorption
of moisture from the surroundings, thus increasing water content, re-enabling microbial
activity, and contributing to self-heating and degradation [100].

During biomass decomposition to BC, the total surface area changes like the porosity
due to the escaping of volatile gases and increases with increasing temperature [103]. In
this regard, a large surface area affects CEC and water-holding capacity (WHC). Curiously,
during pyrolysis, the hydro-properties of the initial biomass undergo several modifications
depending on the pyrolysis temperature, which can translate into contradictory findings.
Notably, with increasing temperature, due to a decrease in functional oxygenated groups
and an increase in aromatic structure, the material’s affinity to water is altered, the hy-
drophobicity of BC becomes higher than that of pristine biomass, and its capacity to retain
water will be lower. Conversely, thanks to increased porosity, which changes the amount of
water that can be adsorbed, BC produced at high temperatures can hold more water in its
porous structure than BC prepared at lower ones [104].

The mechanical stability of biomass usually decreases during pyrolysis and correlates
inversely with the porosity and directly to the density of the BC and temperature. The
electric conductivity increases with higher thermal treatment, improving the graphitic
carbons’ crystallinity and the carbon-packed domains’ density [105]. BC with high me-
chanical stability can be produced from feedstocks with high density and lignin content,
making lignin, the constituent, more resilient to decomposition and the loss of structural
complexity. Conversely, BC with higher grindability can be obtained by the torrefaction
of biomass with a larger amount of hemicellulose (e.g., agricultural residues) compared
to woody biomass. The decomposition of biomass to BC causes a reduction in its bulk
density and an increase in its porosity and, therefore, a decrease in its thermal conductivity,
depending on the pyrolysis temperature. Concerning the electric properties of BC, the
reduction in oxygenated functional groups and the appearance of conjugated double bonds
cause an increase in conductivity and electromagnetic shielding efficiency, which make
BC suitable as an additive in various composite materials (e.g., building materials such as
cement). Furthermore, the effectiveness of shielding against electromagnetic interference is
enhanced concerning the pristine biomass.

2.3. Possible Biochar Applications

The various properties of BC reported above, including its high carbon content, larger
surface area, well-developed porous structure, and a surface sufficiently enriched with
functional groups, render it potentially pertinent for various applications. In Table 3, we
have reported the current possible environmental BC applications.
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Table 3. Main possible applications of BC.

Application Mechanisms Refs.

Climate change mitigation

Sequestering carbon in soil
⇓ CO2 emissions into the atmosphere

⇓ NO2 emissions
⇓ CH4 emissions

Tackling 12% of current anthropogenic carbon emissions

[73]

Soil improvement

⇑ Physicochemical and biological properties of soils
⇑ Water retention capacity of soil

⇓ Nutrient leaching
⇓ Acids in soils

⇑ Microbial population and microbial activity in soils
Positive impacts on the earthworm population

Preventing desiccation

[68]

Waste management By pyrolyzing waste biomass * [106]

Energy production By conversion of waste biomass to BC by fast pyrolysis, thus
providing liquid fuel (bio-oil) [71]

Capturing contaminants By adsorption of both organic pollutants and/or
metal ions from soil and water [72,74]

Composting
⇑ Physicochemical properties of composting

⇑ Composting microbial activities
⇑ Organic matter decomposition

[69]

* Including crop residues, forestry waste, animal manure, food processing waste, paper mill waste, municipal
solid waste, and sewage sludge; ⇑ = high, higher, improved, or enhanced; ⇓ = low, lower, reduced, or decreased.

BC production could be an alternative to mitigate climate change by carbon seques-
tration in soil, thus retaining half of the carbon fixed in biomass during photosynthesis
and reducing CO2, NO2, and CH4 emissions [73]. Mainly, BC shows long-term stability in
soil. The mean carbon residence time in BC has been estimated to be around 90–1600 years,
depending upon the labile and intermediate stable carbon components [73]. Due to these
characteristics, BC can sequester carbon in soil, thus decreasing carbon dioxide emissions
into the atmosphere and those of nitrous oxide and methane by biotic and abiotic mecha-
nisms [73]. Experiments have demonstrated that the emission of greenhouse gases (includ-
ing CH4 and N2O) can be avoided by pyrolyzing waste biomasses [107]. Concurrently, the
pyrolysis process balances fossil fuel consumption by producing bioenergy.

Interestingly, BC has been estimated to be capable of tackling 12% of the current an-
thropogenic carbon emissions. Furthermore, thanks to its high carbon content, BC can work
as a soil conditioner, mainly by improving the soil’s physicochemical and biological prop-
erties. BC increases soil water retention capacity by ~18%, reduces nutrient leaching [68],
and neutralizes acidic soils, thereby enhancing plant productivity, seed germination, plant
growth, and crop yields. Additionally, wet BC prevents soil desiccation [68]. While it has
been reported that soils treated with BC demonstrated improved microbial population and
activity [108], null or positive effects were observed in the earthworm population in soils
amended with wood-based BC [109].

The production of BC itself is an economical and mutually beneficial strategy to
manage and eliminate waste from animals and plants and reduce the pollution associated
with it [108]. Furthermore, when waste biomass that is derived mainly from animal
manure and sewage sludge is pyrolyzed, the hazardous microbial population that is
possibly present is killed, thus reducing its possible negative impact on the environment
and humans. Unfortunately, toxic heavy metals from sewage sludge and municipal solid
waste could persist in BC, which must be carefully checked and handled correctly before
long-term soil application [110].

A remarkable potential use of BC, one that is still too little investigated and controver-
sial, is the production of bioenergy as an alternative to fossil fuel that could lower carbon
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emissions. In this regard, while slow pyrolysis allows a lower yield of liquid fuel and
more BC, fast pyrolysis provides more liquid fuel (bio-oil) and less BC [111]. Evidence has
demonstrated that BC can be successfully applied in environmental remediation because
it is capable of adsorbing both organic and inorganic contaminants, such as pesticides,
herbicides, PAH, dyes, and antibiotics, as well as non-biodegradable metal ions, which
are highly toxic to all living organisms [72,74]. BC can enhance the composting process
by improving its physicochemical properties and microbial activities and promoting the
decomposition of organic matter. Also, more investigations are needed to evaluate BC
compost’s agricultural/environmental performance [69]. Table 4 summarizes some of the
advantages and disadvantages associated with the production and use of BC.

Table 4. Advantages and disadvantages associated with the production and use of BC.

Advantages Disadvantages

Obviate to significant modification on Earth Gaseous aerosol emissions during improper pyrolysis

Enhanced soil productivity Environmental pollution from dust; erosion and leaching of BC
particles

Higher food security Ash could be at risk for respiratory diseases.

Solution of xenobiotics danger BC can sequester water and nutrients not further available for
crops

Addressing waste management Not desired sorption of residual herbicides and pesticides

Reduced utilization of fossil fuels

Long-term removal of crop residues for producing BCs can
reduce overall soil health by diminishing the number of soil

microorganisms and
disrupting internal nutrient cycling

Less expensive than activated carbon (AC) Possible negative impact on soil biota

Improvement of living microbiology in soil Short-term adverse effects on earthworm population density

Greater WHC than AC

No universal reduction in nitrous oxide emissions
Enhanced food web in soil

Improved aeration in the soil
Reduced loss of nutrients through leaching

AC = Activated carbon; WHC = water-holding capacity.

As evidenced in Table 4, we benefit from additional advantages by producing BC from
biomass, including waste biomass. The cost necessary to produce BC is six-fold lower than
that of commercially available activated carbon (AC), which, unlike BC, is deprived of some
properties of BC, such as its ion exchange capacity [112]. Generally, BC does not require fur-
ther processing to be activated, and, thanks to its non-carbonized fraction and maintained
oxygen-containing groups such as carboxyl, hydroxyl, and phenolic surface functional
groups, BC is capable of adsorbing both organic as well as inorganic contaminants and of
interacting with soil contaminants [72,74]. BCs produced from sewage sludge and manure
have a high nutrient content for soils, thus enriching their quality [68]. However, apart
from the advantages of using BC, there is a series of possible fallouts, as reported, that need
consideration. Among these, the long-term removal of crop residues, like stems, leaves, and
seed pods, for producing BC could reduce the overall soil health by diminishing the number
of soil microorganisms and disrupting internal nutrient cycling, with a possible negative
impact on soil biota, including short-term adverse effects on earthworm population density.
In this scenario, there is a dire need for further extensive research so that any possible
issues associated with its usage can be effectively resolved.

2.3.1. Xenobiotics Removal by Biochar (BC)

As reported in the previous section, BC is a porous material, and its porosity, de-
pending on the production temperature, allows it to interact with water nutrients and
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other materials, including inorganic metal cations and organic pollutants. Due to its en-
hanced porous structure, surface area, functional groups, and mineral components, BC
is an optimal absorbent material for solutions. Although BC that is produced through
pyrolysis has a relatively moderate adsorption capacity (3.6–6.3 g/g for BC prepared at a
temperature range of 300–700 ◦C) [113], this can be enhanced by modifying its physico-
chemical properties through acid, alkali, or oxidizing treatments, while the surface area
can be altered mainly using acid treatments [114–116]. As an adsorbent, BC can absorb
organic and inorganic contaminants, such as PAH and phthalate acid esters, and its help in
improving the treatment of sewage wastewater containing organic xenobiotics has been
widely reported [117]. In this context, there are several main mechanisms used by BC for
capturing inorganic or organic pollutants, which have been included and are discussed in
Table 5.

Table 5. Main mechanisms by which BC can capture inorganic or organic contaminants.

Capturing Mechanism Influencing Factors #, Details ◦, Examples § Ref.

Sorption *
⇑ Surface area #

Microporosity of BC #

pH #

[117]

Hydrogen bond formation ** For polar compounds ◦ ,**

Electrostatic attraction/repulsion
For cationic compounds ◦

Interaction between positively charged cationic organic
contaminants and negatively charged BC surfaces ◦ ,**

Electrostatic outer sphere
complexation Due to metallic exchange with K+ and Na+ available in BC ◦ ,**

Hydrophobic interactions *** For non-polar compounds ◦

Diffusion Non-ionic compounds can diffuse into the
non-carbonized and carbonized fractions of BC ◦

Formation of surface complexes **
pH #

Ionic radius #

Between metal cations and -OH, -COOH on BCs ◦

Precipitation
Lead precipitates as lead-phosphate-silicate in BC §

Co-precipitates and inner-sphere complexes can form between
metals and organic matter/mineral oxides of BC §

* From water/soil onto biochar; ** for BCs produced at relatively lower temperatures; *** for BCs produced at
higher temperatures; ⇑ = high, higher, improved, enhanced; In the table, the voices with # are influencing factors,
those with ◦ are details, and those with § are examples.

Interestingly, BCs produced at higher temperatures exhibited higher sorption efficiency
for the remediation of organic and metallic contaminants in soil and water. Additionally, it
is worth mentioning that the sorption of organic xenobiotics by BC is more favorable than
that of inorganic ones. Concerning complexation with metal cations, the smaller the ionic
radius of metals, the greater the adsorption capacity by BC.

2.3.2. Not Only Adsorption

It is commonly reported that the principal mechanism by which BC removes toxic
heavy metals and other contaminants, including organic pollutants, is adsorption. Its
adsorptive efficiency mainly depends on the type and number of functional groups, surface
area, CEC, etc. However, previous research studies and reviews on BC have evidenced the
presence, either on the surface or inside its particles, of free radicals known as persistent
free radicals (PFRs), the nature of which depends strongly on the pyrolysis conditions and
the formation and characteristics of which mainly differ based on the feedstock types. In
this regard, several recent studies have mainly focused on the role of BC-related PFRs in
the degradation of organic xenobiotics, in addition to their adsorptive capacity. Odinga



Toxics 2024, 12, 245 12 of 40

et al., in their recent work, reviewed the application of BC-derived PFRs in environmental
pollution remediation [27], while Fang et al. investigated the reactivity of PFRs in BC and
their catalytic ability to activate persulfate to degrade pollutants [28]. However, Odinga
et al. also considered and commented on the possible environmental risks of PFRs from
BCs, which represent the shadows associated with these chemicals and need further study,
knowledge, and regulation before their extensive application [27].

3. Biochar-Derived Free Radicals

As previously mentioned, BC has a broad-prospective use in the treatment of envi-
ronmental xenobiotics, in soil amendment, in photocatalytic and photothermal systems,
for photothermal conversion, as electrical and thermal devices, and as 3D solar vapor-
generation devices for water desalination [118–121]. All these potential uses are due to its
high surface area and rich pore structure, which provide great physical absorptivity. They
also depend on the chemical characteristics of BC, including the presence of PFRs [122,123].
In this regard, it is of paramount importance to clarify the formation mechanism of free
radicals in BC for the optimal management of their properties and their more efficient and
safer utilization [124].

3.1. Persistent Free Radicals (PFRs)

An atom or molecule with at least a lone pair of electrons is a chemical species
characterized by significant instability and high chemical activity and is referred to as
a free radical species [107]. Usually, free radicals are highly unstable and rapidly react
with each other, thus being destroyed as soon as they form, with a consequent very short
half-life. However, it has been found that in BC, some free radicals, named persistent
free radicals (PFRs), like the radicals that naturally occur in the environment, known as
environmental persistent free radicals (EPFRs), can remain stable for months and play
a crucial role in the subsequent reactions of oxidative degradation carried out by BC
containing them [25,107,125,126] (Figure 6).
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Unlike other free radicals, PFRs are resonance-stabilized since they are bound to the
external or internal surface of solid particles of BC. They can be analyzed by electron
paramagnetic resonance spectroscopy (EPR) [25]. Figure 7a provides an example of an EPR
analysis of the PFRs present on a solid N-doped hydro char prepared in a tube furnace at a
temperature of up to 600 ◦C for 1 h under a N2 atmosphere [127].
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Figure 7. EPR analysis of PFRs generated on a N-doped hydro char prepared in a tube furnace heated
to 600 ◦C for 1 h under N2 atmosphere (a) [127]. The image has been reproduced with permission
from Elsevier under license number 5754160784661, received on 22 March 2024; EPR spectrum of
the unstable free radical superoxide (O2•−) when trapped by DMPO to form a long-lived nitroxide
(DMPO-OOH) (b).

Their lifetime under a vacuum appears infinite, while they react with molecular
oxygen in the air, resulting in decay with time and the simultaneous production of reactive
oxygen species (ROS). In this regard, PFRs act as transition metals like Fe2+, stimulating
ROS production in aqueous systems. Unlike PFRs, ROS are detectable by EPR only when
captured by a proper radical scavenger, such as 5,5-dimethyl-1-pyrroline-N-oxide (DMPO).
Figure 7b provides an example of the EPR spectrum of the unstable free radical superoxide
(O2•−) when trapped by DMPO to form a long-lived nitroxide radical (DMPO-OOH). In BC
analyzed using the EPR technique, PFRs were previously detected in combustion-generated
particulate matter (PM), sediments, and soils. PFRs can be categorized into three classes,
i.e., oxygen-centered PFRs (OCPFRs), carbon-centered PFRs (CCPFRs), and oxygenated
carbon-centered radicals (CCPFRs-O). The EPR analyses provide three parameters: the PFR
concentration, the g-value, and the line width [107] (Figure 8).

Toxics 2024, 12, 245 14 of 43 
 

 

 
Figure 7. EPR analysis of PFRs generated on a N-doped hydro char prepared in a tube furnace 
heated to 600 °C for 1 h under N2 atmosphere (a) [127]. The image has been reproduced with per-
mission from Elsevier under license number 5754160784661, received on 22 March 2024; EPR spec-
trum of the unstable free radical superoxide (O2•−) when trapped by DMPO to form a long-lived 
nitroxide (DMPO−OOH) (b). 

Their lifetime under a vacuum appears infinite, while they react with molecular ox-
ygen in the air, resulting in decay with time and the simultaneous production of reactive 
oxygen species (ROS). In this regard, PFRs act as transition metals like Fe2+, stimulating 
ROS production in aqueous systems. Unlike PFRs, ROS are detectable by EPR only when 
captured by a proper radical scavenger, such as 5,5-dimethyl-1-pyrroline-N-oxide 
(DMPO). Figure 7b provides an example of the EPR spectrum of the unstable free radical 
superoxide (O2•−) when trapped by DMPO to form a long-lived nitroxide radical 
(DMPO−OOH). In BC analyzed using the EPR technique, PFRs were previously detected 
in combustion-generated particulate matter (PM), sediments, and soils. PFRs can be cate-
gorized into three classes, i.e., oxygen-centered PFRs (OCPFRs), carbon-centered PFRs 
(CCPFRs), and oxygenated carbon-centered radicals (CCPFRs-O). The EPR analyses pro-
vide three parameters: the PFR concentration, the g-value, and the line width [107] (Figure 
8). 

 
Figure 8. Information derived from EPR analyses. Figure 8. Information derived from EPR analyses.



Toxics 2024, 12, 245 14 of 40

PFR concentration is calculated from the double integral of the EPR spectrum and
can reflect the content of PFRs in BC [128]. The g-value of PFRs is a constant specific to
a particular compound, reflects its hybrid nature, and provides information about the
type of radical [129]. The PFR line width in the EPR spectrum measures the peak-to-peak
width. This is affected by spin–spin interactions (including electron–proton interaction
and electron–electron interaction), the heteroatom effect, and the anisotropy of the spec-
trum [107].

The line width reflects the relaxation time of spinning electrons [130]. It has been
reported that the oxidation processes that can occur using BCs mainly depend on PFRs
and these parameters [125,131,132]. These parameters are, in turn, affected significantly by
pyrolysis conditions, biomass types, the elemental composition of pristine biomass, and
the presence of external transition metals (Table 6).

Table 6. Factors influencing PFR formation in BC.

Parameter Influencing Factors Specifications Observations Ref.

PFRs
concentration

Biomass type

Cow manure, rice husk, others
(< 500 ◦C) ̸= Concentrations [132,133]

Non-lignocellulosic biomass with
⇓ H/C and O/C ⇓ Concentration

[134]

Lignocellulosic biomass ⇑ Concentration

Temperature

300 ◦C, 700 ◦C
̸= Concentrations

[132]

Maximum concentration at 600 ◦C [135]

Maximum of concentration at
500–600 ◦C [24,136]

Transition metals
Adsorb onto biomass and transfers
electrons from polymer to metal

center during pyrolysis
⇑ Concentration [32]

Type of PFRs Temperature

200–300 ◦C Oxygen centered radicals

[24]
400 ◦C A mixture of oxygen and

carbon-centered radicals

500–700 ◦C Exclusively carbon
centered radicals

̸= = Different; ⇓ = low, lower, reduced, decreased; ⇑ = high, higher, increased, improved.

Qin et al. [132] found that the PFR concentrations in the same BC that were obtained at
different temperatures and those in different kinds of BC obtained at the same temperature
were significantly different. Tao et al. [135], as well as Xiang [136] and Huang et al. [24],
found that in BCs from different feedstocks, the PFR concentrations first increased with
increasing temperature, reaching a maximum around 500–600 ◦C, and then decreased with
a further increase in temperature. The relations between the feedstocks’ properties or the
BCs’ composition with the PFR concentrations were also demonstrated [133], and non-
lignocellulosic-biomass produced lower PFR concentrations than lignocellulosic-biomass
under the same pyrolytic conditions, perhaps due to their lower H/C and O/C atomic
ratios [134]. The types of PFRs that can be produced during pyrolysis change in the
pyrolysis process and change along with a temperature rise, as reported in Table 6. One
study speculated that the reduction in oxygen content during biomass pyrolysis may
account for the progressive conversion of oxygen-centered radicals to carbon-centered
radicals [134].

Mechanism Proposed for PFR Formation during Biomass Pyrolysis

The several environmental sources of PFRs include atmospheric particulate matter
(PM), contaminated soil, materials from thermal treatments of plastic and hazardous waste,
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tar balls, and the products deriving from the pyrolysis of biodiesel and biomass waste
feedstocks at high temperatures [25]. Concerning BC-derived PFRs, it was observed that
they mainly form in the post-flame and cool-zone regions of combustion systems and other
thermal conversion processes. Although the actual mechanism by which PFRs form during
pyrolysis remains not fully clarified, transition metals capable of electron transfer and the
substituted aromatics molecules present in lignin have been recognized as critical factors
of PFR formation. However, high concentrations of PFRs have also been detected in the
product of combustion of non-aromatic cellulose in the absence of transition metals [135].
Based on the temperature of pyrolysis processes, during the production of BC, highly
heterogeneous composite structures occur, comprising both labile and recalcitrant organic
molecules, such as PAH, furans, and dioxins, as well as inorganic fractions including
oxides, cations, anions, and free radicals [137]. These fractions, products of the incomplete
combustion of biomass, may gradually form PFRs by different pathways, including or not
including transition metals. The formed PFRs could be either only surface-stabilized or
be surface-stabilized in metal-radical complexes [27]. Generally, the breaking of covalent
bonds by heat, light, electricity, and chemical energy, is essential to form free radicals;
during the pyrolysis process of lignocellulosic biomasses. Their main constituents, namely,
cellulose, hemicellulose, and lignin, undergo different reaction pathways at various destruc-
tive pyrolysis temperatures of 300 ◦C, 300–400 ◦C, and 350–450 ◦C. Anyway, the presence
of transition metals can strongly affect the possible formation of PFRs during pyrolysis.
Figure 9 attempts to describe the possible series of events occurring during biomass py-
rolysis that could lead to the formation of PFRs, which are also chemically described in
Scheme 1 (concerning lignin) and Scheme 2 (concerning cellulose and hemicellulose).

First, the C-O and C-C covalent bonds of constituents of lignin are broken under
heat, either via electron transfer by transition metals or not, to form free radical fragments,
phenols, chinones, and other products of incomplete combustion. Simultaneously, the
cleavage of the glucoside bonds of cellulose and hemicellulose that are present in biomass
feedstocks occurs, causing depolymerization and the formation of other radicals. These
first radicals can couple to form bio-oil, pyrolysis syngas (CO2, CO, CH3CH3, and CH4),
and BC simultaneously or may abstract hydrogen from other molecules, forming further
radicals [133,138]. Several chemical reactions can occur, including dehydration, decarboxy-
lation with further emissions of CO2, CO, and H2O, aromatization, and intra-molecular
condensation leading to the formation of the crystalline graphene structure and graphitic
radicals. During pyrolysis, the elemental composition of biomass undergoes changes that
cause mutations in the types of radicals that, upon entrapment onto the BCs’ surface and/or
the formation of metal–radical complexes, form stable PFRs [24].

According to findings reported in the literature, the possible types of PFRs comprise
(i) transition metal-mediated PFRs or (ii) PFRs forming inside organic matrices during
biomass pyrolysis to give BC [139]. The transition metal-mediated PFR formation starts
with the initial physisorption of an aromatic substituted molecule or of its degradation
intermediate radicals, generated at 150–400 ◦C or under UV irradiation onto transition
metal oxides such as ZnO, NiO, CuO, Fe2O3, and TiO2 or transition metal ions [140]. Then,
chemisorption occurs by forming a chemical bond eliminating water or hydrogen chloride.
Finally, a single electron is transferred from the substituted aromatics to the center of the
transition metals, leading to the simultaneous reduction of metal and the formation of
PFRs [140], the stability of which can be attributed to the synergy of metals and aromatic
compounds [140]. A transition metal accepts an electron, and its valence changes from high
to low during this process.

Unlike the PFRs discussed previously, PFRs formed inside the matrix of organic
moieties are not related to the presence of transition metals [139]. Still, they are highly
dependent on the relevant organic matter, while their concentration is significantly and pos-
itively correlated with the elemental carbon content [139]. In this case, PFRs are compared
in terms of thermally treated particles, for which the breaking of chemical bonds in the
precursor molecules during pyrolysis is the primary reason. At the initial pyrolysis stage,
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the homolytic cleavage of weak linkage bonds like the α- and β-alkyl aryl ether bonds,
C-C, and C-O linkage resulted in the forming of free radicals in BC. The outer-surface free
radicals would rapidly react and dissipate, resulting in a decrease in EPR signals. The free
radical concentrations then increased with extended pyrolysis and during the cooling stage,
thus accumulating many free radicals on the BC’s surface [139] and dramatically boosting
the EPR signals. The free radicals formed in the matrix of the produced BC are probably
protected from reacting with each other or other chemicals and are thus stabilized.
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Scheme 1. Possible mechanisms leading to the formation of BC-bounded PFRs from lignin. The
orange sphere represents biomass, while the black sphere represents BC, the hypothetical structures
of which, depending on pyrolysis condition, are shown at the bottom of the scheme.
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Scheme 2. Possible mechanisms leading to the formation of BC-bounded graphitic PFRs from cel-
lulose (left side) and hemicellulose (right side). The orange sphere represents biomass, while the 
black sphere represents BC, the hypothetic structures of which, depending on pyrolysis condition, 
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Scheme 2. Possible mechanisms leading to the formation of BC-bounded graphitic PFRs from
cellulose (left side) and hemicellulose (right side). The orange sphere represents biomass, while the
black sphere represents BC, the hypothetic structures of which, depending on pyrolysis condition,
are shown at the bottom of the scheme.
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As mentioned earlier, the type of biomass and its elemental composition, the presence
of oxygenated functional groups, the pyrolysis conditions (temperature, heating time, and
heating rate), and the presence of external transition metal as well as phenolic compounds
strongly affect both the concentration, structure, and type of PFRs present in BC. Notably,
no radical is produced during the first stage of pyrolysis, providing the transition char
(< 300 ◦C). Subsequently, in the second stage of pyrolysis (300–500 ◦C), amorphous char is
produced, and oxygen-centered radicals and oxygenated carbon-centered radicals appear.
In the third stage of pyrolysis at 500–700 ◦C, composite char is created, wherein the con-
centrations of PFRs, including carbon-centered and oxygenated carbon-centered radicals,
drastically decrease. Finally, when turbostratic char is produced (> 700 ◦C), little or no PFRs
are subsequently produced [27]. In the EPR, the g-factor values, even if they could change
due to the presence of metal ions and temperature changes, are specific for a type of radical.
Table 7 reports the main types of radicals recognizable in BC and their specific g-values.

Table 7. Features and g-values of the main PFRs forming in BC.

Radicals g-Value Features

Carbon-centered radicals <2.003 Susceptible to oxidation in air

Carbon-centered radicals adjacent to an
oxygen atom

(oxygenated carbon-centered radicals)
2.003–2.004 Susceptible to oxidation in air

Oxygen-centered radicals >2.004 More stable in an atmospheric environment

Semiquinone radicals (oxygen-centered) >2.0045 More resistant to reacting with molecular oxygen in the
ambient environment

Phenoxy radicals
(oxygenated carbon-centered radicals) 2.0030–2.0040 Susceptible to oxidation in air

Cyclopentadienyls
(carbon-centered radicals) <2.003 Susceptible to reacting with molecular oxygen in the

ambient environment

3.2. PFRs: Light and Shadows
3.2.1. PFR Light

It has been demonstrated that PFRs originating in BC by combustion in the presence
or absence of external transition metals could play a vital role in several beneficial reactions,
such as the PFR-mediated remediation and degradation of organic and inorganic pollutants
by different actions and mechanisms, including oxidative and reductive processes (Table 8).

Table 8. Main actions and mechanisms by which PFRs remediate/degrade environmental xenobiotics.

EPFRs Actions Degraded Substances * Mechanism Refs.

Activation of H2O2 by
single electron transferring

SMX, CIP, SMT, TC, OG, MNZ, ERF
benzene

Oxidation by the production of
ROS

(OH• #, HO2•, O2•−)
[32,141]

Activation of O2 by single
electron transferring

Degradation of organic compounds
Chloro-biphenyl

Phenolic compounds
Polychlorinated biphenyls

Diethyl phthalate
Thiacloprid
Bisphenol A

Oxidation by the production of
radical superoxide (O2•−) [21,25,33,123]

Activation of persulfate
(S2O8

2−)
X-3B, SMT, CTC, SMX, TC, MB, SDZ,

OG
Oxidation by the production of

sulfate radicals (SO4•−) [141]
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Table 8. Cont.

EPFRs Actions Degraded Substances * Mechanism Refs.

Direct activity of
macromolecular radicals on

the BC surface
Direct degradation of organic chemicals Oxidation [74]

Direct activity of
semiquinone-type radicals As (III) removal Oxidation [142]

Direct activity of PFRs Removal of Cr (VI) Reduction to Cr (III) [143–147]

Catalytic effects Detoxification of environmental
xenobiotics

Generation of activated species
Stimulation of the microbial

biotransformation
[74]

Ions’ exchange Enhancement of agricultural soil
performance Maintenance of CEC in soils [148]

Electron-hole pair
formation

Photocatalytic degradation of
contaminants under Vis irradiation

Electrons in free radicals can be
transformed from the valence
band to the conduction band

under irradiation

[45]

* Degraded or removed; SMX = sulfamethoxazole; CIP = ciprofloxacin; SMT = sulfamethazine; TC = tetracycline;
OG = orange; MNZ = metronidazole; # free or surface bond; KET = ketoprofen; CTC = chloro-tetracycline;
SDZ = sulfadiazine; MB = methylene blue; ERF = enrofloxacin (photocatalytic degradation); X-3B = reactive
brilliant red X-3B.

For instance, PFRs on BC can activate hydrogen peroxide (H2O2) or oxygen (O2), as
well as persulfate (S2O8

2−), to produce different free oxygenated radicals (ROS) that are
capable of efficiently degrading organic contaminants such as chloro-biphenyl [32], phenolic
compounds and polychlorinated biphenyls [21], diethyl phthalate [33], thiacloprid [123],
and bisphenol A [25]. Moreover, organic chemicals can also be directly degraded on the BC
surface by macromolecular free radicals without adding any radical activators [74]. The
semiquinone-type radicals present in BC can oxidize As (III) [142]. At the same time, BCs
can also exhibit the highly effective removal of Cr (VI) by reduction to Cr (III) using PFRs
for industrial wastewater remediation [143–147].

Unfortunately, PFRs, by generating surface-bound hydroxyl radicals and free hydroxyl
radicals in aqueous solution and also in the absence of H2O2, can induce various types of
cardiovascular and pulmonary disease through ROS-induced oxidative stress (OS) [25].
PFRs and OH radicals that were detected in biological fluids generated ROS that induced
an oxidant injury and modulated toxic responses in biological tissues [149]. Moreover,
quinoid redox cycling is another possible path causing the formation of ROS from material
containing semiquinone-type radicals, which could exert toxicity like that exercised by the
combustion products present in cigarette smoke [150]. Although BC has beneficial effects
on agricultural soil, the PFRs in BC could inhibit plant germination and growth when used
in soil remediation. BC addition as a soil amendment has been reported to positively affect
plant germination, growth, and yield [151,152]. In contrast, a negative impact has also been
documented when BC-bounded PFRs induce ROS, which can inhibit seed germination and
retard the growth of roots and shoots [32,35]. As shown in Figure 10, the formation and
presence of PFRs in the BC produced by several biomasses have been widely documented
and studied since 2014.

In this regard, in Table 9, we have reported a random selection of the main experimen-
tal works regarding the PFRs found in BCs, obtained by different biomasses conveyed in
recent years (2019–2024). Table 9 also summarizes their reported applications, including
mainly the oxidative degradation of organic environmental pollutants (51 papers), the
removal of hazardous inorganic compounds from wastewater such as As (III) and Cr (VI)
(12 papers), the degradation of biological samples, including bacteria (3 papers), hormones
(4 works), genes of bacterial resistance (1 paper), and their use as electrical devices due to
their electron and electron donor capacities (EAC and EDC).
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Table 9. BC-derived PFRs and their applications as described previously, reported in the years
2019–2024.

Biomass Pyrolysis
◦C/Time BC-Name Active Radicals Radical Mechanisms

Application 1

Degraded
Compound 2

Refs.

Sawdust 700 ◦C/1 h Fe0-BC-700
SO4•− PFRs

OH•

Activation of PMS by
Fe0

Activation of PMS by
PFRs

BPA 2 [153]

Waste wood 500 ◦C, 700 ◦C Fe0-BC
SO4•− PFRs

OH•

Production of PFRs by
Fe0

Activation of PS by Fe0

Activation of PS by
PFRs

TDWW 2 [154]

Camellia seed
husks 400 ◦C/2 h OBC-Fe3O4

SO4•− PFRs
OH• Activation of PS TC 2 [155]

Maize straw 900 ◦C/2 h NBC1 • O2
− SO4•−

PFRs OH• Activation of PS (86.6%) TC 2 [156]

Sawdust 300 ◦C, 700 ◦C SBC SO4•− PFRs
OH• Activation of PS AO-7 2 [157]

N.R. 200 ◦C, 500 ◦C N.R. PFRs • O2
−

UV-induced interaction
PFRs/DOM and • O2

−

production
RhB 2 [158]

Sewage sludge 500 ◦C/4 h HNO3-BC PFRs • O2
−

•OH •O2H Activation of H2O2 CIP 2 [35]

Wheat straw 500 ◦C/2 h BC/Fe (III) SO4•− PFRs
OH•

Activation of PS by
PFRs SMX 2 [159]

Sawdust 700 ◦C BC700 SO4•− PFRs
OH•

Activation of PDS by
PFRs CA 2 [160]

Pine needle 500 ◦C/2 h Fe/Mn/BC •OH

Activation of H2O2 by
Fe (II), Mn (II) and

PFRs
(FeMn/BC/H2O2

photo-Fenton system)

Naphthalene 2 [161]
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Table 9. Cont.

Biomass Pyrolysis
◦C/Time BC-Name Active Radicals Radical Mechanisms

Application 1

Degraded
Compound 2

Refs.

Sewage sludge 500 ◦C/4 h SS-BC PFRs • O2
−

•OH •O2H

Activation of O2 and H2O2
by PFRs

Degradation of PNP by
PFRs

CIP 2 [162]

Swine manure 600 ◦C SBC
OCPFRs

CCPFRs-O
• OH •O2H

Activation of oxygenated
species by OCPFRs and

CCPFRs-O
(heterogeneous Fenton-like

systems SBC/H2O2)

SMT 2 [163]

Wheat straw 300 ◦C, 600 ◦C BC300 BC600 •OH •O2H
Goethite (Gt)-mediated

activation of H2O2
(Fenton-like system)

OFX 2 [164]

Wheat straw 500 ◦C/2 h, 800
◦C/2 h CoBCX SO4•− PFRs

OH•
Cobalt and PFR-mediated
activation of PMS via O2

ATZ 2 [165]

Various crop
straws

450 ◦C, 550 ◦C
650 ◦C

BC450,550
BC650

SO4•− • O2
−

OH•
BC-mediated activation of

PS by electron transfer SDZ 2 [166]

Tobacco steam 300°C, 500°C
700°C T-BC ROS

OCPFR-mediated
activation of O2 in the

water
PNP 2 [167]

Pruning wastes
of apple trees

400 ◦C, 550 ◦C
700 ◦C

BC400, BC550
BC700 SO4•− PFRs BC and PFR-mediated

activation of PS ACT 2 [168]

Camphor
leaves 400 ◦C/6 h Fe (TPFPP)/BC SO4•− PFRs

OH•

PFRs-mediated electrons
transferring to iron

porphyrin-loaded BC 3
PFOA 2 [169]

Corn stalks 240 ◦C/4 h hydrochar •OH
Electrode and

PFR-mediated generation
of ROS

2,4-DCP 2 [170]

Wheat straw 450 ◦C/4 h Co3O4-BC SO4•− PFRs
OH•

Co3O4-BCmediated
activation of PMS

CAP 2 FF 2 TAP
2 [171]

Wheat straw
Urea

Iron salts
800 ◦C/1 h Fe-N-BC SO4•− PFRs

•OH • O2
−

Fe, N co-doped BC and
PFR-mediated activation

of O2 and PS
AO7 2 [172]

Candida utilis 700 ◦C/2 h NCS-x SO4•− PFRs
OH•

Activation of PMS by
nitrogen-doped biochar

nanosheets (NCS-x) using
molten salt (NaCl and KCl)

in the pyrolysis process

BPA 2 BPF 2

BPS 2 BPAF 2 [173]

Pine needles 500 ◦C nFe3O4/BC PFRs •O2H
•OH • O2

−

Activation of H2O2 by
nano-magnetite supported
biochar via Fe (III)/Fe (II)

cycling and electron
transfer with the PFRs

Ethylbenzene 2 [174]

Sewage sludge 800 ◦C/3 h SM-(0.5:1) SO4•− PFRs
OH•

Activation of PMS by
nitrogen-doped sludge
biochar with different
ratios of melamine in

acidic

Cationic/anionic
dyes 2 [175]
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Table 9. Cont.

Biomass Pyrolysis
◦C/Time BC-Name Active Radicals Radical Mechanisms

Application 1

Degraded
Compound 2

Refs.

Elephant grass
350 ◦C, 600 ◦C

900 ◦C
30–120 min

EG OCPFRs OCPFR-mediated
oxidation CV 2 [176]

Sunflower-
straw N.R. SSBC SO4•− PFRs

OH•
Enhanced Fe (II) activation

of PS via BC and PFRs Benzoic acid 2 [177]

Pine chips 500 ◦C OP5
RP5

SO4•− PFRs
•OH • O2

−

•O2H

EDC-involved structures,
Fe3+ and BC

(PFR)-mediated activation
of PS in a Fenton-like
reaction system using

H2O2 and NaBH4

2,4-DCP 2 [178]

Rice straw 350 ◦C, 500 ◦C
700 ◦C

BCs
MBCs

BDOMs
PFRs •OH

Direct photocatalytic
degradation in BCs and

MBCs
solutions by Xenon-lamp

Oxygen reduction by FPRs
of BCs and MBCs
BDOM-mediated
generation of ROS

SMX 2 CAP 2 [179]

Pomelo peels 600 ◦C Fe@PP-Hy-Py PFRs •OH •
O2

−

Amorphous Fe
(0)-mediated formation of

PFRs
Fe (0)-mediated reduction

of PNP
EPFR-mediated oxidation

of PNP via ROS
(O2 and H2O2) activation

PNP 2 [180]

Softwood pine 823–873 K

US-BC
BC-P

BC-P-DEA
US-BC-P-DEA
US-BC-P-DEA

PFRs •OH •
O2

− •O2H

Reinforcement of PFRs
concentration doping BCs

with Ni and Pb
Activation of H2O2 by

PFRs

Phenol 2 [181]

Camphor
leaves 500 ◦C/1 h Fe (VI)/BC-2 Fe(V)/Fe(IV)

PFRs •OH

Fe (VI)-BC
(PFRs)-mediated electron

transferring and
generation of ROS

AZT 2 [182]

Bagasse
powder 800 ◦C DBC800

PBC800-A

SO4•− PFRs
•OH• O2

−

•O2H

Enhanced BC-mediated
activation of PS

Improved PFR generation
by natural endogenous

minerals

TC 2 [183]

Eichhornia
crassipes
Iron salts

400 ◦C/2 h MBC PFRs •OH•
O2

−•O2H

Fe (II)-BC-mediated
activation of H2O2

(Fenton-like system)
MNZ 2 [184]

Poplar and pine
sawdust 300–500 ◦C PO xxx

PI xxx
SO4•− PFRs
•OH• O2

−

Activation of PMS by
CCEPFRs-O and CCEPFRs

in BC

TC 2 CTC 2

DOX 2 [185]
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Table 9. Cont.

Biomass Pyrolysis
◦C/Time BC-Name Active Radicals Radical Mechanisms

Application 1

Degraded
Compound 2

Refs.

S. alfredii Air-dried Metal@P •O2H

PFR generation by the
thermochemical behaviour

of Mn and Zn
Electron transfer

Activation of PDS by PFRs
in Fe/Zn@PB9/PDS

system
AOPs

Imidacloprid 2 [186]

Sludge N.R. N.R. SO4•− PFRs
•OH• O2

−

Production of ROS via
PFRs Mn-mediated

electron transfer through
Mn-doped sludge-based

biochar (BC) after
mediation

CIP 2 [187]

Cellulose
Lignin 200–1000 ◦C

C200, C500
C1000

L200, L500
L1000

SO4•− PFRs •
O2

−

Activation of PS adsorbed
onto BCs via PFRs,
oxygen-containing

functional groups, and
defective structures of BCs

OFX 2 [188]

Chestnut shell
KMnO4

700 ◦C/1 h
400 ◦C/1 h Mn-BC PFRs Mn-improved

electron-transfer OTC 2 [189]

Spent coffee
TiO2

300 ◦C
500 ◦C
600 ◦C

SBC500 PFRs •OH•
O2

−•O2H

Activation of H2O2 by
Ti-doped H2SO4-modified

biochar (SBCs)
(Photo-Fenton-like system)

MO 2 [190]

RS 550 ◦C/2 h BC-α-
Fe2O3/MgO

PFRs •OH•
O2

−•O2H

UV light activation of PFRs
Production of O2 upon

NPA degradation
O2 activation by PFRs

NPA 2 [191]

Sewage sludge 400 ◦C/2 h SDBC PFRs •OH•
O2

−•O2H

O2 activation by PFRs
promoted by HNO3 or

NaOH
environmental

p-Chlorophenol
2 [192]

Peanut hull 700 ◦C/2 h BC-Fe-1-Zn SO4•− PFRs
•OH

Activation of PS by
bimetal-modified peanut

hull-derived biochar via Fe
and Zn oxides and
oxygen-containing

functional groups active
sites

TC 2 [193]

Blue algae 700 ◦C Z-700
FeOX@BC

SO4•− PFRs
•OH

•O2
−•O2H

• O2
− production by FeOX

(zero-valent iron and iron
oxide)

C=C, C=O, O-C=O, Fe-O
functional groups and

PFRs promoted the
activation of PDS

TC 2 [194]
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Table 9. Cont.

Biomass Pyrolysis
◦C/Time BC-Name Active Radicals Radical Mechanisms

Application 1

Degraded
Compound 2

Refs.

Biomass 300–1000 ◦C N.R. SO4•− PFRs
•OH • O2

−

Activation of PS and PMS
by physically and

chemically modified BCs
using acid/alkali

treatment and metal
doping via PFRs

PPCPs 2 [195]

Chicken
feathers

350 ◦C/4 h
800 ◦C/4 h

MBC35@FH
MBC80@FH

SO4•− PFRs
•OH • O2

−

Activation of PDS by the
transformation of Fe

species, oxygen-containing
functional groups, pyrrolic

nitrogen, and PFRs to
produce ROS

TPhP 2 [196]

Pine needles 300–900 ◦C BC300-900 SO4•− PFRs
•OH • O2

−

Activation of PMS by BC
via ROS production or

electron transfer capability

OFX 2 ENR 2

FLE 2 [197]

PolyS
220 ◦C/2 h $

500 ◦C /2 h #

900 ◦C /2 h #

BC500 + PS
BC900 + PS

BC500
BC900

SO4•− PFRs
•OH • O2

−

Activation of PMS using
CCEPFRs on BC aged by

microbial fermentation for
ROS production

SDZ 2 OFX 2

DOX 2 [198]

Red mud
Wheat crop 700 ◦C /2 h MRBC SO4•− PFRs •

OH

PDS activation by the
active sites of MRBC, such

as Fe (II) and PFRs
LFX 2 [199]

Various sludges 300–900 ◦C
2 h

S-HPBC
S-PBC
S-HBC

SO4•− PFRs
•OH • O2

−

Activation of PS by
PFR-mediated electrons

transferring activity
Electrons transferring to Cr

(VI) by PFRs

TC 2

Cr (VI) ⇒ Cr
(III) 1

[200]

Peanut shells 500 ◦C/4 h BC-Ce OFGs, CCPFRs

Electrons transferring to Cr
(VI) by OFGs, CCPFRs;
oxygen vacancies and
graphitic structure in

BC-Ce promoted by CeO2

Cr (VI) ⇒ Cr
(III) 1 [201]

Rice husk 400 ◦C/1 h BC400
OH• H2O2

(pH acid) Activation of O2
by phenol OH and

semiquinone types of PFRs
As (III) ⇒ As

(V) 1 [142]

Semiquinone-
type PFRs

Quinoid C=O
H2O2

(pH alkaline) Activation of
O2 by phenol OH and

semiquinone types of PFRs

Rice husk 550 ◦C RH-BC PRFs
Promotion of OCPFRs by

BC-inducted Cr (VI)
degradation

Cr (VI) ⇒ Cr
(III) 1 [143]

Stalk 450 ◦C/90 min NBC PFRs
N-doped BC-mediated

evolution of PFRs for the
transformation of Cr (VI)

Cr (VI) ⇒ Cr
(III) 1 [144]

Rice husk 500 ◦C/2h MGBs PFRs •OH •
O2

−

Efficient surface Fe (III)/Fe
(II) cycling via electron

transfer with the PFRs of
magnetic greigite/BC
composites (MGBs)

Cr (VI) ⇒ Cr
(III) 1 [145]
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Table 9. Cont.

Biomass Pyrolysis
◦C/Time BC-Name Active Radicals Radical Mechanisms

Application 1

Degraded
Compound 2

Refs.

Sludge 220 ◦C/2h BC OCPFRs

UV-Vis photo-irradiation
enhanced the production

of PFRs
Action of OCPFRs as

electron donors to
transform Cr (VI) into Cr

(III)

Cr (VI) ⇒ Cr
(III) 1 [146]

Sludge 120 ◦C SBC120 OCPFRs
OCPFR-mediated electrons
transferring to Cr (VI) in

neutral solutions
Cr (VI) ⇒ Cr

(III) 1 [147]

270 ◦C SBC270 CCPFRs
CCPFR-mediated electrons
transferring to Cr (VI) in

neutral solutions

Rice husk 400 ◦C/1 h rUBC, rDBC Quinoid C=O
PFRs

Quinoid C=O and
PFR-mediated oxidation of

As (III)

As (III) ⇒ As
(V) 1 [202]

Maize straw
powder 500 ◦C/2 h FhBC PFRs • O2

−

•OH
Fe and PFR-mediated

activation of O2 and H2O2

As (III) ⇒ As
(V) 1 [203]

Sewage sludge 270 ◦C/2 h SBC SO4•− PFRs
•OH • O2

−

Activation of PS by SBC
via PFR-mediated

electrons transferring

As (III) ⇒ As
(V) 1 [204]

Pinewood 600 ◦C/1 h Fe/HC • O2
− •OH Activation of O2 and H2O2

by CCPFRs Estrogens 2 [205]

Rice straw 500 ◦C/1 h BiPB •OH PFRs Generation of •OH by
Bi/Bi2O3 and PFRs Estrone 2,* [206]

Anaerobic
digestion

sludge

400 ◦C 600 ◦C
800 ◦C 1000 ◦C

ADSBC 400
ADSBC 600
ADSBC 800

ADSBC 1000

SO4•− PFRs
OH•

BC-mediated activation of
PDS

Dyes 2

Estrogens 2

Sulfonamides
2 E. coli 2

Others 2

[207]

Walnut shell 700 ◦C/1 h BC700 PFRs
Oxidation by

PFRs-mediated electron
transfer

E1 2 E2 2 E3 2 [208]

Caragana
korshinskii 650 ◦C/3 h ACB-K-gC3N PFRs h+•OH•

O2
−

Electron photogeneration
and PFR-mediated

H2O and O2 activation

S. aureus 2 E.
coli 2

RhB 2 TA 2

NOR 2 CAP 2

[209]

Pinewood 600 ◦C Ag0-PBC
PFRs •OH •

O2
−

UV-light-promoted
excitation of the

electron-hole pairs and,
subsequently, the

production of ROS
Enhanced ROS generation

by PFRs

MB 2 E. coli 2 [210]

Rice straw 400 ◦C, 700 ◦C
120 min Nano-BC PFRs •OH •

O2
−

Oxidation and damage by
ROS eDNA 2 [211]
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Table 9. Cont.

Biomass Pyrolysis
◦C/Time BC-Name Active Radicals Radical Mechanisms

Application 1

Degraded
Compound 2

Refs.

Rice straw 500 ◦C RS-BC Quinones
Phenols PFRs

By electron acceptor
capacity (EAC)

By electron donor capacity
(EDC)

⇆ Redox
property 1

Electronic
storage 1

[212]

In the table, the voices with 1 are applications, while those with 2 are degraded compounds; BCs = biochar;
MBCs = modified-biochar; BDOMs = biochar-derived dissolved organic matters; PMS = peroxy-mono-sulfate;
BPA = bisphenol A; PS = persulfate; TDWW = textile dyeing wastewater; TC = tetracycline; (TDWW); SBC
= sawdust biochar; AO-7 = acid orange 7; RhB = rhodamine B; DOM = dissolved organic matter in BC;
CIP = ciprofloxacin; SMX = sulfamethoxazole; PDS = peroxydisulfate; CA = clofibric acid; WW = wastew-
ater; ⇆ = reversible; PNP = p-nitrophenol (water pollutant); SMT = sulfamethazine; SDZ = sulfadiazine;
OCPFRs = oxygen-centered environmental persistent free radicals; CCPFRs-O = carbon-centered environmen-
tal persistent free radicals with oxygen atoms; * photocatalytic; CCPFRs = carbon-centered environmental
persistent free radicals; BiPB = bismuth-containing BC; PFX = pefloxacin; OTC = oxytetracycline; CTC = chlorote-
tracycline; OFX = ofloxacin; AZT = atrazine; TMP = trimethoprim; AOPs = advanced oxidation processes;
ACT = acetaminophen; PFOA = perfluorooctanoic acid; 3 degradation efficiency in presence of ascorbic
acid (AA); 2,4-DCP = 2,4-dichlorophenol; CAP = chloramphenicol; FF = florfenicol; TAP = thiamphenicol;
CV = crystal violet dye; MB = methylene blue; MNZ = metronidazole; DOX = doxorubicin; xxx = refers to the
temperature of pyrolysis process; NPA = N-phosphono methyl iminodiacetic acid (organophosphorus pesticide
(OP); NOR = norfloxacin; E1 = estrone; E2 = 17-estradiol; E3 = estriol; PPCPs = pharmaceuticals and personal care
products; TPhP = triphenyl phosphate; ENR = enrofloxacin; FLE = fleroxacin (FLE); $ HTC = hydro-thermal car-
bonization; # HTP = high temperature pyrolysis; PolyS = polystyrene; OFGs = oxygen-containing functional group;
S-HPBC = S-doped hydrothermal + pyrocarbon BC; S-HBC = S-doped hydrochar, S-PBC = S-doped pyrocarbon.

Figure 11 shows the relative abundances of the types of PFR applications concerning
the 72 case studies considered here.
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As for the mechanisms, many publications regarded the activation, which was some-
times photocatalytic, of PS, PMS, and PDS by BC. The employed BC was derived from
different feedstock biomasses (bagasse powder, poplar and pine sawdust, cellulose, lignin,
blue algae, waste straw, and other sources, as reported in Table 9), not doped, or doped
with nitrogen atoms or different metals including Fe, Mn, Co, Ni, Zn. In these processes,
the electron transfer promoted by metals and/or PFRs of a diverse nature, based on the
pyrolysis conditions, generated ROS such as SO4•−, •OH, •O2

−, •O2H and non-radical
species (1O2), which carried out the oxidative degradation of different organic xenobi-
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otics, including drugs, dyes, antibiotics, and hormones, as well as phenols or aromatic
derivatives. Many other publications reported the use of BC to activate or photochemically
activate O2 or H2O2 (Fenton-like systems) via metal and/or PFRs-mediated single-electron
transfer. The generated ROS (•OH, •O2

−, •O2H) and oxygen non-radical species (1O2)
successfully oxidized several organic pollutants, degraded hormones, and eDNA and,
in some cases, showed antibacterial effects against E. coli and S. aureus. Moreover, the
capacity of BC to transfer electrons via transitional metals or PFRs was used to oxidize As
(III) to As (V) or reduce Cr (VI) to Cr (III), thus resulting in helping to remove hazardous
inorganic contaminants from industrial wastewater. A notable recent review reported on
the efficiency of BC/layered double hydroxide composites as catalysts for the treatment
of organic wastewater by advanced oxidation processes [213]. Several studies reported in
this paper by Liu et al. demonstrated that degradation processes were based on radical
reactions triggered by BC-associated PFRs [213].

3.2.2. BC-Associated PFRs Shadows: Cytotoxicity and Biotoxicity

Despite the plethora of possible beneficial applications of BC, PFRs, as well as other
free radicals and the toxic substances that compose BC, such as heavy metals, PAHs, diox-
ins, and perfluorochemicals (PFCs), are released into the environment during the pyrolysis
process, thus representing a potential risk to the environment and humans [214]. Addition-
ally, as well as other contaminants, the possible carbon allotropes formed during pyrolysis
are severe contaminants in air, water, and soil [215]. Black carbon, carbon black (CB),
carbon nanotubes, graphene, quantum dots, and fullerenes can possess distinct toxicity
that depends on many factors, including the type of allotrope, particle size, form, structural
defects, coating molecules, and grade of functionalization [215]. Understanding the toxicity
of carbon nanomaterials and nanoproducts that are possibly present in BC is essential for
human and environmental health, safety, and public acceptance. In this regard, recent stud-
ies have focused their attention on the adverse effects of BC due to its particle size and the
various interactions with the environment that could occur [216,217]. Upon its application,
BC may produce harmful environmental effects due to aging by oxidative or biological
processes, leading to changes in its properties [218,219]. Additionally, higher toxicity has
been reported for BC with micro- or nano-dimensioned particles. It has been reported
that the presence of micro-BC (MBC) or nano-BC (NBC) can promote the release of heavy
metal ions into the medium when applied to soil [214]. Kim et al. (2018) observed that BC
particles with a particle size of less than 0.45 µm could increase the release and mobility of
As in soil [220]. Regarding the biotoxicity of MBC/NBC, it has been previously reported
that particle-induced oxidative stress is a crucial mechanism of MBC/NBC cytotoxicity,
which increases as the particle size decreases. Also, the PFR concentration on the surface of
particles with an aerodynamic diameter of less than 1 µm is the highest [139,221]. While
several reviews and studies exist on the production and modification of BC, the reaction
mechanisms, and the beneficial active role of BC in environmental remediation, the adverse
effects and potential risks of BC have only recently been evidenced. The comprehensive
phenomena and mechanisms involved in BC toxicity still require elucidation, especially
in environmental media different from soil, including water and the atmosphere. It is
imperative to systematically study and discuss the possible adverse environmental effects
of BC application concerning various media, including water and the atmosphere, by
determining the corresponding occurrence, detection, assessment, and avoidance measures.
Worryingly, the current knowledge concerning the possible adverse effects on the environ-
ment and biota deriving from the extensive application of PFRs originating in BC is even
more limited [222]. Although they are emerging as contaminants of increasing concern,
their formation, fate, toxicity, and health risks are poorly known [222]. Thermal treatment,
a common remediation technique to clean industrial soils, induces the formation of PFRs;
this could paradoxically increase soil toxicity, which is contrary to the original remediation
objective. For example, there is still little knowledge on the formation and toxicity of
PFRs in soils contaminated by polycyclic aromatic hydrocarbons (PAHs) [223]. BC-derived
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PFRs, as well as those present in the environment and deriving from combustion and soil
restoration, the burning of coal, wood, straw, cigarettes, oil, and other fuels, and from the
restoration of organic contaminated soil, can enter the human body mainly through three
pathways including the respiratory tract, from skin exposure, and via ingestion [149]. PFRs
are not toxic to living beings and the environment, but they can stimulate the formation of
other harmful substances and free radicals, including various types of ROS, when in the
environment or in vivo [223]. As is well documented, ROS can interfere with the normal
redox and metabolic processes, thus causing oxidative stress in biota [224]. Additionally, it
has been reported that exposure to PFRs may induce cell degeneration or apoptosis and
may affect the normal functions of the heart or lungs of humans [223]. So far, cytotoxicity
and biotoxicity are the two categories of toxicity reported as attributable to PFRs (Table 10).

Table 10. Potential toxic hazards caused by PFR exposure.

Target Danger Material Source Refs.

Cells

⇑ Lungs’ T (Th1, Th2, Th17) cells PM, DCB230, MCP230 [225,226]

⇓ P450 activity PM, MCP230 [227]

Cardiomyocytes’ apoptosis DCB230 [228]

⇓ Survival of gastric epithelial cells BaP–Na montmorillonite [229]

Loss of normal morphology of pulmonary
epithelial cells DCB230 [230]

Mitochondrial depolarization DCB230 [226]

Changes in VEGF ZnO/MCB [231]

Enzymes
Proteins
Genes

Altered expression activity of Cyp1a,
Cyp2b, Cyp2e1, Cyp2d2, Cyp3a and other

genes
DCB230, MCP230 [225]

⇑ Expression levels of peroxiredoxin-6
Cofilin 1, annexin A8 MCP230, CGUFP, ZnO/MCB [226]

⇓ of GSH, GPx, SOD ZnO/MCB [232]

Organs and tissues

Altered normal renal hemodynamics and
urodynamics N.R. [233]

Liver damage N.R. [234]

Impairment of left ventricular function DCB230 [235]

Airway hyperresponsiveness
Lung inflammation MCP230 [236]

Individuals

Abnormalities in zebrafish DCB230 [237]

⇓ Growth and reproduction of luminescent
bacteria PM [238]

Altered behavior of Caenorhabditis elegans Biochar [239]

⇓ Energy consumption MCP230 [240]

Disease

⇑ Severity of the flu DCB230 [241]

Asthma MCP230 [226]

Cardiovascular disease and dysfunction DCB230 [228]

Other damage

Oxidative stress DCB230, ZnO/MCB [232]

DNA damage BaP [46]

Lipid peroxidation MCP230 [242]

⇑ Improved, increased; ⇓ decreased, inhibited; PM = particulate matter; DCP230 = 1,2-dichlorobenzene at 230 ◦C;
MCP230 = mono-chlorophenol at 230 ◦C; MCB = mono-chlorobenzene; CGUFP = combustion generated ultrafine
particle; N.R. = not reported; GSH = glutathione; GPx = glutathione peroxidase; SOD = superoxide dismutase;
VEGF = vascular endothelial growth factor.
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Usually, toxicity tests are carried out in research laboratories using both environmental
samples and lab-prepared PFRs, such as those generated by MCP230 (a mixture of CuO
and chlorophenol at 230 ◦C), DCB230 (a mixture of CuO, 0.2 µm amorphous silica and
1,2-dichlorobenzene at 230 ◦C), CGUFP (combustion-generated ultrafine particle) or other
mixtures of transitional metals and substituted aromatic compounds. For cytotoxicity
experiments, cultured cells extracted from the bronchial epithelium and rats are used,
while biotoxicity essays are carried out on plants, fishes, rabbits, and worms. Generally,
it was observed that exposure to PFRs causes oxidative stress. More specifically, the
cytotoxicity tests evidenced cell variation with decreased numbers and activity, a disparity
in protein expression, and DNA damage. Biotoxicity experiments revealed abnormalities in
development and behavior, disease, and organ and tissue damage. Although BC can serve
as an environmentally sustainable soil amendment material due to its ability to enhance
several chemical properties of soil, such as pH, electrical conductivity, CEC, and organic
carbon content, thus contributing to the overall improvement of nutrient retention in the
soil, BC amendments with high concentrations of PFRs negatively affect crop growth.

Additionally, it has been found that PFRs used in aquicultural solutions inhibited the
germination rate of different crops by ROS induction [149]. The oxidative stress brought
about by the production of ROS can also damage the plasma membrane of the root system
and hinder plant root growth. Moreover, PFRs induced neurotoxicity in Cryptobacterium
hidradenoma, transforming it into a neurotoxin for soil organisms and thereby posing a
threat to their survival.

4. Future Challenges and Risk Prevention Strategies

This review has evidenced that BC and mainly the PFRs generated during the pyrolysis
processes performed to produce it could be double-edged weapons. BC is reported to be
an eco-friendly and low-cost black gold with many beneficial properties, including the
capability to remove organic and inorganic pollutants from water by adsorption processes
and/or through its PFRs. However, several studies have reported that PFRs can be very
dangerous to the environment and humans through a ROS-dependent mechanism. In
addition to being produced by various common xenobiotics, PFRs can easily be converted
into secondary pollutants, causing further biotoxicity. The still too-little-studied transport
and transformation of PFRs in the environment can also affect the behavior of other
substances, leading to potential environmental hazards that are not yet fully understood.
Therefore, further exploration of the ecological impact of PFRs and the development of
prevention and control measures are necessary. In this regard, although some progress
has been made in terms of environmental risk and biotoxicity studies concerning PFRs,
research is still in the initial stages, and there is an urgent need for systematic and in-depth
studies on the production and transport of PFRs. A more in-depth understanding of the
influence of environmental conditions on their occurrence is needed to control the external
factors for reducing the negative output of PFRs and promoting their degradative action
on xenobiotics. More rational knowledge about their toxicity mechanisms is necessary
to have more precise toxicological equivalence regulation. A better strategy to prevent
the risks associated with PFRs could be to avoid exposure to them by reducing contact
with combustion sources, such as vehicle exhaust and cigarette smoke. Proper air filtration
systems removing PFRs from indoor air and wearing protective masks or respirators
could lower the possibility of contact with PFRs in outdoor environments. Additionally,
treatments for limiting the adverse health effects associated with PFR exposure, such as
using antioxidants, which can neutralize ROS, could be another strategy to protect humans
from the adverse impacts of PFR exposure.

5. Conclusions and Future Perspectives

The pivotal role of BC-related PFRs in BC catalytic efficiency in water and soil pollution
remediation has been reviewed in this paper. The main mechanisms by which PFRs can
originate and the main methods to detect them on BC have been discussed. The key roles
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of feedstock biomasses and pyrolysis conditions in the formation of PFRs has also been
reported. Several recent case studies concerning the critical role of PFRs in the catalytic
oxidative degradation by BC of organic pollutants and in the removal of Cr/As and other
metal ions in aqueous phase have been reported and discussed. It has been evidenced
that for organic pollutants remediation, PFRs act as activator agents of oxidant substrates,
which are subsequently involved in the degradation process. Otherwise, for metal ion
removal, the PFRs on BC act as electron transfers for the adsorption and concomitant
reduction/oxidation of metals by BC. Finally, PFRs on BC could also help mediate the
recycling of Fe3+/Fe2+ in Fenton-like processes to enhance the efficiency of BC in pollutant
removal. However, many aspects remain unclear concerning PFRs, including the influence
of BC size on the evolution of PFRs, the exact relationship between the reactivity of BC
and its size, and the overall roles and relative significance of PFRs, quinone moieties,
and the carbon structure of BC in the activation of oxidizing agents and in the redox
transformation of inorganic contaminants. Furthermore, while several studies about the
laboratory applications of BC for wastewater remediation have been developed, future
studies should concentrate on the up-scaled utilization of BC for the treatment of different
real wastewaters, such as industrial wastewater and municipal wastewater. To this end,
efforts are needed to design proper reactors and to develop methods for the large-scale
production of the desired BC. Finally, to better contribute to the circular economy, the
reutilization of spent BC should be given serious consideration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12040245/s1, Table S1. Main sources and general application
of BCs; Table S2. Fast and slow pyrolysis details; Table S3. Techniques typically used to characterize
BCs in terms of their physicochemical, surface, and structural characterization; Table S4. Properties
of BCs produced from various feedstocks at various production temperatures.
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