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Stopper, H.; Cabêda, J.; et al. The

Comet Assay as a Tool in Human

Biomonitoring Studies of

Environmental and Occupational

Exposure to Chemicals—A Systematic

Scoping Review. Toxics 2024, 12, 270.

https://doi.org/10.3390/

toxics12040270

Academic Editor: Michael Petriello

Received: 27 February 2024

Revised: 31 March 2024

Accepted: 2 April 2024

Published: 5 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Review

The Comet Assay as a Tool in Human Biomonitoring Studies of
Environmental and Occupational Exposure to Chemicals—A
Systematic Scoping Review
Carina Ladeira 1,2,* , Peter Møller 3 , Lisa Giovannelli 4 , Goran Gajski 5 , Anja Haveric 6 ,
Ezgi Eyluel Bankoglu 7 , Amaya Azqueta 8 , Marko Gerić 5 , Helga Stopper 7 , José Cabêda 9 ,
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Abstract: Biomonitoring of human populations exposed to chemical substances that can act as
potential mutagens or carcinogens, may enable the detection of damage and early disease prevention.
In recent years, the comet assay has become an important tool for assessing DNA damage, both in
environmental and occupational exposure contexts. To evidence the role of the comet assay in human
biomonitoring, we have analysed original research studies of environmental or occupational exposure
that used the comet assay in their assessments, following the PRISMA-ScR method (preferred
reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of
chemicals were designated according to a broad classification, and the results obtained from over
300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs,
n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values
of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our
systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA
damage in human biomonitoring studies.

Keywords: comet assay; human biomonitoring; air pollution; anaesthetics; antineoplastic drugs;
heavy metals; pesticides; solvents; exposure

1. Introduction

Humans are in contact with more than 160 million chemicals, based on the World
Health Organization (WHO) and United Nations (UN) compendium, while 6000 of these
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are responsible for 99% of the market by volume [1]. Even those chemicals that are carefully
manufactured for safe use may have unwanted harmful by-products, generating potential
health risks. It is important to conduct studies on environmental and occupational exposure
to chemical substances and contaminants, considering the presence and severity of the
adverse effects on human health [2]. Toxicological and epidemiological studies have col-
lected biological markers (biomarkers) to evaluate the relationships between environmental
or occupational chemical exposure and adverse health effects [3]. The development of
molecular epidemiology introduced the concept of biomarkers of effect, strengthening the
evidence of causality between chemical exposure and adverse effects, especially at an early
stage before disease onset [4], and playing a pivotal role in disease prevention.

Worldwide, about 19 million people are diagnosed with some type of cancer annually,
and the cancer mortality is almost 10 million [5], causing a significant financial and social
burden, especially in ageing populations [6]. Since the induction of DNA damage is one
of the most important steps in carcinogenesis, the biomonitoring of human populations
exposed to genotoxic substances for DNA damage is potentially a useful preventive tool,
as it can detect early events that can be precursors of carcinogenesis [7].

Cytogenetic methods have been extensively used for the biological monitoring of
populations exposed to mutagenic and carcinogenic agents. The comet assay is widely
employed in human biomonitoring for assessing DNA damage and also has applications in
genotoxicity testing, environmental toxicology, and fundamental research on DNA damage
and repair [7–12]. A summarised overview of the history of the assay was reviewed by
Jiang et al., 2023 [13]. The alkaline comet assay identifies different types of damage result-
ing from recent exposure that are potentially reparable, such as single- and double-strand
DNA breaks, alkali-labile lesions converted to strand breaks under alkaline conditions, and
single-strand breaks associated with incomplete excision repair [14,15]; it is one of the most
used methods for DNA damage biomonitoring [16]. Most human studies have focused
on blood cells because they are easy to obtain, and—as they circulate in the body—the
metabolic state of these cells can reflect the overall extent of body exposure [17]. How-
ever, other cell types have also been employed, such as buccal, nasal, lens epithelial, and
germ cells [18,19].

The comet assay is a sensitive, rapid, versatile, and low-cost technique for quantifying
and analysing DNA damage and repair at the level of individual cells [20,21], requiring
small numbers of cells per sample and a relatively short time to complete a study [8].
This has made the comet assay more popular than other genotoxicity tests, such as sis-
ter chromatid exchanges, micronucleus assays, and chromosomal aberrations [13]. Thus,
the comet assay is a method of choice for the measurement of DNA damage in environ-
mental and occupational exposure studies for the assessment of the effects of chemical
substances—either as single compounds or as mixtures [15]. Responding to the need for
standardised protocols, a compendium of consensus protocols applying the comet assay to
a variety of cells [14], as well as recommendations for describing comet assay procedures
and results [22], have recently been published.

There are already some systematic reviews and meta-analyses focused on the use of
the comet assay in studies of human exposure to particular classes of chemicals, such as
antineoplastic drugs [23], pesticides [24], and air pollution [25], and a review published in
2009 looks at studies that employed the comet assay in the biomonitoring of environmental
and occupational exposures, including radiation [18]. Despite its popularity and these
systematic reviews, there is still a lack of literature and no comprehensive overview of the
role of DNA damage measurement as a reliable biomarker for human monitoring programs,
including different types of exposures.

This broad scoping review aims to systematically analyse evidence on the use of the
comet assay in human biomonitoring studies assessing genotoxic effects from environmen-
tal or occupational exposures. Specifically, the work focuses on air pollutants, anaesthetics,
antineoplastic drugs, heavy metals, pesticides, and solvents. The presentation of results,
organised according to these groups of chemicals, exclusively follows alphabetical order
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criteria without considering the complexity of the chemical substances in each group. The
reporting of “essential” information relating to the comet assay descriptors (e.g., %DNA in
tail, tail length, tail moment, or visual score), the number of comets analysed per sample,
and how the overall level of DNA migration is expressed (e.g., median or mean of comet
scores), is necessary for scoring and data analysis of the comet assay [13,26]. It has been
shown that 20–30% of published studies with comet assay results use visual scores, while
70–80% are the results from image analysis systems; tail length and tail moment used to be
the most popular comet descriptors in the early 00s, but % tail DNA has become the most
popular since 2010. Regarding the olive tail moment descriptor of DNA migration, it is
considered to be particularly useful in describing heterogeneity within a cell population,
as it can pick up variations in the DNA distribution within the tail [27], and it was very
often used in the studies gathered in this scoping systematic review. More information
regarding the various parameters that have appeared in scientific publications can be found
in Kumaravel et al., 2009 [28].

2. Materials and Methods

The systematic scoping review was performed in accordance with the Jonna Briggs
Institute and Cochrane Collaboration recommendations [29–31] and is reported fol-
lowing the PRISMA-ScR (preferred reporting items for systematic reviews and meta-
analyses—extension for scoping reviews) checklists [32,33]. The protocol has been regis-
tered in PROSPERO—CRD42023402351. At least two authors independently conducted
all steps of the study selection and data extraction. Divergences were resolved by
discussion in consensus working group meetings.

2.1. Search Strategy and Eligibility Criteria

A comprehensive literature search was conducted to identify relevant studies in
PubMed and Web of Science (last updated June 2023) without language limits. Searches
were limited by the year of publication [from 2000, after the introduction of ‘Comet Assay’
as a Medical Subject Headings (MeSH) term] and to human studies. A manual search in
the reference lists of the included studies was also performed, and other search engines
(Google and Google Scholar) were employed.

Five distinct search strategies were developed and applied (according to the group
of chemical substances under evaluation) using descriptors related to human biomonitor-
ing and comet assay, and air pollution, anaesthetics, antineoplastic drugs, heavy metals,
pesticides or solvents, combined with the Boolean operators AND and OR as follows:

• Search string for air pollution: Human Biomonitoring OR monitoring AND comet
assay AND (air pollution OR diesel exhaust OR dust OR ozone OR particulate matter
OR ultrafine particles OR formaldehyde OR hydrocarbon).

• Search string for anaesthetics: Human Biomonitoring OR monitoring AND comet
assay AND (anaesthetic OR anaesthesia OR N2O OR nitrous oxide OR isoflurane
OR halothane).

• Search string for antineoplastic drugs: Human Biomonitoring OR monitoring AND
Comet assay AND (antineoplastic drugs OR cytostatic OR cytotoxic OR cyclophos-
phamide OR paclitaxel OR 5-Fluororacil).

• Search string for heavy metals: Human Biomonitoring OR monitoring AND Comet
assay AND (lead OR mercury OR Cadmium OR arsenic OR heavy metals).

• Search string for pesticides: Human biomonitoring OR monitoring AND comet assay
AND pesticides.

• Search string for solvents: Human Biomonitoring OR monitoring AND Comet assay
AND (styrene OR benzene OR toluene OR xylene OR chloroform OR tetrachloro- or
trichloroethylene OR perchloroethylene OR halogenated solvents OR solvents).

Registers retrieved from the databases (PubMed and Web of Science) were transferred
into Mendeley (reference manager) or Rayyan, where duplicate records were removed.
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The reviewers independently performed the screening (title/abstract reading), full-text
evaluation, and data extraction using Microsoft Excel sheets.

This systematic scoping review included articles meeting the following criteria
(PECOS acronym):

• Population: studies evaluating human subjects with environmental or occupational
exposure to chemical substances;

• Exposure: studies assessing the environmental or occupational effects of exposure
to the chemical substances of interest (i.e., air pollution, anaesthetics gases, antineo-
plastic drugs, heavy metals, pesticides, or solvents) by means of the comet assay in
biological samples;

• Comparator: non-exposed human subjects or pre-post comparative data on exposure
(in case of a single-arm study);

• Outcomes: comet assay measurements such as the tail moment, tail length (µm), %
tail intensity, olive tail moment, visual scoring/DNA damage index parameters, and
other parameters considered;

• Study design: interventional studies (controlled trials, experimental studies) or obser-
vational comparative studies, including case-control, cohort, cross-sectional studies,
and quasi-experimental studies (pre–post-test).

• Studies without data for extraction (unavailable information or an unpublished paper),
conference abstracts, other study designs (reviews, case reports, letters, commentaries,
and protocols), non-human studies (in vitro and in vivo), in vitro studies on primary
human cells or cell lines, and those in non-English languages were excluded.

2.2. Data Extraction and Synthesis

A standard form (Microsoft Excel, Redmond, WA, USA) was developed by the coordi-
nator (Carina Ladeira) and validated by all team members (co-authors) to extract data on
the following: (1) authors, (2) year of publication, (3) main chemical substances in exposure,
(4) country, (5) exposure assessment or biomarkers of exposure, (6) population characteris-
tics, and (7) DNA damage measured by the comet assay. The studies were organised by the
type of exposure—occupational or environmental—in each section whenever necessary.
Data only available in figures were extracted, whenever possible, by a single team member.

Individual results of the studies were summarised as reported in the article, including
the type of measures and units (narrative synthesis) and were sorted into one of the six
categories according to the type of chemical substances (i.e., air pollution, anaesthetics,
antineoplastic drugs, heavy metals, pesticides, or solvents) to properly account for their
special features; flow diagrams were also presented independently.

To facilitate the comparison among studies of each group of substances, as well as ease
the data interpretation and writing of the narrative text, the authors established a minimum
set of methodological items that should be reported from the studies considered for analysis.
In decreasing order of importance, these are (i) the existence of measurements of external
exposure or markers of internal exposure; (ii) the use of additional types of biomarkers
to add value to the data interpretation; and (iii) grouping subjects based on the exposure
categories (e.g., work categories in occupational studies or regions in environmental studies)
or studies without a control group.

3. Results

This section is divided by subheadings. It provides a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions
that can be drawn.

This systematic scoping review included a total of 334 studies (128 for air pollution,
15 for anaesthetics, 19 for antineoplastic drugs, 57 for heavy metals, 65 for pesticides, and
50 for solvents) for data synthesis. The groups are arranged in alphabetical order and are
described below according to the type of chemical after a brief introduction.
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3.1. Air Pollution

Air pollution is currently one of the major issues in environmental and public health,
recognised by leading world authorities as a risk factor associated with adverse health
outcomes [34]. Both outdoor and indoor air pollution are categorised by the International
Agency for Research on Cancer (IARC) as carcinogenic to humans (Group 1). Exposure to
outdoor air pollutants may occur in both urban and rural areas, with the most common
sources being the emissions caused by combustion processes from motor vehicles, solid
fuel burning, and industry [35]. The most common air pollutants present in ambient air
include particulate matter (PM) of different sizes, ozone (O3), nitrogen dioxide (NO2),
carbon monoxide (CO), and sulphur dioxide (SO2). Indoor air pollution can be linked to
households; the release of gases or particles into the air is the primary cause of indoor air
quality problems [36,37]. Regarding indoor air, one major concern is biomass smoke since
it contains a number of health-damaging chemicals, including PM of different sizes, CO,
oxides of nitrogen, formaldehyde, acrolein, benzene, toluene, styrene, 1,3-butadiene, and
polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene [38].

Workplace exposure to airborne particulates (dusts) and chemicals (including anaes-
thetic gases and solvents) is typically not considered to be air pollution. However, certain
professions with vehicle-related exhausts have been used in studies on both gaseous and
particulate components in outdoor air pollution.

Regarding specifically the search string on air pollution, it was challenging to identify
studies on air pollution since the term applies to a broad spectrum of exposure situations.
Thus, we have used a search string that captured a large number of papers (approxi-
mately 2500), although many of these were excluded for further review, as is shown in
Figure 1. A number of papers identified in the search on air pollution were also included in
the heavy metals and solvents sections due to the variety of chemicals that were studied.
In addition, we have only included studies of involuntary exposure to air pollution (thus,
environmental tobacco smoke was considered involuntary exposure, whereas smoking
was voluntary exposure).

In our systematic scoping review, 257 articles were assessed in full-text after duplicate
removal and initial screening, in which 129 were excluded, mostly because they were
in vitro studies (n = 66), complementary papers or protocols (n = 25), without numerical
comet assay data (n = 16), or not in human samples (n = 10). A total of 128 studies were
included in the qualitative analysis, as summarised in Figure 1 and Table 1.
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Table 1. Summary of findings from the included studies on air pollution.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Occupational exposure

Andersen 2018 PAH Denmark Urinary 1-OHP 22 professional firefighters
• DNA strand breaks: before

(0.12 ± 0.04), after
(0.13 ± 0.04); non-sig.

[39]
10.1002/em.22193

Andersen 2021 PAH fluorene Denmark

Exposure levels to PAH
(silicone bands, skin wipes)

Exposure levels to PAHs
and organophosphate

esters (OPEs)
Urinary excretion of PAH
metabolites (OH-PAHs).

116 air force personnel
(79 exposed, 37 controls)

• DNA strand breaks (number of
lesions/106 bp): exposed
(0.09 ± 0.04), controls
(0.10 ± 0.04); non-sig.

[40]
10.1038/s41598-

021-97382-5

Al Zabadi ** 2011 PAH, VOC France Air concentration PAH
and benzene

64 sewage workers
(34 exposed, 30 unexposed)

• % tail DNA: exposed
(8.07 ± 3.12), unexposed
(2.70 ± 0.58); sig.

[41]
10.1186/1476-069X-

10-23

Aydin 2013 Formaldehyde Turkey Passive air samplers
(TWA8h)

92 medium-density
fibreboard plants

(46 exposed, 46 unexposed)

• % tail DNA: exposed
(4.25 ± 0.29), unexposed
(5.28 ± 0.22); sig.

[42]
10.1007/s00204-

012-0961-9

Bacaksiz 2013
PAH and

heterocyclic
compounds

Turkey --
60

(30 exposed asphalt workers,
30 controls)

• % tail DNA: exposed
(24.34 ± 2.72), controls
(20.04 ± 2.75); sig.

[43]
10.1080/09603123.

2013.773586

Bagryants 2010 PAH, VOC Czech Republic

Personal samplers,
quantitative analysis of
PAHs, radial diffusive

samplers for VOC
exposure, cotinine

120
(50 bus drivers, 20 garagemen,

50 controls)

• % tail DNA: bus drivers
(1.60 ± 0.90), garagemen
(2.42 ± 2.19), controls
(1.31 ± 0.88); sig.

[44]
10.1016/j.toxlet.

2010.08.007

Becit 2021 Marble dust Turkey Air samples and particle
analysis

89
(48 exposed workers in marble
processing plants, 41 controls)

• % tail DNA: exposed
(1.59 ± 0.69), controls
(0.95 ± 0.29); sig.

[45]
10.1016/j.envres.

2021.111209
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Barth 2016 Air pollution
(outdoor) Brazil Urinary 1-hydroxy-pyrene

(1-OHP)
82

(45 taxi drivers, 37 controls)

• % tail DNA: controls
(8.28 ± 0.21), exposed
(11.58 ± 0.35); sig.

• Comet tail moment: controls
(1.83 ± 0.20), exposed
(2.64 ± 0.17); sig.

[46]
10.1007/s11356-

016-7772-0

Balamur
likrishnan 2014 Silica dust

exposure India --

85
(50 exposed subjects: Group I
≤ 40 years and ≤13 years

working duration
(23 individuals)

Group II above 40 years and
above 13 years (27 individuals)
working duration, 35 controls;

Group I (17), Group II (18))

• Total damaged cells: exposed:
group I (50.17 ± 14.44), group II
(83.74 ± 16.20), controls: group I
(22.52 ± 13.49), group II
(48.55 ± 17.08); sig.

[47]
10.1007/s00477-

013-0843-6

Bruschweiler 2016 Wood dust Switzerland Wood dust, PAH, and
B(a)P exposure

nonsmoking wood workers
(n = 31, furniture and

construction workers, natural
wood, 12; wooden board, 19)

and controls (n = 19)

• Comet score (visual
scoring)—median (25–75th):
natural wood (11.3; 8.8–26.3),
wooden board (61.5; 49.5–85),
controls (11.0; 8.0–18.0); sig.

[48]
10.4137/EHI.S38344

Carere ** 2002 Air pollution Italy Benzene exposure
190

(133 traffic policemen, 57 office
workers as controls)

• Comet tail moment: exposed
(0.46 ± 0.46), controls
(0.36 ± 0.32); non-sig.

[49]
10.1016/s1383-

5718(02)00108-0

Cavallo 2005 PAH Italy Personal air sampling,
urinary OH-pyrene

41
(19 paving workers,

22 controls)

• Comet tail moment: control
(19.5 ± 6.0), exposed
(22.7 ± 7.29); sig.

[50]
10.1093/annhyg/

mei072
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Cavallo 2006 PAH Italy Urinary 1-hydroxy-pyrene
(1-OHP)

71
(41 exposed airport personnel
(group A, 24 persons, group B,

17 persons; 31 controls))

• Comet tail moment (buccal
cells): exposed (118.87),
unexposed (68.20); sig.

• Comet tail moment
(lymphocytes): exposed (43.01),
unexposed (36.01); sig. only for
controls and exposed subgroups
(A and B)

[51]
10.1016/

j.tox.2006.03.003

Cavallo 2009
PAHs,

antineoplastic
drugs

Italy
Exposure assessment

studies cited (reported in
previous papers)

163
(30 workers exposed to

antineoplastic drugs,
57 workers exposed to PAHs,

76 controls)

• % Comet (lymphocytes):
exposed (18.11), unexposed
(11.24); sig.

• Comet tail (lymphocytes):
airport workers (21.50), controls
(17.43); sig.; and buccal cells of
airport workers (59.43), controls
(34.79); sig. exposed (21.84),
controls (16.72); sig. for
PAH exposure

[16]
10.1002/em.20501

Cavallo 2022 Graphene Italy

Particle number
concentration (PNC,

particles/
cm3) from 10 nm to

1000 nm;
airborne particle matter
from 250 nm to 10 mm

6 graphene workers and
11 controls

• % tail DNA: controls
(11.20 ± 6.93), workers first
biomonitoring (9.70 ± 2.88) vs.
workers follow-up (14.00 ± 6.43);
sig.

• Comet tail moment: controls
(3.80 ± 2.28), workers first
biomonitoring (3.19 ± 2.03) vs.
workers follow-up (3.39 ± 1.84)

• Comet tail length: controls
(20.68 ± 13.75), workers first
biomonitoring (20.42 ± 5.95) vs.
workers follow-up (18.90 ± 7.08)

[52]
10.1080/17435390.

2022.2149359
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Cebulska-
Wasilewska

*
2005 PAH Czech Republic PM2.5 and PAH analyses 78

(40 policemen, 38 controls)

• % tail DNA: controls (40) winter
(2.64 ± 1.37); (38) summer
(2.62 ± 1.04); policemen (43)
winter (2.72 ± 1.70); summer
(2.91 ± 1.05); non-sig.

[53]
10.1016/j.mrgentox.

2005.08.013

Cebulska-
Wasilewska

*
2007 PAH Slovakia/Bulgaria PM2.5 and PAH analyses 174 policemen

(99 exposed, 75 controls)

• % tail DNA: controls
(4.06 ± 1.40), exposed
(3.86 ± 1.28); non-sig.

[54]
10.1016/j.mrfmmm.

2007.03.004

Cebulska-
Wasilewska

*
2007* PAH Slovakia/Bulgaria Environmental PAHs

259
(144 exposed, who were
municipal policemen or

bus drivers; 115 controls)

• % tail DNA: exposed (3.7 ± 1.3),
controls 3.8 ± 1.5; non-sig.

[55]
10.1016/j.mrfmmm.

2007.03.005

Ceppi 2023 PAH and glass
fibres Slovakia

Air sampling for the PAH
analysis, air fibre sampling,

personal exposure
monitoring for
PAH, cotinine

116
(76 exposed shop floor
workers, 34 controls)

• DNA strand breaks
(mean ± SEM): exposed (77 ± 4),
controls (61 ± 5); sig.

[56]
10.1016/j.mrgentox.

2022.503572

Chen 2006
PAH

(coke-oven
exposure)

China PAH analysis
363

(240 coke-oven workers
and 123 controls, all males)

• Olive tail moment: control
(0.58 ± 0.92), exposed
(1.23 ± 1.12); sig.

[57]
10.1158/1055-

9965.EPI-06-0291

Chen 2010
PCDD,

metals, and
silica particles,

Taiwan Air samples analysis,
metal analysis

78
(37 workers were recruited
from a bottom ash recovery

plant and
41 workers from fly ash

treatment plants)

• Comet tail moment: bottom ash
(2.64 ± 0.47); fly ash
(7.55 ± 6.96); sig.

[58]
10.1016/j.jhazmat.

2009.09.010

Cheng 2009
PAH

(coke-oven
exposure)

China Urinary 1-hydroxypyrene
(1-OHP)

158
(94 coke-oven workers

and 64 controls)

• Baseline DNA damage: exposed
(0.86; 0.77–0.97), controls
(0.43; 0.35–0.52); sig.

[59]
10.1158/1055-

9965.EPI-08-0763
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Chia 2008
Zinc and
copper

smelting work
Taiwan

8-
hydroxydeoxyguanosine

(8-OH-dG) in urine
(ELISA),

lipid peroxidation (MDA
in plasma)

67
(39 smelting workers,

28 non-exposed)

• Comet tail moment: exposed
(0.33 ± 0.09), non-exposed
(0.29 ± 0.1); non-sig.

[60]
10.2486/

indhealth.46.174

Costa § 2008 Formaldehyde Portugal
Air samplers (TWA8h):
ranging from 1.50 and

4.43 ppm

60
(30 pathology anatomy
workers, 30 controls)

• Comet tail length: control
(41.85 ± 1.97), exposed
(60.00 ± 2.31); sig.

[61]
10.1016/

j.tox.2008.07.056

Costa § 2011 Formaldehyde Portugal Air sampling and FA
analysis

98
(48 pathology anatomy

workers, 50 non-exposed)

• % tail DNA—mean ± SE,
(range): controls 8.01 ± 0.64
(2.83–24.40), exposed
11.76 ± 0.74 (4.72–29.67)

• Comet tail length: controls
42 ± 1.6 (17.14–74.62), exposed
54.55 ± 2.02 (33.14–99.09); sig.

[62]
10.1080/15287394.

2011.582293

Costa 2015 Formaldehyde Portugal Air sampling (TWA8h)
level of exposure

171
(84 pathology anatomy
workers, 87 controls)

• % tail DNA: control [7.5 ± 0.47
(range 0.86–24.4)] vs. exposed
[11.67 ± 0.72 (range 0.23–28.07)];
sig.

[63]
10.1093/mutage/

gev002

De Boeck 2000 Cobalt dust,
hard metal dust Belgium Urinary 8-OH-dG

99
(24 workers exposed to cobalt
dust, 27 workers exposed to

hard metal dust, and
27 controls)

• Comet tail length: exposed
cobalt 0.71 (1.38) (0.32–1.18);
hard metals (0.65 (1.23)
(0.36–0.90); controls 0.64 (1.25)
(0.47–1.06);

• % tail DNA: exposed cobalt 0.50
(1.44) (0.25–1.15); hard metals
0.57 (1.24) (0.38–0.77); controls
0.51 (1.35) (0.31–0.87);

• Comet tail moment: exposed
cobalt 0.37 (1.85) (0.11–1.18);
hard metals 0.40 (1.45)
(0.14–0.80); controls 0.34 (1.47)
(0.18–0.81); non-sig.

[64]
10.1002/1098-

2280(2000)36:2<151::
aid-em10>3.3.co;2-

m
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Duan 2016 Diesel engine
exhaust China

Air sampling: PM2.5,
elemental carbon, NO2,
SO2, and airborne PAHs

urinary 1-OHP

207
(101 DEE-exposed workers

and 106 controls)

• % tail DNA: controls
(18.75 ± 28.29), exposed
(60.02 ± 28.59); sig.

[65]
10.1136/oemed-

2015-102919

Everatt ** 2013 Perchloroethylene Lithuania PCE concentration in air:
31.40 ± 23.51

59
(30 dry cleaner workers,

29 control)

• Comet tail length:
(lymphocytes): exposed
(10.45 ± 6.52) vs. unexposed
(5.77 ± 2.31); sig.

[66]
10.1080/15459624.

2013.818238

Galiotte 2008

Hair dyes,
waving, and
straightening
preparations

Brazil --
124 hairdressers

(69 exposed females,
55 unexposed)

• Total Comet Score: exposed
(159.8 ± 71) vs. unexposed
(125.4 ± 64.1); sig.

[67]
10.1093/annhyg/

men037

Giri 2011 PAH India Air sampling, [B(a)P]
analysis

220
(115 coal-tar workers,

105 controls)

• Comet tail moment: controls
(0.44 ± 0.31); exposed
(12.06 ± 0.56); sig.

[68]
10.1016/j.scitotenv.

2011.07.009

Gomaa 2012 Formaldehyde Egypt --
45

(30 lab technicians,
15 unexposed)

• Comet tail length (peripheral
blood): exposed (47.3 ± 8.5) vs.
unexposed (12.5 ± 1.5); sig.

• Comet tail moment (peripheral
blood): exposed (56.1 ± 16.5) vs.
unexposed (10.8 ± 1.2); sig.

[69]

Göethel ** 2014
Air pollution,
benzene, and

CO
Brazil

Urinary t,t-muconic acid
(t,t-MA) and 8OHdG
carboxyhaemoglobin

(COHb) in whole blood

99
(43 gas station staff, 34 drivers,

22 unexposed)

• DNA damage index WBC (AU):
gas station staff (89.8 ± 21.5),
drivers (94.2 ± 12.8), unexposed
(48.6 ± 35.9); sig.

[70]
10.1016/j.mrgentox.

2014.05.008
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Hachesu 2019 Air pollution
(traffic) Iran -- 104 taxi drivers

(11 smokers, 93 non-smokers)

• Comet tail moment: smokers
(2.70 ± 2.48), non-smokers
(3.31 ± 4.37), all (3.24 ± 4.19);

• % tail DNA: smokers
(7.12 ± 3.47), non-smokers
(7.34 ± 5.67), all (7.32 ± 5.45);

• Comet tail length: smokers
(7.24 ± 3.55), non-smokers
(10.37 ± 7.90), all (10.02 ± 7.59);

• Comet tail intensity: smokers
(14.79 ± 5.89), non-smokers
(14.13 ± 5.06), all (14.20 ± 5.13);
non-sig.

[71]
10.1007/s11356-

019-04179-1

Huang 2012
PAH

(coke-oven
exposure)

China Airborne samples analysis

298
(202 exposed coke-oven

workers: bottom 67, side 57,
top 78 of the coke-oven;

96 controls)

• Olive tail moment: controls
(0.55 ± 0.93); bottom
(0.98 ± 1.07); side (1.37 ± 1.07);
top (1.39 ± 1.09); sig.

[72]
10.1016/j.toxlet.

2012.04.004

Jasso-
Pineda **,G 2015

Arsenic, lead,
PAH,

DDT/DDE
Mexico

As and 1-OHP in urine
Lead and total DDT/DDE

in blood

276 children total; 191 for
air pollution

(65 low PAH exposure;
50 biomass combustion;
76 high PAH exposure)

• Olive tail moment: low
exposure (2.1 ± 1.0); biomass
combustion (6.6 ± 3.0); high
exposure (7.5 ± 3.5); sig.

[73]
10.1016/j.scitotenv.

2015.02.073

Jiang 2010 Formaldehyde China
Air samplers (TWA8h):

0.83 ppm, ranging
0.08–6.30 ppm

263
(151 plywood industry
workers, 112 controls)

• Olive tail moment: exposed
(3.54 [95%CI = 3.19–3.93]),
unexposed (0.93
[95%CI = 0.78–1.10]); sig.

[74]
10.1016/j.mrgentox.

2009.09.011
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Khanna 2014 Tobacco dust India --
61

(31 female bidi rollers,
30 controls)

• Comet tail length: young bidi
rollers (14.67 ± 1.47) vs. older
bidi rollers (22.26 ± 1.02) vs.
controls (11.52 ± 2.75); sig.

[75]
10.4103/0971-
6580.128785

Khisroon 2020 Gold jewellery
fumes Pakistan --

94
(54 gold jewellery workers,

40 controls)

• Total comet score (TCS): gold
jewellery workers (128.0 ± 60.6),
controls (47.7 ± 21.4); sig.

[76]
10.1080/1354750X.

2020.1791253

Kianmehr 2017 Fuel smoke Iran --

55
(11 exposed to natural gas,

11 exposed to diesel,
11 exposed to kerosene,
11 exposed to firewood,

11 unexposed)

• Comet tail moment:
firewood-burning (4.40 ± 1.98),
natural gas (1.35 ± 0.84), diesel
(1.85 ± 1.33), kerosene
(2.19 ± 2.20), unexposed
(0.17 ± 0.23); sig. for firewood

• Comet tail length:
firewood-burning (19.35 ± 5.97),
natural gas (9.91 ± 4.10), diesel
(12.31 ± 4.51), kerosene
(13.37 ± 5.65), unexposed
(2.89 ± 1.22); sig.

• % tail DNA: firewood-burning
(6.21 ± 1.88), natural gas
(3.89 ± 1.17), diesel (4.03 ± 1.95),
kerosene (4.08 ± 1.91),
unexposed (6.21 ± 1.88); sig.

[77]
10.1177/

0748233717712408

Knudsen 2005
Diesel-

powered truck
exhausts

Estonia Cited in a previous paper
92

(50 underground mine
workers, 42 surface workers)

• DNA damage (median):
Underground non-smokers 113;
underground smokers 157;
surface smokers 90; surface
non-smokers 142; sig. in
underground workers

[78]
10.1016/j.mrgentox.

2005.03.004
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Krieg 2012 JP-8 jet fuel USA

Urinary (2-methoxy
ethoxy) acetic acid

(MEAA) and creatinine,
benzene, and naphthalene

in exhaled breath

310
(Before: low 152, moderate 42,
and high exposure 116; After a
4 h work shift exposure: low
151, moderate 43, high 116)

• % tail DNA: before: low
(75.43 ± 5.93); moderate
(75.94 ± 5.95); high
(75.27 ± 4.69);

After: low (75.78 ± 5.89); moderate
(75.60 ± 6.10); high (75.47 ± 5.03);
non-sig.

• Olive tail moment: before: low
(5390.78 ± 1142.55); moderate
(5577.56 ± 1216.76); high
(5370.35 ± 950.63)

After: low (5511.14 ± 1133.04);
moderate (5415.14 ± 1130.05); high
(5425.66 ± 984.76); non-sig.

[79]
10.1016/j.mrgentox.

2012.05.005

Kvitko 2012
PAH, PM,
pesticides,
solvents

Brazil --
For PAH and PM exposure

109
(44 coal miners, 65 controls)

• Damage Index (DI): exposed
(18 ± 9.72), controls (5 ± 5.81);
sig.

• Damage Frequency (FD):
exposed (14 ± 6.90), controls
(2 ± 2.08); sig.

[80]
10.1590/S1415-

47572012000600022

Leng 2004
PAH

(coke-oven
exposure)

China Urinary 1-hydroxypyrene
(1-OHP)

193
(143 Coke-oven workers,

50 controls)

• Olive tail moment: coke-oven
workers (2.6, 95% CI = /2.1/3.3),
non-coke-oven workers (1.0, 95%
CI = /0.8/1.2); sig.

[81]
10.1080/

13547500400015618
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

León-Mejía 2011 Dust particles Colombia --
200

(100 exposed open-cast coal
mine workers, 100 controls)

• Comet tail length: exposed
(23.4 ± 6.5), unexposed
(14.3 ± 2.5)

• % tail DNA: exposed
(13.1 ± 7.9), unexposed
(2.9 ± 1.5)

• DI (damage index): exposed
(60.0 ± 39.5), unexposed
(9.0 ± 6.4); sig.

[82]
10.1016/j.scitotenv.

2010.10.049

León-Mejía 2019
Diesel exhaust
(gases, PAH,

PM)
Colombia --

220
(120 exposed mechanics and

100 controls)

• % tail DNA: controls
(23.39 ± 9.18), exposed
(30.91 ± 17.52); sig.

• Damage index: controls
(107.05 ± 27.88), exposed
(131.22 ± 48.15); sig.

[83]
10.1016/j.ecoenv.

2018.12.067

Lin 2013 Formaldehyde China Air-monitoring badges
178

(96 plywood industry,
82 controls)

• Olive tail moment: lower
exposure (0.88 ± 0.55), higher
exposure (1.01 ± 0.56), controls
(0.67 ± 0.55); sig. increased with
increasing levels of
FA exposure

[84]
10.1539/

joh.12-0288-oa

Marczynski 2002
PAH

(coke-oven
exposure)

Germany

1-Hydroxypyrene (1-OHP)
and sum of five

hydroxyphenanthrenes
(OHPHs), creatinine,

and cotinine

95
19 coke-oven workers,
29 graphite-electrode-

producing workers), 32
controls

• Tail extent moment:
graphite-electrode-producing
workers 7.95 ± 3.34, coke-oven
workers 3.5 ± 1.72, controls
2.54 ± 0.68; sig. increased for
graphite-electrode-producing
workers

[85]
10.1093/carcin/

23.2.273



Toxics 2024, 12, 270 16 of 121

Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Marczynski 2010 Bitumen Germany -- 42 bitumen-exposed workers

• DNA strand break—median
(range) in

(a) Induced sputum: pre:
196 (158–209), and post:
202 (50–225) shift

(b) Blood: pre: 1.7 (1.2–2.4),
and post: 1.3 (1.1–1.9);
non-sig.

[86]
10.1177/

0960327109359635

Marczynski 2011
Vapours and
aerosols of
bitumen

Germany

Urinary hydroxylated
metabolites of
naphthalene,

phenanthrene, pyrene

438
(320 exposed construction
workers, 118 unexposed)

• Olive tail moment: exposed
pre-shift (1.74 [1.26–2.57]),
unexposed pre-shift (1.41
[0.98–2.30]), exposed post-shift
(1.51 [1.14–2.12]), unexposed
post-shift (1.19 [0.98–1.49])

• % DNA tail: exposed pre-shift
(6.51 [4.72–9.31]), unexposed
pre-shift (5.06 [3.66–8.95]),
exposed post-shift (5.73
[4.04–7.97]), unexposed
post-shift (4.66 [3.66–5.90]); sig.

[87]
10.1007/s00204-

011-0682-5

Moretti 2007 PAH Italy Urinary 1-OHP

191
(109

graphite-electrode-producing
workers, 82 controls)

• % DNA tail: exposed
(5.28 ± 0.21), control
(4.33 ± 0.22); sig.

[88]
10.1186/

1471-2458-7-270

Novotna 2007 Air pollution Czech Republic

Air samples analysis;
personal air sampler.
Quantitative analysis

of cPAHs

65 non-smoking city
policemen (54 outdoor
policemen, 11 indoor

policemen)

• % DNA tail: exposed January
(7.04 ± 0.38), unexposed January
(3.75 ± 0.85); exposed September
(4.72 ± 0.29), unexposed
September (2.65 ± 0.18); sig.

[89]
10.1016/j.toxlet.

2007.05.013
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Oh 2006 PAH South Korea Urinary 1-OHP,2-naphthol,
and creatinine in urine

138
(54 automobile emission
inspectors, 84 controls)

• Olive tail moment
(mononuclear cells): exposed
(1.71 ± 0.23), controls
(1.34 ± 0.16); sig.

• % tail DNA (mononuclear cells):
exposed (14.91 ± 2.37), controls
(9.17 ± 2.22); sig.

• Olive tail moment (polynuclear
cells): exposed (3.21 ± 0.42),
controls (2.76 ± 0.38); sig.

• % tail DNA (polynuclear cells):
exposed (15.58 ± 3.58), controls
(13.35 ± 2.44); sig.

[90]
10.1016/j.etap.

2005.08.004

Peteffi 2016 Formaldehyde Brazil Urinary formic acid
concentrations

91
(46 exposed furniture

manufacturing workers,
45 controls)

• Damage index: exposed (6.7),
unexposed (2.0); sig.

• Damage frequency: exposed
(6%), unexposed (2%); sig.

[91]
10.1177/

0748233715584250

Peteffi 2016 Formaldehyde Brazil
Environmental FA

concentrations;
urinary formic acid

50 hairdresser workers
• Damage index: 7.00 (2.00–52.25)
• Damage frequency: 6.50

(2.00–44.00); sig.

[92]
10.1007/s11356-

015-5343-4

Recio-Vega 2018 PAH Mexico Urinary 1-OHP 70 brick factory workers
(35 exposed; 35 controls)

• Comet tail length: controls
(29.61 ± 9.0), exposed
(42.07 ± 10.0); sig.

• Comet tail moment: controls
(4.07 ± 3.5), exposed (8.11 ± 4.8);
sig.

• Comet tail migration: controls
(11.37 ± 8.9), exposed
(23.19 ± 11.2); sig.

[93]
10.1007/s00420-

018-1320-9
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Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Rekhadevi 2009 wood
dust India Wood dust levels

120
(60 carpentry workers, 60

controls)

• Comet tail length: Age < 35
controls (5.90 ± 2.62), exposed
(12.42 ± 1.52); ≥35 controls
(7.76 ± 1.61), exposed
(15.82 ± 2.01); smoking controls
(7.91 ± 1.26),
exposed (16.33 ± 1.52); not
smoking controls (6.52 ± 2.53),
exposed (12.36 ± 1.42); Alcohol
consumption yes controls
(8.00 ± 1.40), exposed
(6.90 ± 1.15); no alcohol
consumption controls
(5.80 ± 2.51), exposed
(12.86± 1.69); sig.

[94]
10.1093/mutage/

gen053

Rohr 2013 Coal dust Brazil --
128

(71 coal-exposed workers and
57 controls)

• Damage index controls
15.53 ± 8.80, exposed
33.69 ± 28.70; sig.

• Damage frequency controls
12.40 ± 6.18 27.46 ± 23.75; sig.

[95]
10.1016/j.mrgentox.

2013.08.006

Sardas 2010

Welding fumes
and

solvent-based
paints

Turkey --
78

(52 workers in construction,
26 controls)

• % DNA tail: exposed
(12.34 ± 2.05) vs. unexposed
(6.64 ± 1.43); sig.

[96]
10.1177/

0748233710374463

Scheepers ** 2002
Diesel exhaust

(benzene,
PAHs)

Estonia, Czech
Republic

Analysis of air samples,
urinary metabolites of

PAH and benzene

92 underground miners
(drivers of diesel-powered

excavators)
(46 underground workers,

46 surface workers)

• DNA damage lymphocytes
(visual scoring comets):
underground workers (134),
surface workers (104); non-sig.

[97]
10.1016/s0378-

4274(02)00195-9
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Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Sellappa 2010 Cement dust
exposure India --

164
(96 building construction
workers and 68 controls)

• Comet tail length:

Controls: Age ≤ 40 (9.90 ± 0.92); ≥41
(8.09 ± 1.18); Smoking Yes
(10.40 ± 2.42), No (9.21 ± 1.32);
Tobacco chewing Yes (10.12 ± 2.71),
No (8.85 ± 2.33); Alcohol
Consumption Yes (9.96 ± 2.44), No
(9.23 ± 2.30)
Workers: Age ≤ 40 (16.85 ± 2.08);
sig.; ≥41 (14.12 ± 2.33); sig.; Smoking
Yes (15.97 ± 2.61); sig.; No
(13.71 ± 2.89); sig.; Tobacco chewing
Yes (15.71 ± 2.34); sig.; No
(15.71 ± 2.34); sig.; Alcohol
Consumption Yes (14.05 ± 2.59); sig.;
No (12.90 ± 2.98); sig.

[98]

Sellappa 2011 PAH India Urinary 1-OHP 73
(36 road pavers; 37 control)

• Comet tail length controls:
smokers (13.3 ± 3.74);
non-smokers (10.9 ± 2.85);
alcohol drinkers (11.1 ± 2.92);
non-drinkers (9.9 ± 2.83),
workers: smokers (19.4 ± 4.99);
sig. non-smokers (15.5 ± 4.94);
sig.

• alcohol drinkers (16.2 ± 2.03);
sig.

• non-drinkers (15.1 ± 3.12); sig.

[99]

Shen 2016 Diesel China Urinary OH-PAHs, urinary
εdA levels

185
(86 exposed diesel engine

testing workers,
99 unexposed)

• Olive tail moment: non-exposed
(1.16 ± 2.45), exposed
(5.29 ± 2.30); sig.

• % DNA tail: non-exposed
(2.20 ± 29.45), exposed
(66.44 ± 25.93); sig.

[100]
10.1016/j.scitotenv.

2015.10.165
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Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Siwińska 2004 PAH Poland Urinary 1-hydroxypyrene
(HpU)

98 coke-oven workers
(49 exposed; 49 controls)

• Comet tail length—median with
quartiles (25–75th): controls
34.6 (31.4; 40.4); exposed:
32.3 (29.0; 37.3); sig.

[101]
10.1136/oem.
2002.006643

Sul 2003 PAH South Korea Urinary 1-OH-pyrene and
creatinine, 2-naphthol

95
(24 workers from automobile

emission companies,
28 workers from waste
incinerating company,

43 unexposed)

• DNA damage (in
T-lymphocytes): emission
inspection workers (1.41 ± 0.22),
incineration workers
(1.76 ± 0.27), controls
(1.42 ± 0.22); sig.

• Comet tail moment
(B-lymphocytes): emission
inspection (2.44 ± 0.32),
incineration workers
(2.36 ± 0.37), controls
(1.40 ± 0.27); sig.

• Comet tail moment
(granulocytes): emission
inspection (3.32 ± 0.38),
incineration workers
(2.85 ± 0.49), controls
(2.72 ± 0.59); sig.

[102]
10.1016/s1383-

5718(03)00095-0

Toraason 2006 1-
Bromopropane USA

Personal-breathing zone
samples collected for
1–3 days up to 8 h per

(TWA8h).
Bromide (Br) in blood

and urine.

64 workers
(42 facility A

(non-sprayer—low exposure
29; sprayer—high exposure 13)

and
22 workers facility B

(non-sprayer—low exposure
16; sprayer—high exposure 6))

• Comet tail moment: start of the
week: low exposure A
(2517 ± 641), high exposure A
(2867 ± 895); low exposure B
(2856 ± 359); high exposure B
(3430 ± 984); end-of-week: low
exposure A (3080 ± 697); sig.
high exposure A (3178 ± 762);
low exposure B (2770 ± 504);
high exposure B (2974 ± 280)

[103]
10.1016/j.mrgentox.

2005.08.015
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Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Tovalin ** 2006
Air pollution

(traffic), VOCs,
PM2.5, ozone

Mexico

Personal occupational and
non-occupational

monitoring for VOCs,
PM2.5, O3

55 City traffic exposure
(28 outdoor workers,
27 indoor workers)

• Comet tail length (WBC):
outdoor workers (median 46.80
[maximum 132.41]), indoor
workers (median 30.11
[maximum 51.47]); sig.

[104]
10.1136/oem.
2005.019802

Ullah 2021
Air pollution
(traffic), coal
mining dust

Pakistan --

240
(60 participants exposed to
traffic pollution, 60 controls,

60 mine workers, 60 controls)

• Comet tail length—mean
(min-max): traffic conductors
28.69 (26.83–30.55), controls 8.62
(7.98–9.26); sig., coal miners
30.16 (29.06–31.26), controls 9.82
(9.42–10.22); sig.

[105]
10.12669/

pjms.37.2.2848

van Delft 2001
PAH

(coke-oven
exposure)

Netherlands Urinary 1-hydroxypyrene
72

(28 coke-oven workers,
37 controls)

• DNA breaks: exposed
(1.3 ± 0.4), controls (1.4 ± 0.4);
non-sig.

[106]
10.1016/S0003-

4878(00)00065-X

Villarini 2008

Dust
(a-quartz and
other particles
from blasting),
gases (nitrogen

dioxide,
NO2), diesel
exhausts, oil

mist

Italy --
73

(39 underground workers and
34 unexposed subjects)

• % tail DNA: exposed
(3.08 ± 0.29), control 2.85 ± 0.18;
non-sig.

[107]
10.1080/

15287390802328580

Vital 2021

Environmental
tobacco smoke
(occupational

settings)

Portugal

Monitoring the level of
indoor air contaminants,

namely, particulate matter
(PM2.5), CO, and CO2

76
(17 smoker workers (SW),

32 non-exposed non-smoker
workers (NE NSW),

32 exposed non-smoker
workers E NSW)

• % tail DNA: SW (2.94 ± 0.94);
NE NSW (2.93 ± 0.70); E NSW
(3.24 ± 1.34); non-sig.

• Comet tail length: SW
(3.30 ± 1.64); NE NSW
(3.13 ± 0.80); E NSW
(3.00 ± 0.90); non-sig.

[108]
10.3389/fpubh.

2021.674142
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Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Wang 2007
PAH

(coke-oven
exposure)

China

Benzo[a]pyrene-r-7, t-8, t-9,
c-10-tetrahydotetrol-
albumin (BPDE-Alb)

adducts

309
(207 coke-oven workers
exposed, 102 controls)

• Olive tail moment: control
(0.63 ± 0.93), exposed
(1.20 ± 1.10); sig.

[109]
10.1136/oem.
2006.030445

Wang 2010
PAH

(coke-oven
exposure)

China
Airborne PAH monitoring

and urinary
1-Hydroxypyrene

475 workers
(157 low, 160 intermediates,

158 high exposure)

• Olive tail moment (median,
5–95 percentiles): all 0.36
(0.13–1.24), low 0.33 (0.12–1.06),
intermediate 0.38 (0.17–1.74),
high 0.40 (0.14–3.17); non-sig.

[110]
10.1158/1055-

9965.EPI-09-0270

Wang 2011 PAH (cooking
oil fumes) China Urinary 1-OHP

110
(67 kitchen workers,

43 controls)

• Comet tail length: exposed
(8.03 [6.83–9.18]), controls
(6.89 [5.89–8.16]); sig.

• % DNA tail: exposed
(23.9 [17.8–30.1]) vs. controls
(21.3 [16.2–29.1]); sig.

[111]
10.1539/

joh.11-0074-oa

Wultsch 2011 PAH Austria Cr, Mn, Ni, As, in
urine, creatinine

42 waste incinerator workers
(23 exposed, 19 unexposed)

• DNA migration (tail factor):
Group I [≥1 and ≤3 months
employment] (6.7 ± 1.9), Group
II [>3 and ≤8 months]
(6.3 ± 1.5), Group III [>8 and
≤11 months] (6.5 ± 2.4),
unexposed (7.1 ± 1.6); non-sig.

[112]
10.1016/j.mrgentox.

2010.08.002

Yang 2007
PAH

(coke-oven
exposure)

China PAH and urinary 1-OHP
monitoring

101 coke-oven workers
(Low (n = 33) Intermediate

(n = 35) High
(n = 33) exposure)

• Olive tail Moment: low
(1.63 ± 0.46), intermediate
(1.74 ± 0.69), high (2.54 ± 0.75);
sig. between low and high

[113]
10.1289/ehp.10104
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Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Yu 2022
PAH

(coke-oven
exposure)

China Urinary monohydroxy
PAHs (OH-PAHs) 332 coke-oven workers

• Olive tail Moment: Total
participants (0.44 (0.30, 0.75)),
<20 years of working (0.44 (0.28,
0.71)), (0.44 (0.32, 0.86)); non-sig.

• % tail DNA: Total participants
(3.20 (2.14, 5.18)), <20 years of
working (3.18 (2.01, 4.88)), (3.21
(2.19, 5.68)); non-sig.

• Comet tail length: Total
participants (3.61 (3.24, 4.88)),
<20 years of working (3.65 (3.20,
4.65)), (3.59 (3.28, 5.05)); non-sig.

• Comet tail moment—median
(25–75th percentile): Total
participants (0.14 (0.08, 0.33)),
<20 years of working (0.15 (0.08,
0.30)), (0.13 (0.09, 0.34)); non-sig.

[114]
10.1007/s11356-

022-19828-1

Zhang 2021
PAHs

(coke-oven
exposure)

China Urinary 1-hydroxypyrene
(1-OHP) analysis

256
(173 male coke-oven workers,

83 male hot-rolling
workers not exposed as a

control group)

• % tail DNA: controls 4.92,
exposed 40.8

• Olive tail Moment:
controls 3.73, exposed 22.1; sig.

[115]
10.1016/j.envpol.

2020.115956

Zendehdel
Ø 2017 Formaldehyde Iran Monitoring FA exposure

83
(49 melamine tableware

workshop workers,
34 controls)

• Olive tail moment—median
(min–max): exposed
13 (7.4–36.7), controls
8.4 (6.4–31.7); sig.

• Comet tail moment—median
(min–max): exposed
22.2 (12.3–65), controls
14.8 (6.4–57.7); sig.

[116]
10.1080/02772248.

2017.1343335
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Zendehdel
Ø 2018 Formaldehyde Iran Air sampling

87
(53 melamine tableware

workshop workers,
34 unexposed)

• Comet tail moment (whole
blood): exposed (20.9 [12.3 to
65.1]), unexposed (14.8 [6.4 to
57.7]); sig.

[117]
10.1007/s11356-

018-3077-9

Zendehdel
Ø 2018 Formaldehyde Iran Air sampling

88
(54 melamine tableware

workshop workers,
34 controls)

• Comet tail length (median;
min-max): exposed (28.9;
13.9–81), controls 18.5 (14–71);
sig.

[118]
10.1177

/0960327117728385

Environmental exposure

Alvarado-
Cruz 2017 Air pollution Mexico

PM10 characterization,
urinary levels of 1-OHP

(PAHs exposure) and
t,t-MA (benzene exposure)

141 children

• Olive tail moment (interquartile
range 25–75): 33.6 (28.0–40.2);
sig. positive association
with PM10

[119]
10.1016/j.mrgentox.

2016.11.007

Andersen 2019
Diesel-

powered trains
particles

Denmark
Levels of 1-OHP, 2-OHF,
1-NAPH, and 2-NAPH

in urine

83 healthy volunteers
54 exposed to diesel,

29 exposed in electric train)

• DNA damage (SB lesions/106

bp): electric (0.12 ± 0.13), diesel
(0.18 ± 0.13); sig.

[120]
10.1186/s12989-

019-0306-4

Avogbe ** 2005 PM (UFPs),
benzene Benin Ambient UFP, urinary

excretion of S-PMA

135 city traffic exposure
(29 drivers, 37 roadside
residents, 42 suburban,

27 rural)

• % DNA tail (MNBC): drivers
(6.09 ± 3.46) vs. roadside
residents (6.32 ± 4.00) vs.
suburban (5.42 ± 2.28) vs. rural
(4.26 ± 1.76); sig.

[121]
10.1093/carcin/

bgh353

Beyoglu 2010 Indoor tobacco
smoke Turkey --

60 children from
paediatric unit

(30 exposed, 30 controls)

• % tail DNA: exposed
(10.73 ± 1.38), controls
(8.16 ± 1.29); sig.

[122]
10.1016/j.ijheh.

2009.10.001
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Cetkovic 2023 Air pollution Bosnia and
Herzegov --

33 volunteers
(Summer and

winter sampling)

• Comet tail intensity: winter
(1.14 ± 0.23); summer
(1.19 ± 0.19);

• Comet tail length: winter
(2.20 ± 0.14); summer
(2.25 ± 0.17);

• Comet tail moment: winter
(1.03 ± 0.29); summer
(1.07 ± 0.25); non-sig.

[123]
10.1093/mutage/

geac016

Cho 2003 Hair dye fumes Korea -- 20 volunteers
(before and after hair-dyeing)

• Comet tail moment: before
(1.47 ± 0.41); after (1.75 ± 0.29);
sig.

[124]
10.1539/joh.45.376

Chu 2015 Air pollution China Personal 24 h
PM2.5 exposure

301
(108 from Zhuhai, 114 from

Wuhan, 79 from Tianjin)

• % tail DNA—Median
(25–75th percentile): Zhuhai 1.36
(0.67, 2.66); Wuhan 2.15 (0.77,
4.63); Tianjin 2.97 (1.47, 6.32);
significance not indicated

[125]
10.1016/j.toxlet.

2015.04.007

Coronas 2009 PM Brazil
Weekly airborne

particulate matter (PM10)
samples

74 healthy men recruits,
18–40 years old, living or
working at the target site

(37 exposed, 37 unexposed)

• Comet tail intensity: exposed
(10.04 ± 7.13) vs. unexposed
(7.09 ± 3.85); sig.

• Comet tail moment: exposed
(2.53 ± 2.28) vs. unexposed
(0.82 ± 0.68); sig.

[126]
10.1016/j.envint.

2009.05.001



Toxics 2024, 12, 270 26 of 121

Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Coronas 2016 PAHs (in PM) Brazil

Air sampling
Quantification of 16 PAHs
from organic extract of PM

2.5: Acenaphthene,
Acenaphthlene,

Anthracene,
Benzo(a)anthracene,

Benzo(a)pyrene,
Benzo(a)fluoranthene,
Benzo(g,h,i)perylene,

Indeno(1,2,3-cd)pyrene,
Benzo(k)fluoranthene,

Chrysene, Dibenzo(a,h)
Anthracene, Phenanthrene,

Fluoranthene, Fluorene,
Naphthalene, and Pyrene.

62 children aged 5–12 years
(42 exposed, 20 controls)

• % DNA tail: controls 7.2 ± 3.15
(interval 1.04–23.86), exposed
7.1 ± 2.16 (1.09–28.89); non-sig.

[127]
10.1016/

j.chemosphere.
2015.09.084

Danielsen 2008 Wood smoke Sweden Urinary 8-oxoGua,
8-oxodG 13 never-smoking subjects

• DNA damage: SB (per 106 bp):
Time after exposure to filtered
air: 3 h (0.071 ± 0.053), 20 h
(0.085 ± 0.043); time after
exposure to wood smoke: 3 h
(0.042 ± 0.036), 20 h
(0.035 ± 0.019); non-sig.

[128]
10.1016/j.mrfmmm.

2008.04.001

da Silva 2015 PAH Brazil --
45 children of Santo Antônio

da Patrulha, Rio Grande
do Sul

• Comet tail length: 23.1 ± 12.44
• Comet tail intensity: 7.3 ± 11.66
• Comet tail moment: 0.9 ± 2.30

[129]
10.1016/j.mrgentox.

2014.11.006
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Forchhammer 2012
Wood smoke
(controlled
exposure)

Denmark

14, 220, or 354 µg/m3 of
particles from a

well-burning modern
wood stove for 3 h in a

climate-controlled
chamber with 2-week

intervals

20 healthy non-smoking
subjects (controlled exposure)

• DNA damage (single-strand
breaks) (mean ± SEM): controls
(0.16 ± 0.03 lesions/106 bp)
(n = 18); non-sig. effect of
wood smoke

[130]
10.1186/

1743-8977-9-7

Gamboa 2008 PAH Mexico Air sampling

6–15 years old children (37)
(12 from oil extraction activity;
10 from no extraction activity

regions, 15 controls)

• Comet tail length: exposed
(14.21–42.14), controls
(12.25 to 0.63); significance
not indicated

[131]
10.3390/

ijerph5050349

Gong 2014 Air pollution China

PM2.5 (mg/m3): Zhuhai
68.35 (37.17–116.79);

Wuhan 114.96
(86.55–153.20); Tianjin

146.60
(88.63–261.41)

307
(110 from Zhuhai, 118 from

Wuhan, 79 from Tianjin)

• % tail DNA—median
(25–75 percentile): Zhuhai 1.36
(0.65–2.59); Wuhan 1.85
(0.77–4.39); Tianjin 2.97
(1.47–6.32); significance
not indicated

[132]
10.1016/j.toxlet.

2014.06.034

Han 2010 PAH China
PAH metabolites (2-OHNa,

9-OHPh, 2-OHFlu, and
1-OHP) in urine

232 men from
Chongqing, China.

• % tail DNA: 13.26%, 95% CI
7.97–18.55;

• Comet tail length (12.25; 95% CI
0.01–24.52),

• Comet tail distribution (7.55;
95% CI 1.28–18.83); sig.
associated with 2-OHNa

[133]
10.1289/ehp.1002340

Hemmingsen 2015 Diesel exhaust Sweden

3 h to diesel exhaust
(276 µg/m3) from a

passenger car or filtered air,
with co-exposure to traffic

noise at 48 or 75 dB(A)

18 individuals with controlled
exposure (3 h)

• DNA damage (before and after
DE exposure): 0.32 ± 0.04;
0.30 ± 0.04; non-sig.

[134]
10.1016/j.mrfmmm.

2015.03.009
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Hisamuddin 2022 PAHs (in PM) Malaysia

Gravimetric sampling of
PM2.5

PAHs Extraction:
Acenaphthene,
Acenaphthlene,

Anthracene,
Benzo(a)anthracene,

Benzo(a)pyrene,
Benzo(a)fluoranthene,
Benzo(g,h,i)perylene,

Indeno(1,2,3-cd)pyrene,
Benzo(k)fluoranthene,

Chrysene, Dibenzo(a,h)
Anthracene, Phenanthrene,

Fluoranthene, Fluorene,
Naphthalene, and Pyrene.

228 school children

• Comet tail moment: high traffic
group (3.13 ± 0.53) vs. low
traffic group (2.80 ± 0.81); sig.

[135]
10.3390/

ijerph19042193

Ismail 2019 Traffic-related
air pollution Malaysia Air samples analysis

104
(52 exposed group,

52 controls)

• Comet tail length: exposed
(35.95 ± 7.93); controls
(30.32 ± 8.36); sig.

[136]
10.5572/ajae.
2019.13.2.106

Jasso-
Pineda ** 2015

Arsenic, lead,
PAH,

DDT/DDE
Mexico

Arsenic and 1-OHP in
urine

Lead and total DDT/DDE
in blood

276 children
(40/25 with high/low arsenic,

55/10 with high/low lead)

• Comet tail moment: high/low
arsenic (4.5 ± 1.08/3.2 ± 0.5);
sig high/low lead (3.7 ± 1.8/
4.1 ± 1.5); non-sig.

[73]
10.1016/j.scitotenv.

2015.02.073

Jensen 2014 wood smoke
exposure Denmark

Exposure to high indoor
concentrations of PM2.5
(700–3,600 µg/m3), CO

(10.7–15.3 ppm), and NO2
(140–154 µg/m(3)) during

1 week.

11 university students

• DNA strand breaks: before
(0.0.51 ± 0.031), after
(0.061 ± 0.0.46); non-sig.

[137]
10.1002/em.21877
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Koppen ** 2007

Air pollution,
PAHs, VOCs
(benzene and

toluene)

Belgium

Outdoor ozone
concentrations, urinary
concentrations of PAH,

t,t′-muconic acid, o-cresol,
VOCs metabolites

200 adolescents

• % DNA tail (WBC): 1.16 ± 0.51
• Correlation DNA

damage/o-cresol and
OH-pyrene; sig.

[138]
10.1002/jat.1174

Koppen **,§ 2020
PAH, metals,

benzene, POPs,
phthalates, PM

Belgium
Ar, Cd, Cu, Ni, Pb, Tl, Cr

in blood, outdoor
air analysis

2283 adolescents
(14–18 years old)

• % DNA tail: mean 2.4 [2.3–2.5]
[139]

10.1016/j.envres.
2020.110002

Lemos 2020 PAHs (in PM) Brazil

Air sampling
Quantification of 16 PAHs
from organic extract of PM

2.5: Acenaphthene,
Acenaphthlene,

Anthracene,
Benzo(a)anthracene,

Benzo(a)pyrene,
Benzo(a)fluoranthene,
Benzo(g,h,i)perylene,

Indeno(1,2,3-cd)pyrene,
Benzo(k)fluoranthene,

Chrysene, Dibenzo(a,h)
Anthracene, Phenanthrene,

Fluoranthene, Fluorene,
Naphthalene, and Pyrene.

54 children
living in industrial areas

• Comet tail intensity: NW site
2.5 km from the petrochemical
source of emission (10.65 ± 0.78),
NWII site 35 km from the source
of emission (6.73 ± 0.92),
controls (7.20 ± 3.15); sig.

[140]
10.1016/j.envres.

2020.109443

León-Mejía 2023 Coal mining Colombia --

270
150 individuals exposed to

coal mining residues from the
locality of Loma-Cesar,

120 nonexposed individuals
from the City of Barranquilla

• % DNA tail: controls
(8.11 ± 1.98), exposed
(9.61 ± 1.06); non-sig.

[141]
10.1016/j.envres.

2023.115773



Toxics 2024, 12, 270 30 of 121

Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Mondal 2010

Fuel smoke
(biomass and

liquefied
petroleum)

India PM2.5 and PM10
(stationary sampling)

217
(132 biomass users,

85 liquefied petroleum
gas users)

• % DNA tail: biomass users
(21.6 ± 5.2), gas users
(16.8 ± 3.3); sig.

• Comet tail length: biomass
users (46.6 ± 4.7) vs. gas users
(44.1 ± 4.6); sig.

• Olive tail moment: biomass
users (4.2 ± 1.0) vs. gas users
(4.2 ± 1.0); sig.

[142]
10.1016/j.mrgentox.

2010.02.006

Mondal 2011

Fuel smoke
(biomass and

liquefied
petroleum)

India PM2.5 and PM10
(stationary sampling)

161 premenopausal women
(85 cooking with biomass;
76 control women cooking
with liquid petroleum gas)

• % DNA tail: exposed
(32.23 ± 8.31), unexposed
(12.41 ± 3.87); sig.

• Comet tail length: exposed
(37.81 ± 11.21), unexposed
(14.22 ± 3.89); sig.

• Olive tail moment: exposed
(7.08 ± 2.11), unexposed
(3.15 ± 0.97); sig.

[143]
10.1016/j.ijheh.

2011.04.003

Mukherjee
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Zeller  2011 
Controlled 
exposure to 

formaldehyde 
Germany 

FA vapours (0 to 0.8 ppm) 
for 4 h/day over a period of 

five working days under 
strictly controlled conditions 
and bicycling (∼80 W) four 

times for 15 min. 

37 volunteers 

• Comet tail moment: before exposure 
0.30 ± 0.117; after exposure 0.33 ± 0.118; 
non-sig. 
• Comet tail intensity: before expo-
sure 2.28 ± 0.492; after exposure 2.66 ± 
0.646; sig. 

[164] 
10.1093/mutage/ger

016 

** Studies also in solvents table; ɣ Studies also in heavy metals table. * From the three papers from Cebulska-Wasilewska, the second 2007 paper (2007*) shows 
results compiled from the previous two papers. Thus, the second 2007 paper is not counted as an original study. § The second paper (Costa et al., 2011) is an 
expansion of the previous study sample with the addition of a new comet assay descriptor. Thus, one original study is counted for both papers. Ø Three papers 
from Zendehdel and co-workers appear to be very similar, although there are cross-references to ascertain whether these data originate from the same study. In 
essence, the authors appear to have reported results on different comet descriptors in separate papers, deriving, however, from the same subjects enrolled in the 
same biomonitoring. Thus, the papers are counted as one study. ƍ The second paper (Mukherjee, 2014) contains more subjects from six different villages as com-
pared to the first study with studies from five villages (Mukherjee 2013). Nevertheless, the results are very similar, suggesting that the first paper describes only 
part of the complete dataset. Thus, we have counted the papers as one study. 

 

2013

Fuel smoke
(biomass and

liquefied
petroleum)

India Urinary trans,
trans-muconic acid

105
(56 biomass users, 49 cleaner

liquefied petroleum gas users)

• % DNA tail: biomass users
(36.2 ± 9.4), gas users (9.0 ± 4.1)

• Comet tail length: biomass
users (44.2 ± 6.0), gas users
(32.3 ± 7.3)

• Olive tail moment: biomass
users (6.2 ± 2.2), gas users
(1.2 ± 0.5); sig.

[144]
10.1002/jat.1748
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2014

Fuel smoke
(biomass and

liquefied
petroleum)

India PM2.5 and PM10
(stationary sampling)

150
(80 biomass users, 70 liquefied

petroleum gas (LPG) users)

• % tail DNA: LPG users
(10.1 ± 3.2), BMF users
(36.2 ± 8.2); sig.

• Comet tail length: LPG users
(29.3 ± 4.6) vs. BMF users
(45.2 ± 5.5); sig.

• Olive tail moment: LPG users
(1.2 ± 0.5) vs. BMF users
(6.2 ± 1.9); sig.

[145]
10.1016/j.etap.

2014.06.010

Nagiah 2015 Air pollution South Africa --

100 pregnant women
(50 from a highly

industrialised south Durban
and 50 from the less

industrialised north Durban)

• Comet tail length (25th,
75th percentile): north Durban
0.47 (0.41, 0.52); south Durban
0.55 (0.47, 0.60); sig.

[146]
10.1177/

0960327114559992

Pacini 2003 Ozone Italy Air quality monitoring
119

(102 subjects from Florence,
17 controls from Sardinia)

• % tail DNA: Florence
(45.7 ± 21.0): Sardinia
(26.4 ± 6.7); sig.

[147]
10.1002/em.10188

Pandey 2005

Fuel smoke
(biomass fuel

liquefied
petroleum gas)

India --

144 volunteers
(70 biomass fuel users,

74 liquefied petroleum gas
(LPG) users)

• Tail percent DNA: LPG users
(8.29 ± 0.18) vs. BMF users
(11.19 ± 0.35); sig.

• Comet tail length: LPG users
(40.26 ± 0.88) vs. BMF users
(51.15 ± 1.32); sig.

• Olive tail moment: LPG users
(2.77 ± 0.07) vs. BMF users
(3.83 ± 0.15); sig.

[148]
10.1002/em.20106

Pelallo-
Martínez

**,G
2014

PAH, lead,
benzene,
toluene

Mexico Urinary and blood Pb,
benzene, toluene, PAHs

97 children, air pollution
(44 Allende, 37 Nuevo Mundo,

16 Lopez Mateos)

• Olive tail moment (WBC):
Allende (8.3 [3.1–16.8]) vs.
Nuevo Mundo (10.6 [5.6–22.9])
vs. Lopez Mateos (11.7
[7.4–15.9]); sig.

[149]
10.1007/s00244-

014-9999-4
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Pereira 2013 PAH Brazil PAH analysis

59 subjects from two towns of
Rio Grande do Sul State (24,

site 1 (exposed)—high
quantity of nitro and amino
derivatives of PAHs; 35 from

site 2 (controls)—lesser
anthropogenic influence)

• Comet tail intensity—Mean ±
SD (range): exposed 6.7 ± 2.90
(3.25–14.40), controls 6.5 ± 2.81
(2.43–15.43) non-sig.

• Comet tail moment—Mean ±
SD (range): exposed 0.8 ± 0.70
(0.31–7.53), controls 0.7 ± 0.36
(0.30–2.70); non-sig.

[150]
10.1016/j.ecoenv.

2012.12.029

Pérez-
Cadahia 2006 Air pollution Spain VOCs determination by

dosimeters

110
(25 volunteers cleaning

beaches, 20 manual workers
beach, 23 high-pressure

cleaners, 42 controls)

• Comet tail length: exposed
(48.79 ± 0.10) vs. unexposed
(51.47 ± 0.10); sig.

[151]
10.1100/tsw.2006.206

Piperakis 2000 Air pollution Greece --

80 healthy
individuals living in urban

and rural areas with
different smoking habits

• DNA damage (visual scoring):
urban non-smokers (78 ± 10.2),
urban smokers (99 ± 10.9), rural
non-smokers (71 ± 7.8), rural
smokers (98 ± 12.5); sig.

[152]
10.1002/1098-

2280(2000)36:3<243::
aid-em8 > 3.0.co;2-

Rojas 2000 Ozone Mexico Ozone values

38
(27 exposed to hydrocarbons
northward and 11 southward,

exposed to ozone)

• Comet tail length: north
(67.17 ± 7.93) (8) (57.77 ± 4.55)
(20); south (87.56 ± 11.75) (5)
(88.24 ± 13.41) (5); sig.

[153]
10.1016/s1383-

5718(00)00035-8

Sánchez-
Guerra 2012 PAH Mexico Urinary 1-OHP 82 children • Olive tail moment: 9.52; sig.

affected by PAH exposure

[154]
10.1016/j.mrgentox.

2011.12.006

Shermatov 2012
Second hand

cigarette
smoking

Turkey Urinary cotinine and
creatinine

57 children
(27 exposed, 27 controls)

• DNA damage (arbitrary units):
exposed (62.14 ± 56.31), controls
(6.14 ± 5.51); sig.

[155]
10.1007/s13312-

012-0250-y
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Sopian 2021 PAHs (PM) Malaysia

60 indoor and outdoor
PM2.5 samples
PAHs analysis:

naphthalene (NAP),
acenaphthene (ACP),

acenaphthylene (ACY),
anthracene (ANT),

fluorene (FLU),
phenanthrene (PHE),

anthracene (ANT),
fluoranthene (FLA),

pyrene (PYR),
benzo(a)anthracene (BaA),

chrysene (CYR),
benzo(b)fluoranthene

(BbF),
benzo(k)fluoranthene
(BkF), benzo(a)pyrene

(BaP),
indeno(1,2,3-cd)pyrene

(IcP),
dibenzo(a,h)anthracene

(DbA), and
benzo(ghi)perylene (BgP)

234 children
(near petrochemical industry)

• Comet tail moment: exposed
group (27.20 ± 8.21), unexposed
(21.03 ± 4.88); sig.

[156]
10.3390/

ijerph18052575

Torres-
Dosal 2008 Wood smoke Mexico

Urinary 1-OHP
Carboxyhemoglobin

determination

20 healthy volunteers
(pre- and post-intervention)

• Comet tail moment: before
(5.8 ± 1.3), after (2.8 ± 0.9); sig.

[157]
10.1016/j.scitotenv.

2007.10.039

Verschaeve 2007 PAH Belgium 1-Hydroxypyrene 45 healthy subjects in
different seasons

• % tail DNA (average; mean):
June (1.67; 1.29); August
(2.16; 1.25); November
(1.36 1.06); February (1.26; 0.99);
sig.

[158]
10.1002/jat.1244
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Vinzents 2005 PM (UFPs) Denmark

Personal exposure in terms
of number of

concentrations of UFPs in
the breathing zone, using

portable instruments in six
18 h periods

15 subjects bicycling in traffic
or indoors on six occasions

(controlled exposure)

• DNA strand break (per 106 bp):
in traffic, 74 bicycling days
median (range) 0.06 (0.03–0.11);
indoors, 14 bicycling days, 0.06
(0.02–0.12); non-sig.

[159]
10.1289/ehp.7562

Wilhelm **,G 2007 PAH, benzene,
heavy metals Germany

Monitored ambient air
quality data, urinary (PAH)

metabolites, benzene
metabolites

935 air pollution close to
industrial settings

(620 exposed children,
315 unexposed)

• Comet tail moment
(lymphocytes)—percentile 50:
exposed (1.99) vs. unexposed
(1.32); sig.

• Comet tail moment—percentile
90: exposed (6.69) vs. unexposed
(1.89); non-sig.

[160]
10.1016/j.ijheh.

2007.02.007

Wu 2007 Environmental
tobacco smoke Taiwan --

291
(18 smokers,

143 environmental tobacco
exposure, 130 non-smokers)

• DNA damage score: smokers
(71.0 ± 46.6), environmental
tobacco smoke-exposed
(84.3 ± 44.3), non-smokers
(63.5 ± 35.0); sig. between
ETS-exposed and non-smokers

[161]

Zani ** 2020

PM10, PM2.5,
NO2, CO, SO2,

benzene,
and O3

Italy Air sampling 152 pre-school children
(3–6 years old)

• % DNA tail: 6.2 ± 4.3;
• Visual scoring: 182.1 ± 30.9;

non-sig.

[162]
10.3390/

ijerph17093276

Zani 2021 Air pollution Italy Air pollutant levels
142 children 6–8 years old

(71 first winter,
71 second winter)

• DNA damage (visual score):
first winter (173.2 ± 50.8),
second winter (208.8 ± 67.1); sig.

Not significant association with air
pollutant levels

[163]
10.3390/

atmos12091191
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Table 1. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure Population Characteristics DNA Damage Reference/DOI

Zeller 2011
Controlled
exposure to

formaldehyde
Germany

FA vapours (0 to 0.8 ppm)
for 4 h/day over a period

of five working days under
strictly controlled

conditions and bicycling
(∼80 W) four times for

15 min.

37 volunteers

• Comet tail moment: before
exposure 0.30 ± 0.117; after
exposure 0.33 ± 0.118; non-sig.

• Comet tail intensity: before
exposure 2.28 ± 0.492; after
exposure 2.66 ± 0.646; sig.

[164]
10.1093/

mutage/ger016

** Studies also in solvents table; G Studies also in heavy metals table. * From the three papers from Cebulska-Wasilewska, the second 2007 paper (2007*) shows results compiled from the
previous two papers. Thus, the second 2007 paper is not counted as an original study. § The second paper (Costa et al., 2011) is an expansion of the previous study sample with the
addition of a new comet assay descriptor. Thus, one original study is counted for both papers. Ø Three papers from Zendehdel and co-workers appear to be very similar, although there
are cross-references to ascertain whether these data originate from the same study. In essence, the authors appear to have reported results on different comet descriptors in separate
papers, deriving, however, from the same subjects enrolled in the same biomonitoring. Thus, the papers are counted as one study.
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Overall, 81 studies (63.3%) evaluated occupational exposure and 47 studies (36.7%)
environmental exposure. Occupational exposure to air pollutants included silica dust,
welding fumes, vapours, gases, volatile organic compounds (VOCs), and metals. These
studies were performed in Asia (n = 36, 44.4%), followed by Europe (n = 30, 37.0%), the
Americas (n = 14, 17.3%), and Africa (n = 1, 1.2%). Fourteen (16.9%) studies assessed the
effects of exposure to PAHs as the sole measured pollutants in firefighters [39], paving
workers [99], airport personnel [51], policemen [53–55], coal tar workers [68], graphite-
electrode-producing workers [88], automobile inspectors [90], brick factory workers [93],
and automobile emission and waste incinerating companies [102,112]. Eight (9.6%) stud-
ies considered the PAH exposure combined with other chemicals, such as fluorene [40],
VOCs [41,44], heterocyclic compounds [43], antineoplastic drugs [16], fibre glass [56], heavy
metals, dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichloroethylene
(DDE) [73], as well as metals, benzene, persistent organic pollutants (POPs), and others [80].
Thirteen (15.9%) studies evaluated the exposure to formaldehyde in fibreboard plants [42],
pathology anatomy laboratories [61–63], the plywood industry [74,84], a furniture manu-
facturing facility [91], melamine tableware manufacturing workshops [116–118], and in
hairdressers; one of these directly reporting formaldehyde exposure and including a control
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group [92] and the other assessing exposure to hair dyes and waiving and straightening
products that also have formaldehyde in their composition [67]. Eleven (13.4%) studies
were performed on dust, specifically marble dust [45], silica dust [47], wood dust [48],
coal [95] and coal together with traffic air pollution [105], cobalt dust and other metals [64],
tobacco dust [75], graphene [52,94], and two referred as dust particles [82,107]. Twelve
(14.6%) studies were based on coke-oven exposure [57,59,72,81,85,106,109–111,113–115];
this type of emission usually consists of complex mixtures of dust, vapours, and gases,
which can include carcinogens such as cadmium and arsenic. Eight (9.8%) studies were con-
ducted on diesel exhaust [65,77–79,83,97,100,107], with two studies [77,79] specifically on
fuel and one study on diesel exhaust and dust [107]. Seven (8.5%) studies were performed
under the air pollution “umbrella”, on outdoor air pollution [46], combined with ben-
zene and CO exposure [70], traffic vehicle exhausts [71,104], traffic and coal mining [105],
and in traffic policemen [49,89]. Three (3.7%) studies were made on welding fumes and
solvent based paints [96], metals (zinc and copper) smelting work [60], and gold jew-
ellery fumes [76]. Furthermore, other studies in the selected papers were found, such as
polychlorinated dibenzodioxins, metals and silica [58], perchloroethylene [66], DDT, DDE
together with arsenic and lead [73], bitumen [86,87], cement [98], tobacco smoke [108], and
1-bromopropane [103].

From a total of 81 studies, 65 (80.2%) performed exposure assessments by using air
sampling measurements (n= 30, 46.1%) or personal air sampling devices (n = 6, 9.2%) or by
using biomarkers of exposure, such as urinary 1-hydroxypyrene (1-OHP) metabolite from
PAHs exposure (n= 27, 41.5%), as well as other metabolites measured in urine or blood
(n = 10, 15.3%).

Significantly higher DNA damage levels, as evaluated by the comet assay, were ob-
served in 66 of these studies (81.5%). The remaining studies (n = 15, 18.5%) did not
show statically significant results, namely PAH exposure [39,54,55], coke-oven PAH expo-
sure [106,110,111,114], smelting [60], dust [64,107], traffic air pollution [71], JP-8 jet fuel [79],
diesel exhaust [97], bitumen [86], and tobacco dust [108]. The study from Cavallo [52], in
six graphene workers and eleven controls, used three comet descriptors, reaching statis-
tically significant results with % DNA in the tail but not by using the tail moment and
length. The descriptors used to express the comet assay data (one or more in the same
study) were as follows: % DNA in tail/tail intensity in 33 studies, tail length in 25 studies,
tail moment in 21 studies, olive tail moment in 16 studies, DNA damage index in 7, and
other descriptors mentioned in 13 studies.

Regarding environmental exposure to air pollutants, as with occupational exposure, there
is a variety of chemical exposures, including PAHs “alone” or combined, PM, diesel exhaust,
wood smoke, tobacco smoke, and others. These studies were performed in Europe (n = 17;
36.2%), followed by Asia (n = 14; 28.8%), South America (n = 14; 28.8%), and Africa (n = 2; 4.3%).
Regarding exposure to PAHs, from a total of eight (17.2%) studies, five (62.5%) were performed
in children [129,131,135,154,156] and the other three (37.5%) in adults [133,150,158]. From
six studies conducted in children and adolescents, two studies reported a combined exposure
between PAHs, metals, and VOCs [149,160], and two others besides these chemical substances
were also phthalates [73,139]. The studies from Coronas [127] and Lemos [140] reported both
atmospheric PM2.5 concentrations and contents of 16 PAHs in the organic extract of PM2.5 col-
lected on filters. Four (8.5%) studies addressed PM exposure, PM10 [126], ultrafine particles in
controlled exposure [159], ultrafine particles combined with benzene [121], PM10, PM2.5, gases
(NO2, CO, and SO2), and benzene [162]. Two studies addressed diesel exhaust [120,134], while
others assessed fuel smoke, specifically biomass fuel, in comparison with liquefied petroleum
gas [142–145,148], while three addressed wood smoke [128,130,157] in indoor environments.

Three studies addressed involuntary exposure to tobacco smoke, namely indoor
tobacco smoke [122], second-hand cigarette smoking in children [155], and environmental
tobacco smoking [161]. Two studies assessed exposure to ozone [147,153], one investigated
the effects of formaldehyde under experimental conditions [164], and others looked at hair
dye fumes [124] and coal mining residues [141].
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From a total of 44 studies, 35 (74.5%) performed exposure assessments; air sampling
was measured in twelve (25.5%) studies, seven (14.9%) measured ambient PM, and four
(8.5%) specifically quantified PAHs from PM extracts [127,135,140,156]. Ten (21.3%) studies
measured urinary 1-OHP, an internal biomarker of PAH exposure, and 12 (25.5%) measured
other metabolites in urine or blood. Three studies were on controlled exposure to diesel
exhaust [134], indoor wood smoke [137], and formaldehyde [164].

Significantly higher DNA damage, as evaluated by the comet assay, was observed in
38 of these studies (79.1%). The remaining studies (n = 10, 20.8%) did not show statisti-
cally significant results, namely PAH exposure [127,140,150,156], air pollution [123], wood
smoke [130,137], diesel exhaust [134], ultrafine particles [159], the mixture of PM, gases,
and solvents [162], and the mixture of PAHs, metals, and phthalates [73].

The descriptors used to express the comet assay data (one or more in the same study)
were as follows: % DNA in tail/tail intensity in 21 studies, tail length in 11 studies, tail
moment in 14 studies, olive tail moment in 4 studies, DNA damage index in 5, and strand
breaks in 6 (i.e., primary comet descriptors converted to DNA strand-break frequency by
using calibration with ionising radiation).

In summary, this comprehensive analysis of various studies, both occupational and
environmental, on the genotoxic effects of a variety of air pollutants indicates increased
levels of DNA strand breaks in subjects exposed to these substances compared with non-
exposed subjects, with a majority of statistically significant results. It is important to stress
that by reducing air pollution levels to the WHO-recommended concentrations, an average
person might improve their life expectancy by 2 years, and the comet assay might be useful
in detecting the most vulnerable population.

3.2. Anaesthetics

Anaesthetics play a crucial role in medical procedures, inducing controlled sedation
for surgeries and other interventions. Common gases include nitrous oxide and various
halogenated agents. While patients benefit from their use, healthcare workers exposed
during their professional routine are at risk of health effects [165–169]. Long-term exposure
may lead to symptoms such as headaches, dizziness, and nausea and has been associated
with reproductive issues, including miscarriages and fertility problems in healthcare work-
ers. Additionally, there is a potential for liver and kidney damage, as well as an increased
risk of cancer [168–172]. Available data reviewed in [166,167] suggested an association with
genotoxic risks, particularly for nitrous oxide and halogenated agents, but not for propofol
and its metabolites.

In our systematic scoping review on anaesthetics gases, 103 articles were identified af-
ter duplicate removal, of which 59 were excluded after screening (i.e., reading title/abstract).
From the 44 that were read in full, a total of 29 were excluded (the reasons are shown in
Figure 2). Finally, 15 studies were included in the qualitative analysis, as summarised in
Figure 2 and Table 2.
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Table 2. Summary of findings from the included studies on anaesthetics.

Author Year Main Chemical
Exposure Country

Exposure
Assessment or

Biomarkers
of Exposure

Population
Characteristics DNA Damage Reference/DOI

Occupational exposure

Aun 2018

Isoflurane,
sevoflurane,
desflurane,
and N2O

Brazil -- 26 medical residents

• Comet tail intensity: baseline (6.1 ± 3.4)
vs. half-year of exposure (7.0 ± 4.1) vs.
1 year of exposure (7.3 ± 3.3); non-sig.

[173]
10.1016/

j.mrfmmm.2018.10.002

Baysal 2009

Halothane,
isoflurane,

sevoflurane, N2O,
and desflurane

Turkey --

60
(30 anaesthesiologist,

certified
registered nurse

anaesthetist,
surgeons, 30 controls)

• DNA damage (arbitrary unit): exposed
(19.7 ± 16.6) vs. controls (8.8 ± 4.1); sig.

[174]
10.1016/

j.clinbiochem.2008.09.103

Chandrasekhar 2006

Halothane,
isoflurane,

sevoflurane,
sodium

pentothal, N2O,
Desflurane,

and enflurane

India --

99
(45 exposed

operating room staff,
54 controls)

• Comet tail length: exposed (16.08) vs.
controls (7.04); sig.

[175]
10.1093/mutage/gel029

El-Ebiary 2013

Halothane,
Isoflurane,

(sevoflurane),
and N2O (as pure,

liquefied
compressed,

medical grade
nitrous oxide gas)

Egypt --

60
[40 operating room
staff (anaesthetists,

nurses, technicians),
20 controls]

• % DNA tail: controls (1.78 ± 0.71) vs.
staff (3.69 ± 1.05) [anaesthetists
(3.7 ± 1.02) vs. surgeons (3.63 ± 1.16) vs.
technicians (4.2 ± 0.96) vs. nurses
(3.51 ± 0.95)];

sig. for total exposed group, and for
subgroups, non-sig. between subgroups

[176]
10.1177/

0960327111426584
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Table 2. Cont.

Author Year Main Chemical
Exposure Country

Exposure
Assessment or

Biomarkers
of Exposure

Population
Characteristics DNA Damage Reference/DOI

Figueiredo 2022
Inhalational of

aesthetic
isoflurane

Brazil

Workplace
exposure

assessment:
waste

anaesthetic
gases (WAG),

isoflurane,
monitoring

76
(39 professionals

working in a
veterinary hospital,

37 matched controls)

• % DNA tail (according to age): <31,
control (6.0 ± 4.7 [3.8–7.8]) vs. exposed
(9.8 ± 7.3 * [6.4–12.8]), p = 0.03; sig

≥31, control (7.2 ± 3.8 [5.0–10.1]) vs. exposed
(8.4 ± 6.4 [4.7–11.0]), p = 0.55 not-sig.

• % DNA tail (according to age and
exposure time): <31, exposure < 5 years
(8.9 ± 5.4 [7.1–11.1]) vs. (9.9 ± 4.5
[8.2–11.5]), p = 0.69; not sig

≥31, exposure ≥ 5 years (4.1 ± 2.2 [2.8–3.4])
vs. (9.7 ± 6.6 * [7.7–12.5]), p = 0.01 sig.

[177]
10.1007/

s11356-022-20444-2

Izdes * 2009
N2O, isoflurane,
sevoflurane, and

desfluran
Turkey --

74
[19 office workers,

17 anaesthesia nurses,
19 nurses—

antineoplastic drugs;
19 controls

(unexposed office
workers)]

• Total comet scores (TCS): anaesthesia
nurses (18.58 ± 5.03), control
(6.84 ± 3.16); sig.

[178]
10.1539/joh.m8012

Izdes 2010

Waste anaesthetic
gases (N2O,
isoflurane,

sevoflurane, and
desflurane)

Turkey --

80
[40 nurses,
40 controls

(unexposed health
care workers)]

• Tail intensity: anaesthesia nurses
(8.36 ± 2.16) vs. unexposed controls
(3.77 ± 0.97); sig.

[179]
10.1080/

19338244.2010.486421

Khisroon 2020 Mixture not
specified Pakistan --

99
(50 exposed,

49 unexposed)

• Total Comet Score (TCS): exposed
(128.4 ± 44.3) vs. unexposed
(50.5 ± 20.8); sig.

[180]
10.1136/

oemed-2020-106561
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Table 2. Cont.

Author Year Main Chemical
Exposure Country

Exposure
Assessment or

Biomarkers
of Exposure

Population
Characteristics DNA Damage Reference/DOI

Rozgaj 2009
Sevoflurane,
isoflurane,
and N2O

Croatia --

100
(50 room staff

[anaesthetists, nurses,
technicians],
50 controls)

• Comet tail length: exposed
(21.04 ± 7.30) vs. unexposed
(17.57 ± 3.39); sig.

• Comet tail moment: exposed
(0.58 ± 0.40) vs. unexposed
(0.51 ± 0.32); non-sig.

[181]
10.1016/

j.ijheh.2007.09.001

Sardas * 2006
N2O, isoflurane,
sevoflurane, and

desflurane
Turkey --

34
[17 exposed

anaesthesiology staff,
17 controls

(unexposed office
workers)]

• TCS (total comet score): exposed
(21.5 ± 5.0) vs. unexposed
(8.6 ± 4.7); sig.

[182]
10.1007/

s00420-006-0115-6

Souza 2016

Waste anaesthetic
gases (isoflurane,

sevoflurane,
desflurane,
and N2O)

Brazil

Concentrations
of halogenated

anaesthetics
(isoflurane,
sevoflurane,

and desflurane)
and N2O using
a sample flow

rate of
10 L/min

60
(30

anaesthesiologists,
27 internal medicine

physicians)

• Tail moment: Comet assay (control
0.31 ± 0.27; exposed 0.34 ± 0.30);
non-sig.

[183]
10.1016/

j.mrfmmm.2016.09.002

Szyfter § 2004
Sevoflurane,

halothane, and
isoflurane

Poland

Analysis of
N2O, volatile
anaesthetics
and organic

solvents in the
ambient air of

operating
rooms

49
[29 operating room
staff (anaesthetists,

nurses, technicians),
20 controls]

• Average migration (µM) of PBL DNA:
exposed (41.57 ± 9.00) vs. controls
(43.21 ± 8.00); non-sig.

[184]
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Table 2. Cont.

Author Year Main Chemical
Exposure Country

Exposure
Assessment or

Biomarkers
of Exposure

Population
Characteristics DNA Damage Reference/DOI

Szyfter § 2016
N2O, halothane,
isoflurane, and

sevoflurane
Poland

Concentration
of waste

anaesthetic
gases (N2O,
halothane,

isoflurane, and
sevoflurane)

200
(100 anaesthetists,

100 controls)

• Comet length: exposed (43.21 ± 8.00)
vs. unexposed (41.57 ± 9.02); non-sig.

[185]
10.1007/

s13353-015-0329-y

Wrońska-Nofer 2009

N2O, sevoflurane
or isoflurane and

halogenated
hydrocarbons

Poland

Air N2O
(breathing zone
sampling) and

volatile
anaesthetics
(individual
dosimeters)

167 medical staff
members

(84 exposed male
anaesthetists and

55 nurses, and
83 unexposed

controls without a
history of working in

operating rooms)

• DNA damage score: low exposure
(29.5± 1.94) vs. high exposure
(34.3 ± 2.73) vs. unexposed
(24.0 ± 1.54); sig.

[186]
10.1016/

j.mrfmmm.2009.03.012

Wrońska-Nofer 2012 N2O Poland

Air N2O
(stationary
monitoring
sampling)

halogenated
anaesthetics

and toxic
solvents, 8
individual

dosimeters)

72
(36 exposed nurses in

operating rooms,
36 unexposed nurses)

• DNA damage score: exposed
(31.1 ± 1.5) vs. unexposed
(23.3 ± 1.5); sig.

[187]
10.1016/

j.mrfmmm.2011.10.010

* The studies have partially overlapping populations of unexposed controls (i.e., healthy office workers). Comet assay results of 16 of the 19 subjects in the second study were obtained in
the first study. There is no information regarding the reuse of comet data in the group of exposed nurses. § The papers report the same result, 41.57 ± 9.00 (median = 40.22), although in
different groups in the 2016 paper as compared to the 2004 paper. Furthermore, the dataset with a mean of 43.21 ± 8.00 is reported in both papers but for different groups and with a
different median (43.28 versus 42.28). In both cases, the results are surprisingly similar, considering that one study uses 29/20 subjects in each group, whereas the other study uses
100/100 subjects (exposed/unexposed). The authors have not clarified whether or not the same data have been reported twice.
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Most of the studies were conducted in Asia (mainly Turkey, n = 6; 40.0%), followed by
Europe (mainly Poland, n = 5; 33.3%) and South America (Brazil, n = 3; 20.0%), with only
one study conducted in Africa (Egypt; 6.7%). A total of 15 studies of occupational exposure
were conducted on medical room staff during their working shifts (anaesthesiologists,
nurses, and technicians). Regarding exposure assessment, six studies [177] conducted
workplace exposure assessments and two studies [174] measured the oxidative status of
the subjects, not a specific biomarker of exposure to anaesthetic gases. It was verified
that occupational exposure can lead to DNA-damaging effects (n = 11, 73.3%) and that
younger exposed professionals with higher workloads tend to display higher levels of DNA
damage [174–182,186,187]. Only four of the reviewed papers showed no significant effects
of occupational exposure [173,183–185]. In general, the studies that found positive results
also mention the need for further research in this area and for the protection of workers
dealing with anaesthetics. The descriptors used to express the comet assay data were as
follows: % DNA in tail/tail intensity in five studies, tail length and DNA damage index in
three studies each, tail moment in two studies, and other descriptors in three studies.

In summary, the overall results from the application of the comet assay in the study
of anaesthetics indicate that exposure may have genotoxic effects, contributing to a better
understanding of the potential risks to healthcare workers and thus strongly supporting
the need for a mitigation of the risks.
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3.3. Antineoplastic Drugs

Antineoplastic drugs, also known as cytotoxic or cytostatic drugs, are a heteroge-
neous group of chemicals that share an ability to inhibit tumour growth by disrupting
cell division and killing actively growing cells [188]. Although patients may benefit from
these treatments, there is still a major health concern regarding the use of some drugs
classified as carcinogenic, mutagenic, or teratogenic agents [188,189]. Moreover, hospital
workers can be exposed to antineoplastic drugs during drug preparation, administration,
and contact with contaminated workplace, surfaces, medical equipment, clothing, and
patient excreta [190–193].

Evidence has shown that occupational exposure to antineoplastic drugs is associated
with an increased risk of acute health effects, including hair loss, headaches, and hyper-
sensitivity; adverse reproductive outcomes, such as infertility, spontaneous abortions, and
congenital malformations; and certain cancers [194–199].

In our systematic scoping review on occupational exposure to antineoplastic drugs,
68 articles were identified after the removal of duplicates, of which 47 were excluded
after screening (reading title/abstract). From the 21 articles read in full, 2 were ex-
cluded because they did not present comet assay data. Nineteen studies of occupational
exposure [12,16,191,196,200–214] remained for qualitative analysis, as summarised in
Figure 3 and Table 3.

Toxics 2024, 12, x FOR PEER REVIEW 41 of 112 
 

 

 
Figure 3. PRISMA flow diagram of systematic scoping review for antineoplastic drugs. 

 

Figure 3. PRISMA flow diagram of systematic scoping review for antineoplastic drugs.



Toxics 2024, 12, 270 45 of 121

Table 3. Summary of findings from the included studies on antineoplastic drugs (occupational exposure).

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Aristizabal-
Pachon 2002 Antineoplastic

drugs Colombia --

80
(40 exposed,

40 unexposed)
hospital workers

• Comet tail length—Mean: exposed
(4.62 ± 1.477 µm) vs. unexposed
(2.41 ± 0.577); sig.

[212]
10.1007/

s43188-019-00003-7

Buschini 2013 Antineoplastic
drugs Italy --

137
(63 exposed,

74 unexposed)
nurses

• % DNA tail—Mean: exposed
(0.95 ± 0.03) vs. unexposed
(0.99 ± 0.03);

non-sig.

[209]
10.1136/

oemed-2013-101475

Cavallo 2009 Antineoplastic
drugs Italy --

106
(30 exposed,

76 unexposed)
hospital workers

• % DNA tail in lymphocytes:
exposed (10.72 ± 7.04) vs.
unexposed (11.24 ± 8.6); non-sig.

• Comet tail moment in
lymphocytes—Mean: exposed
(16.86 ± 9.13) vs. unexposed
(16.72 ± 7.17), p > 0.05.

• % DNA tail in buccal cells: exposed
(10.02 ± 6.1) vs. unexposed
(13.78 ± 9.80); non-sig.

• Comet tail moment in buccal
cells—Mean: exposed
(34.58 ± 25.98) vs. unexposed
(32.31 ± 12.79); non-sig.

[16]
10.1002/em.20501

Connor 2010 Antineoplastic
drugs USA

Fixed-location and personal
breathing zone air samples

Cyclophosphamide,
ifosfamide, paclitaxel,

5-fluorouracil, and
cytarabine surface

contamination
Urinary cyclophosphamide

and paclitaxel.

121
(68 exposed,

53 unexposed)
hospital workers

• % DNA in tail: exposed
(53.06 ± 7.32) vs. unexposed
(53.12 ± 7.5); non-sig.

• Olive Tail Moment—Mean:
exposed (2.540 ± 652) vs.
unexposed (2.518 ± 715); non-sig.

[207]
10.1097/

JOM.0b013e3181f72b63
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Table 3. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Cornetta 2008 Antineoplastic
drugs Italy -

90
(83 exposed and
73 unexposed)

hospital workers

• Comet %DNA tail:
• exposed (1.16 ± 0.82) vs. unexposed

(0.77 ± 0.47); Sig.

[204]
10.1016/

j.mrfmmm.2007.08.017

Hongping 2006 Vincristine China --

30
(15 exposed,

15 unexposed)
workers from a

plant production

• Comet tail length—Mean: exposed
(1.72 ± 0.15 µm) vs. unexposed
(0.71 ± 0.01 µm); Sig.

• Comet tail moment—Mean:
exposed (0.29 ± 0.03 µm) vs.
unexposed (0.17 ± 0.05 µm); Sig.

[214]
10.1016/

j.mrfmmm.2006.02.003

Huang 2022 Antineoplastic
drugs China --

455
(305 exposed,

150 unexposed)
nurses

• Comet Tail moment—Mean:
exposed (0.62) vs. unexposed (0.46);
Sig.

• Comet Olive Tail moment—Mean:
exposed (1.10) vs. unexposed (0.92);
Sig.

• Comet Tail length—Mean: exposed
(6.17) vs. unexposed (5.16); Sig.

• % DNA in tail: exposed (4.06) vs.
unexposed (3.52); Sig.

[213]
10.1136/

oemed-2021-107913

Kopjar * 2009 Antineoplastic
drugs Croatia --

100
(50 exposed,

50 unexposed)
healthcare workers

• Comet tail length—Mean: exposed
(17.46 ± 0.08 µm) vs. unexposed
(14.00 ± 0.02); Sig.

[191]
10.1016/

j.ijheh.2008.10.001
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Table 3. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Kopjar * 2001 Antineoplastic
drugs Croatia --

70
(50 exposed,

20 unexposed)
hospital workers

• Comet tail length—Mean: exposed
(17.46 ± 1.99 µm) vs. unexposed
(12.55 ± 0.82 µm); Sig.

• %DNA tail—Mean: exposed
(81.49 ± 4.31%) vs. unexposed
(76.01 ± 3.70%); Sig.

• Comet tail moment: exposed
(14.31 ± 2.16 µm) vs. unexposed
(9.78 ± 0.91 µm); Sig.

[196]
10.1093/

mutage/16.1.71

Ladeira 2015 Antineoplastic
drugs Portugal

Cyclophosphamide,
5-Fluorouracil, and
Paclitaxel surface

contamination

92
(46 exposed,

46 unexposed)
hospital workers

• % DNA tail: exposed (15 ± 1.40) vs.
unexposed (12.41 ± 1.24); Non-sig.

[210]
10.3934/

genet.2015.3.204

Laffon 2005

Antineoplastic
drugs

(cyclophos-
phamide,
cisplatin,

doxorubicin,
mitomycin C,
5-fluorouracil,
methotrexate)

Portugal --

52
(30 exposed,

22 unexposed)
nurses

• Comet tail length—Mean: exposed
(46.46 ± 0.09 µm) vs. unexposed
(42.68 ± 0.10 µm); Sig.

[12]
10.1002/ajim.20189

Maluf 2000 Antineoplastic
drugs Brazil --

24
(12 exposed,

12 unexposed, plus a
historic control of
34 non-exposed

workers)
hospital workers

• DNA damage index (visual scoring):
exposed (20.83 ± 10.19) vs.
unexposed (8.08 ± 5.16); sig.

[200]
10.1016/

S1383-5718(00)
00107-8
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Table 3. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Oltulu 2019 Antineoplastic
drugs Turkey --

59
(29 exposed,

30 unexposed)
hospital workers

• DNA damage index (visual scoring
0–200): exposed (2.00 IQR 0.00–3.00)
vs. unexposed (0.00 (0.00–2.25);
non-sig.

[211]
10.33808/

clinexphealthsci.
563988

Rekhadevi 2007 Antineoplastic
drugs India Urinary cyclophosphamide

120
(60 exposed nurses
and 60 unexposed

subjects)

• Comet tail length lymphocytes
mean:

• Exposed (13.66 ± 2.37) vs.
unexposed (6.21 ± 0.0.92); sig.

[203]
10.1093/

mutage/gem032

Rombaldi 2008 Antineoplastic
drugs Brazil -

40
(20 exposed and
20 unexposed)

hospital workers

• Comet Damage Index:
• exposed (18.89 ± 8.62) vs.

unexposed (6.21 ± 2.78); sig.

[205]
10.1093/

mutage/gen060

Sasaki 2008 Antineoplastic
drugs Japan --

224
(121 exposed,

57 highly exposed
[antineoplastic
preparation],

46 unexposed)
female nurses

• Comet tail length in log units:
exposed (0.764 ± 0.121) vs.
unexposed (0.711 ± 0.089); Sig.

• Comet tail moment in log units:
exposed (0.312 ± 0.253) vs.
unexposed (0.253 ± 0.237); Non-sig.

[206]
10.1539/joh.50.7

Ursini 2006 Antineoplastic
drugs Italy

5-Fluorouracil, cytarabine,
gemcitabine,

cyclophosphamide, and
ifosfamide surface

contamination
Biological monitoring of

α-Xuoro-β-alanine in urine
(metabolite of

5-Xuorouracile)

65
(30 exposed,

35 unexposed)
hospital workers

• Comet tail moment buccal
cells—Mean: pharmacy technicians
(32.6 ± 18.2 µm) vs. hospital nurses
(43.2 ± 36.0 µm) vs. ward nurses
(27.4 ± 13.9 µm) vs. unexposed
(28.6 ± 12.4 µm); Non-sig.

• Comet tail moment
lymphocytes—Mean: pharmacy
technicians (20.8 ±10.1 µm) vs.
hospital nurses (15.5 ± 9.0 µm) vs.
ward nurses (14.7 ± 7.9 µm) vs.
unexposed (16.1 ± 8.1µm); Non-sig.

[201]
10.1007/

s00420-006-0111-x
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Table 3. Cont.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Villarini 2011 Antineoplastic
drugs Italy

5-Fluorouracil and
cytarabine surface

contamination
Urinary cyclophosphamide

104
(52 exposed,

52 unexposed)
healthcare workers

• Comet tail length—Mean: exposed
(2.73 ± 0.28) vs. unexposed
(1.67 ± 0.14); Sig.

[208]
10.1093/

mutage/geq102

Yoshida 2006

Antineoplastic
drugs

(cyclophos-
phamide,

dacarbazine,
isophos-

phamide,
aclarubicin,
amrubicin,
bleomycin,

daunorubicin,
doxorubicin,
pirarubicin,
carboplatin,

cisplatin,
docetaxel,
etoposide,
irinotecan,
paclitaxel,

vinblastine,
vincristine,
vinorelbine,
rituximab)

Japan umu assay from surface
contamination

37
(19 exposed,

18 unexposed)
female nurses

• Comet tail length
lymphocytes—Median: exposed
(8.5, ranging 4.5–13.6 µm) vs.
unexposed (5.1, ranging
3.5–10.3 µm); Sig.

[202]
10.1539/

joh.48.517

* Updated studies from the same author/group of authors. In the first paper, the authors report the mean and SD as 17.46 ± 1.99 and 12.55 ± 0.82 for the exposed and controls,
respectively. However, these data are at odds with the calculated SEM in the 2009 paper (i.e., 0.08 and 0.02 in exposed and controls, respectively). Based on the reported group size, the
SEMs should be 0.28 (exposed, n = 50) and 0.18 (controls, n = 20), respectively.
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From a total of 19 studies, around half were conducted in Europe (n = 9, 47.4%),
6 (31.6%) in Asia, and 4 (21.1%) in the Americas. All the studies were from occupational
settings; one was from a production plant [214], and all the others (n = 18, 94.7%) involved
hospital workers. Only four studies (21.1%) presented exposure assessment data from
surface contamination [201,207,208,210], and one study (5.2%) tested the genotoxicity of
19 antineoplastic drugs used in the hospital ward and 8 wipe-samples from the workbench
after handling antineoplastic drugs, using the umu assay [202]. The study by Connor (2010)
measured fixed-location air samples and personal breathing zone air samples [207]. For
biological monitoring of exposure, four studies (21.1%) performed urinary measurements,
and three of these studies (15.8%) also made exposure assessments [201,207,208]. The
study from Rombaldi (2008) measured the serum endpoints of oxidative stress, such as
superoxide dismutase (SOD), catalase (CAT) and thiobarbituric acid-reactive substances
(TBARS) [205]; however, these are not considered specific biomarkers of exposure.

The results of studies on the genotoxic effects of antineoplastic drugs using the comet
assay in occupationally exposed workers are inconsistent, but a slightly positive association
exists. Overall, 13 studies (68.4%) showed a statistically significant increase in DNA damage
in the exposed group compared with the controls [12,191,200–206,208,211–214]. Ursini (2006)
showed positive results for both biological matrices under study—lymphocytes and buccal
cells [201].

In five studies (26.3%), the levels of DNA damage did not differ statistically between
the exposed and non-exposed groups [16,196,207,209,210], although in two of them (10.5%),
a trend towards an increase in DNA damage was observed in the exposed group [196,210],
while in one study, the % DNA in the tail in both lymphocytes and buccal cells was
marginally higher in the control subjects [16]. It is important to mention that antineoplastic
drugs are well-known cross-linking agents, which can reduce the ability of DNA with
strand breaks to migrate in an electric field. The presence of a cross-linking agent could
have hidden an increase in the DNA migration associated with the induction of DNA
strand breaks [208]. The study of Hongping (2006) reported mixed results because there
was a significant increase in the comet tail length and a non-significant increase in the
comet tail moment in the exposed group [214]. The parameters used to express the comet
assay results were as follows: tail length and tail moment in nine studies each, % DNA in
the tail in seven studies, and the DNA damage index in three studies (some studies cited
more than one parameter). When assessing the potential hazards of antineoplastic drugs
in an occupational setting, it is also important to consider the use of personal protective
equipment. Well-educated staff, adequate protection, and the use of automated systems for
drug handling significantly decrease the possibility of contamination and exposure, thus
affecting the comet assay results.

In summary, this comprehensive analysis of various studies on the genotoxic effects of
antineoplastic drugs indicates increased levels of DNA strand breaks in subjects exposed
to these drugs compared with non-exposed subjects, showing a majority of statistically
significant results.

3.4. Heavy Metals

Several heavy metals pose significant health risks, particularly to industrial workers
(as these substances are frequently used in this context) and residents in nearby areas.
While the harmful effects of acute exposure to heavy metals are well-documented, there is a
growing concern about their long-term effects and effects of combined exposures, especially
considering their persistent nature, meaning that even minimal exposure to heavy metals
may be detrimental to health, with particular risks of neurological disorders and cancer.
Moreover, studies have demonstrated that metal ions interact with cellular components,
including DNA, and that this can result in an altered structure and mutations, as well as
cell death and carcinogenesis [215–217].

Our systematic scoping review gathered 979 reports (971 from the databases and 8 by
manual entry, excluding duplicates). After the preliminary screening by title and abstract,
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889 documents were excluded as they did not refer to human biomonitoring. From the
90 potentially eligible studies, 33 were excluded (mostly for not presenting comet assay
data, study design flaws, DNA repair rather than DNA damage, etc.). The remaining
57 studies were assessed for qualitative analysis, as summarised in Figure 4 and Table 4.
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From a total of 57 studies, 24 studies (42.1%) were conducted in Asia, 19 studies (31.6%)
in Europe and 14 studies (24.6%) in the Americas. There were 37 studies (64.9%) of occupa-
tional exposure, mainly from industry settings, and 18 studies (31.6%) of environmental
exposure, of which 3 (16.7%) were in children, 2 (11.1%) in adolescents and 11 (61.1%) in the
general population. Two studies were classified as both occupational and environmental.
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Table 4. Summary of findings from the included studies on heavy metals.

Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Occupational exposure

Aksu 2019 Cr, Cu, Cd,
Ni, Pb Turkey Cr, Mn, Ni, Cu, As, Cd,

Pb in blood

96
(48 welders,
48 controls)

• Comet tail intensity
(lymphocytes): exposed
(6.52 ± 3.13) vs. unexposed
(2.31 ± 1.09); sig.

[218]
10.1016/

j.mrgentox.2018.11.006

Balachandar 2010 Chromium India Cr in air and urine
Cr in air

108
(36 leather tanning
industry workers,
36 environmental
exposure subjects,

36 controls)

• Comet tail length: occupational
exposure (4.21 [3.21–10.98]) vs.
environmental exposure
(3.98 [2.98–11.27]) vs. controls
(3.01 [2.68–9.40]); reported to be
sig. for exposed workers

[219]
10.1007/

s00420-010-0562-y

Batra 2010 Lead India Pb in blood

220
(110 workers

occupationally
exposed to lead,

110 controls)

• % DNA tail: exposed
(14.80 ± 1.31) vs. unexposed
(6.12 ± 1.80); sig.

[220]
10.7860/JCDR/

2020/43682.13572

Cavallo 2002 Antimony Italy Airborne Sb2O2;
personal air samplers

46
(23 workers assigned

to different
fire-retardant

treatment tasks in the
car upholstery

industry, 23 controls)

• Comet tail moment: control:
16 ± 7 (SD), exposed group A:
14 ± 8, exposed group B: 19 ± 9,
non-sig.

[221]
10.1002/em.10102

Chinde 2014 Lead India Pb in blood

400
(200 lead–acid
storage battery
recycling and

manufacturing
industry workers,

200 controls)

• % DNA tail: exposed
(12.97 ± 2.33) vs. unexposed
(4.80 ± 2.57); sig.

[222]
10.1007/

ts11356-014-3128-9
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Table 4. Cont.

Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Coelho 2013 Lead, Cd, As Portugal Metalloids levels in
blood

122
(41 miners,

41 subjects living
near a mine,
40 controls)

• % DNA tail: occupational
exposure (18.73 ± 7.60) vs.
environmental exposure
(25.58 ± 2.75) vs. unexposed
(12.40 ± 3.04); sig.

[223]
10.1016/

j.envint.2013.08.014

Danadevi 2003 Lead India Pb, Cd in blood

81
(45 workers

employed in a
secondary Pb
recovery unit,
36 controls)

• Damage index (DI, visual
scale—AU): exposed (44.6 ± 8.5)
vs. unexposed (21.1 ± 11.7); sig.

[224]
10.1016/s0300-

483x(03)00054-4

Danadevi 2004 Cr, Ni India Cr, Ni in blood
204

(102 welders,
102 controls)

• Comet tail length: controls:
8.9 ± 3.2, welders:
23.1 ± 3.9, sig.

[225]
10.1093/mutage/geh001

De Boeck 2000 Cobalt
Belgium, Norway,
Finland, Sweden,

England
Co in urine

99
(35 cobalt dust,

29 carbide-cobalt,
35 unexposed)

• % DNA tail: Co (0.50 ± 1.44) vs.
hard metals (0.57 ± 1.24) vs.
unexposed (0.51 ± 1.35); non-sig.

• Comet tail length: Co (0.71 ± 1.38)
vs. hard metals (0.65 ± 1.23) vs.
unexposed (0.64 ± 1.25); non-sig.

• Comet tail moment: Co
(0.37 ± 1.85) vs. hard metals
(0.40 ± 1.45) vs. unexposed
(0.34 ± 1.47); non-sig.

[64]
10.1002/1098-

2280(2000)36:2<151::aid-
em10>3.3.co;2-m

De Olivera 2012 Copper (and
other metals) Brazil Cu in blood

22
(11 copper-smelter,

11 controls)

• Damage index (DI, visual
scale—AU) exposed (17.6 ± 10.2)
vs. unexposed (4.29 ± 2.53); sig.

[226]
10.1177/

0748233711422735
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Table 4. Cont.

Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

De Restrepo 2000 Lead Colombia Lead in air
Pb in blood

56
(43 workers of
electric battery

factories exposed to
lead compounds,

13 controls)

• Comet tail length: Group I
>40 µg/dL (55.60 [42.52–68.70]) vs.
Group II 41–80 µg/dL (65.60
[52.50–78.63]) vs. Group III
81–120 µg/dL (60.53 [50.50–70.60])
vs. Group IV >120 µg/dL (85.90
[69.21–102.53]); sig. between the
lowest and highest
concentration groups.

[227]
10.1002/1097-

0274(200009)38:3<330::aid-
ajim13>3.0.co;2-z

Fracasso 2002 Lead Italy Pb, Cd in blood
66

(37 battery plant
workers, 29 controls)

• % DNA tail: exposed (58.4 ± 15.8)
vs. unexposed (40.9 ± 15.6); sig.

• Comet tail length: exposed
(117.1 ± 32.8) vs. unexposed
(106.6 ± 25.3); non-sig.

• Comet tail moment: exposed
(69.0 ± 25.5) vs. unexposed
(45.5 ± 19.4); sig.

[228]
10.1016/s1383-

5718(02)00012-8

Gambelunghe 2003 Chromium Italy Cr urine
39

(19 chrome-plating
workers, 20 controls)

• Comet tail moment: exposed
(0.42 ± 0.21) vs. unexposed
(0.42 ± 0.21); sig.

[229]
10.1016/s0300-

483x(03)00088-x

García-Lestón 2011 Lead Portugal

Lead in blood
Zn protoporphyrin,

δ-aminolaevulinic acid
dehydratase activity

108
(70 workers in plants
using inorganic lead,

38 controls)

• % DNA tail: exposed (4.3) vs.
unexposed (5.3) non-sig.

[230]
10.1016/

j.mrgentox.2011.01.001

Grover 2010 Lead India 4.5 µg/m3 Pb in air
Pb in blood and urine

180
(90 workers of
secondary Pb
recovery unit,
90 controls)

• Comet tail length: exposed
(17.86 ± 0.88) vs. unexposed
(8.15 ± 0.63); sig.

[231]
10.1016/

j.ijheh.2010.01.005
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Table 4. Cont.

Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Hernandez-
Franco 2022 Lead Mexico Pb in blood

53
(37 battery recycling
workers, 16 controls)

• Comet tail length: control:
36, exposed: 40 µm; non-sig.

[232]
10.3390/ijerph19137961

Iarmarcovai 2005 Lead, cadmium France
Al, Cd, Cr, Co, Pb, Mn,

Ni, Zn in blood
and urine

57
(27 welders,
30 controls)

• Olive tail moment: exposed
(4.5 ± 1.7) vs. unexposed
(2.8 ± 0.8); sig.

[233]
10.1093/mutage/gei058

Kašuba 2012 Lead, cadmium Croatia Pb, Cd in blood
60

(30 pottery-glaze
workers, 30 controls)

• Comet tail intensity: exposed
(3.21 ±0.73) vs. unexposed
(1.54 ± 0.73); sig.

• Comet tail moment: exposed
(0.55 ±0.16) vs. unexposed
(0.21 ± 0.02); sig.

• Comet tail length: exposed
(16.66 ± 1.20) vs. unexposed
(14.10 ± 0.2); sig.

[234]
10.1007/

s00420-011-0726-4

Kašuba 2020 Lead Croatia
Pb in blood

ALAD activity and
EP level

98
(50 manufacture lead

workers,
48 unexposed)

• Comet tail length: exposed
(16.15 ± 5.33) vs. unexposed
(14.27 ± 1.23); non-sig.

• Comet tail Intensity: exposed
(2.64 ± 3.22) vs. unexposed
(1.61 ± 0.74); non-sig.

[235]
10.2478/

aiht-2020-71-3427



Toxics 2024, 12, 270 56 of 121

Table 4. Cont.

Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Kayaalti 2015 Lead Turkey Pb in blood

61 occupationally
exposed to lead

workers
(36 low exposure,
25 high exposure)

• Tail intensity:

Low: 46,908.41 ± 11,596.55, exposed:
62,219.17 ± 21,180.57; sig.

• Comet tail moment.

Low: 4.00 ± 0.62, exposed: 4.90 ± 1.26;
sig.

• “DNA tail” (presumably tail
length)

Low: 85.58 ± 24.24, exposed:
103.94 ± 34.22; sig. (all data are mean
and SD)

[236]
10.1080/

19338244.2013.787964

Khisroon 2021 Cd, Cr, Fe, Mn,
Ni, Pb Pakistan Cd, Cr, Fe, Mn, Ni, Pb

in scalp hair

118
(59 welders,
59 controls)

• DNA damage index: exposed
(121.8 ± 10.7) vs. controls
(56.5 ± 17.6); sig.

[237]
10.1007/

s12011-020-02281-x

Liu 2017 Indium China In in urine
In in ambient

120
(57 indium exposed

workers, 63 controls)

• Comet tail length: exposed
(16.36 ± 7.56) vs. unexposed
(10.80 ± 5.63); sig.

• % DNA tail: exposed (5.01 ± 3.08)
vs. unexposed (2.69 ± 1.61); sig.

[238]
10.1093/toxsci/kfx017

Meibian-
Zhang 2008 Chromium China Cr in air

Cr in blood and urine

90
Exposure group I:

30 tannery workers
exposed to trivalent

chromium from
tanning department;
exposure group II:

30 tannery workers
from finishing
department;
30 controls.

• Olive tail moment: moderate
exposure (3.43 [2.31–8.29]) vs. high
exposure (5.33 [2.90–8.50]) vs.
unexposed (2.04 [0.09–3.83]); sig.

[239]
10.1016/

j.mrgentox.2008.04.011
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Table 4. Cont.

Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Minozzo 2010 Lead Brazil Lead in blood

106
(53 workers in

recycling of
automotive batteries,

53 controls)

• Damage index (DI, visual
scale—AU): exposed
(21.70 ± 27.85) vs. unexposed
(2.57 ± 2.79); sig.

[240]
10.1016/

j.mrgentox.2010.01.009

Muller 2022 Chromium Brazil Cr, Pb, As, Ni, V in
blood

100
(50 male

chrome-plating
workers,

50 unexposed)

• % DNA tail (alkaline CA):
exposed (10.10 ± 2.16) vs.
unexposed (8.31 ± 1.32); sig.

[241]
10.1080/

01480545.2020.1731527

Olewińska 2010 Lead Poland
Lead (PbB) and zinc

protoporphyrin (ZPP)
in blood

88
(62 metalworkers
exposed to lead,

26 controls)

• % DNA tail: exposed (60.3 ± 14)
vs. unexposed (37.1 ± 17.6); sig. [242]

Palus 2003 Lead, cadmium Poland Pb, Cd in blood

106
(44 Pb exposed,
22 Cd exposed,
40 unexposed)

• Damage index (DI, visual
scale—AU): Pb-exposed
(15.6 ± 4.1) vs. Cd-exposed
(19.6 ± 5.2) vs. unexposed
(11.3 ± 5.0); sig.

[243]
10.1016/s1383-

5718(03)00167-0

Palus 2005 Arsenic Poland
As concentration in

dust and fumes
As in urine

155
(71 copper-smelter

workers, 80 controls)

• Comet tail moment: control:
2.1 (0.0–30.0) and workers:
13.2 (0.0–140.0); sig.

[244]
10.1002/em.20132

Pandeh 2017 Fe Iran Iron status (including
serum iron)

56
(30 steel company

workers, 26 controls)

• Tail length: 15.88 (8.94–20.44) vs.
6.17 (5.57–8.07); sig.

• % DNA tail: 8.98 (5.81–11.37) vs.
3.97 (30.7–4.84); sig.

• Tail moment: 3.42 (1.60–6.01) vs.
0.68 (0.53–0.93); sig.

• Tail intensity: 24.59 (11.74–29.53)
vs. 20.19 (17.50–22.26); sig.

[245]
10.1007/

s11356-017-8657-6
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Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Pawlas 2017 Lead Poland Cd, Zn in blood

116
(78 lead and

zinc-smelter and
battery recycling

plan workers,
38 controls)

• % DNA tail: exposed (14.1 ± 8.8)
vs. unexposed (16.2 ± 12.8);
non-sig.

• Comet tail moment: exposed
(6.5 ± 8.4) vs. unexposed
(10.2 ± 15.7); non-sig.

• Comet tail length: exposed
(28.4 ± 13.5) vs. unexposed
(31.9 ± 24.4); non-sig.

[246]
10.17219/acem/64682

Pérez-Cadahía 2008 Lead Spain Al, Ni, Cd, Pb, Zn
in blood

240
(61 oil collectors,
59 hired workers,
60 high-pressure
machine workers,

60 unexposed)

• % DNA tail: exposed—all groups
(0.18 ± 0) vs. unexposed
(0.09 ± 0); sig.

[247]
10.4137/ehi.s954

Rashid 2018 Cd, Zn Pakistan Cd, Zn in blood
60

(35 traffic police
wardens, 25 controls)

• Comet tail length: exposed
(4.65 ± 1.70) vs. unexposed
(2.07 ± 1.26); sig.

[248]
10.1016/

j.scitotenv.2018.02.254

Singh 2016 Lead India Pb in blood
70

(35 welders,
35 unexposed)

• Comet tail length: exposed
(29.21 ± 8.8) vs. unexposed
(1.47 ± 0.5); sig.

[249]
10.1177/

0748233715590518

Wang 2018 Pb China Pb in blood

267
146 electronic waste
processing workers,

121 controls)

• % DNA tail: exposed (6.5 ± 0.9)
vs. unexposed (1.8 ± 0.3); sig.

[250]
10.1016/

j.envint.2018.04.027
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Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Wani 2017 Lead, Zn India Pb in blood
Zn in blood

130
(92 occupationally
exposed to lead or

lead and zinc,
38 unexposed
controls were
selected from

neighbouring with
similar age)

• Comet tail length: Exposed in
lowest employment time group:
8.36 ± 2.16; unexposed in lowest
employment time group:
6.91 ± 1.67; exposed in highest
employment time group:
20.15 ± 3.53; unexposed in highest
exposure time group: 12.99 ± 3.75;
sig. (All)

[251]
10.1007/

s11356-017-8569-5

Vuyyuri 2006 Arsenic India As in blood
365

(200 glass workers,
165 controls)

• Comet tail length: exposed
(14.95 ± 0.21) vs. unexposed
(8.29 ± 0.71): sig.

[252]
10.1002/em.20229

Wultsch 2011 As, Mn, Ni, Cr Austria Cr, Mn, Ni, As in urine
42

(23 waste incinerator
workers, 19 controls)

• DNA migration (tail factor):
Group I [≥1 and ≤3 months
employment] (6.7 ± 1.9) vs. Group
II [>3 and ≤8 months] (6.3 ± 1.5)
vs. Group III [>8 and ≤11 months]
(6.5 ± 2.4) vs. unexposed
(7.1 ± 1.6); non-sig.

[112]
10.1016/

j.mrgentox.2010.08.002

Zhang 2011 Chromium China Cr in air
Cr in blood

250
(157 electroplating

workers,
93 unexposed)

• % DNA tail: exposed
(3.69 [0.65–16.2]) vs. unexposed
(0.69 [0.04–2.74]); sig.

• Comet tail moment: exposed
(1.13 [0.14,6.77]) vs. unexposed
(0.14 [0.01–0.39]); sig.

• Comet tail length: exposed
(11.77 [3.46, 52–19]) vs. unexposed
(3.26 [3.00, 4.00]); sig.

[253]
10.1186/

1471-2458-11-224
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Exposure Assessment
or Biomarkers

of Exposure
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Characteristics DNA Damage Reference/DOI

Zhijian Chen 2006 Lead China Pb in air
Pb in blood

50 storage battery
workers

(25 exposed,
25 unexposed)

• Comet tail moment: exposed
(1.48 ± 3.43) vs. unexposed
(0.49 ± 1.35); sig.

• Comet tail length: exposed
(2.42 ± 0.45) vs. unexposed
(1.02 ± 0.55); sig.

[254]
10.1016/

j.tox.2006.03.016

Environmental exposure

Andrew 2006 Arsenic USA, Mexico As in drinking water
24 subjects

(12 low exposure,
12 high exposure)

• Comet tail moment: low
(1.4 ± 0.5) vs. high
(2.6 ± 0.6); sig.

[255]
10.1289/ehp.9008

Banerjee 2008 Arsenic India As in water
As in urine, nail, hair

90
(30 exposed subjects

with skin lesions,
30 without skin

lesions, 30 controls)

• Olive tail moment: exposed no
skin lesions (2.76 ± 1.39) vs.
exposed with skin lesions
(2.51 ± 1.40) vs. unexposed
(0.55 ± 0.83); sig.

• Comet tail length: exposed no
skin lesions (11.85 ± 5.51) vs.
exposed with skin lesions
(13.54 ± 4.38) vs. unexposed
(2.20 ± 0.72); sig.

[256]
10.1002/ijc.23478

Basu 2005 Arsenic India As in water
As in urine, nails, hair

60 volunteers
(30 high-level

exposure,
30 controls)

• Comet tail length: exposed
(86.501 ± 5.135) vs. unexposed
(21.25 ± 1.004); sig.

• DNA damage index
• Exposed (1.212 ± 0.049) vs.

controls (0.579 ± 0.043); sig.

[257]
10.1016/

j.toxlet.2005.05.001

Cruz-Esquivel 2019 As, Hg Colombia As, Hg in blood
100 volunteers

(50 exposed,
50 unexposed)

• % DNA tail: exposed (36.03 ± 5.9)
vs. unexposed (13.1 ± 2.1); sig.

[258]
10.1007/s11356-019-

04527-1
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David 2021 Cd, Cr, Zn Pakistan Ni, Cd, Zn, Cr in blood

232 children
(134 living at brick

kiln industries,
98 controls)

• % DNA tail: exposed
(15.02 ± 0.56) vs. unexposed
(10.33 ± 0.55); sig.

[259]
10.1080/

19338244.2020.1854645

Franken 2017 PAHs, metals Belgium
Cr, Cd, Ni in urine

As in blood
MeHg in hair

598 adolescents
(14–15 years old)

• % DNA tail (geometric mean):
4.1 (3.9–4.3)

[260]
10.1016/

j.envres.2016.10.012

Jasso-Pineda 2012 Lead, arsenic Mexico Pb in blood
As in urine

85 exposed subjects
(48 high area,

12 middle area,
25 low area)

• Comet tail moment: low
(2.5 ± 0.4) vs. middle (3.5 ± 0.4)
vs. high (5.2 ± 0.6); sig.

[261]
10.1007/

s12011-011-9237-0

Jasso-Pineda * 2015
Arsenic, lead,

PAH,
DDT/DDE

Mexico
As and 1-OHP in urine

Lead and total
DDT/DDE in blood

276 children
(40/25 with

high/low arsenic,
55/10 with

high/low lead)

• Comet tail moment: high/low
arsenic (4.5 ± 1.08/3.2 ± 0.5) sig.;
high/low lead (3.7 ± 1.8/
4.1 ± 1.5) non-sig.

[73]
10.1016/

j.scitotenv.2015.02.073

Jasso-Pineda 2007 Lead, As Mexico

As, Pb, Cd, Cu, and Zn
in soil

Pb in blood, As in
urine

60 children
(12 low area,

28 medium area,
20 high area

exposure)

• Comet tail moment: low exposure
(3.9 ± 0.2) vs. medium exposure
(5.4 ± 0.2) vs. high exposure
(4.8 ± 0.3); sig. (high versus low)

[262]
10.1002/

ieam.5630030305

Khan 2012 Chromium India Cr in blood
200 volunteers
(100 exposed,

100 unexposed)

• Comet tail length: exposed
(27.39 ± 9.50) vs. unexposed
(8.89 ± 2.49); sig.

[263]
10.1016/

j.scitotenv.2012.04.063

Koppen *,§ 2020
PAHs, metals,

benzene, POPs,
phthalates

Belgium
Ar, Cd, Cu, Ni, Pb, Tl,

Cr in blood
Outdoor air

2283 adolescents
(14–18 years old)

• % DNA tail (alkaline CA): mean
2.4 [2.3–2.5] (positively associated
with blood metals)

[139]
10.1016/

j.envres.2020.110002



Toxics 2024, 12, 270 62 of 121

Table 4. Cont.

Author Year Main Chemical
Exposure Country

Exposure Assessment
or Biomarkers

of Exposure

Population
Characteristics DNA Damage Reference/DOI

Lourenço 2013 Uranium Portugal U, Zn, Mn in blood
84 volunteers
(54 exposed,

30 unexposed)

• DNA damage index:

Stratification in three age groups:

• <40 years: control sites
42.84 ± 28.6 and Cunha Baixa
82.11 ± 42.84; non-sig.

• 40–60 years: control sites
28.6 ± 21.42 and Cunha Baixa
135.7 ± 74.9; sig.

• >60 years: control site 35.7 ± 14.3
Cunha Baixa 71.4 ± 64.3; sig.

[264]
10.1016/

j.tox.2013.01.011

Mendez-
Gomez 2008 As, Pb Mexico

As, Cd, Pb in air
(playground) and

drinking water, As in
urine, Pb in blood

65 subjects
(living near a smelter

facility, 22 near,
22 intermediate,

21 distant)

• Tail length: 28.6 (19.2–48.0),
25.3 (11.8–43.4),
29.2 (12.3–48.0); non-sig.

[265]
10.1196/annals.1454.027

Pelallo-
Martinez *,§ 2014 Lead Mexico Pb in blood

97 volunteers
44 Allede,

37 Mundo Nuevo,
16 Lopez Mateo)

• Olive tail moment: Allende
(8.3 [3.1–16.8]) vs. Mundo Nuevo
(10.6 [5.6–22.9]) vs. Lopez Mateo
(11.7 [7.4–15.9]); sig.

[149]
10.1007/

s00244-014-9999-4

Sampayo-
Reyes 2010 Arsenic Mexico As in water

As in urine
286 subjects

(five villages)

• % DNA tail: low exposure
(22.90 ± 1.17) vs. medium
exposure (32.76 ± 2.55) vs. high
exposure (35.80 ± 3.05); sig.

[266]
10.1093/toxsci/kfq173

Staessen 2001 Lead, cadmium Belgium Pb, Hg in blood
Hg in urine

200 exposed
volunteers

(100 in Peer,
42 in Wilrijk,

58 in Hoboken)

• % DNA tail: Peer (1.02 ± 0.44) vs.
Wilrijk (1.70 ± 0.49) vs. Hoboken:
(1.01 ± 0.42); sig.

[267]
10.1016/s0140-

6736(00)04822-4
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Wu 2009 Lead Taiwan Lead in blood

154 volunteers
(71 immigrant

women from China,
83 native women

from Taiwan)

• % DNA tail: native (33.5 ± 11.7)
vs. immigrant (31.3 ± 9.8);
non-sig.

[268]
10.1016/

j.scitotenv.2009.07.025

Yanez 2003 Lead, arsenic Mexico

As, Pb in soil and
house dust

Pb in blood, As
in urine

55 children
(20 exposed,

35 unexposed)

• Comet tail moment (geometric
mean): exposed (6.8 [5.2–8.9]) vs.
unexposed (3.2 [2.6–3.9]); sig.

• Comet tail length (geometric
mean): exposed (67.6 [58.3–79.3])
vs. unexposed (41.7 [35.8–48.6]);
sig.

[269]
10.1016/

j.envres.2003.07.005

* Studies also in air pollution table; § Studies also in solvents table.
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In the present review, the term “heavy metals” was used as a descriptor of the exposure,
but it should be noted that most (if not all) of the studies refer to complex mixtures of
metals (i.e., co-exposures). Moreover, it is likely that the study populations are exposed to
multiple metals and maybe other hazardous substances, even though only one or a few
metals have been assessed. Thus, confounding is a possibility in studies where genotoxicity
is thought to be attributed to a specific type of heavy metal. Certain studies appear to
have an exploratory approach (e.g., the Flemish biomonitoring studies on environmental
exposures) [139,260,267], whereas other studies target specific agents (e.g., chromium in
studies on welders).

Moreover, the definition of heavy metals is inconsistent in the literature. For instance,
one rationale states that these are elements with a higher molecular weight than elementary
iron, which is suitable as it includes arsenic and excludes substances such as sodium and
aluminium. However, it also includes copper and nickel, which is problematic because
these metals could also be regarded as transition metals [270]. Certain ions of elements
in the fourth period of the periodic table catalyse the conversion of hydrogen peroxide to
hydroxyl radicals, which is an important mechanism of their genotoxic effect [271]. This
contrasts with “classic” heavy metals, such as lead, mercury, and cadmium, which are not
chemical catalysts, while their mechanism of action is related to the inhibition of enzymes.
It should also be emphasised that the oxidation state, chemical form (e.g., organic versus
inorganic), solubility and particle size (in case of inhalation exposure) are key factors to be
considered when assessing the genotoxic hazard of metals [217].

Lead is the heavy metal that has been assessed in most studies in this review (n = 36;
63.2%) [73,139,149,218,220,222–224,227,228,230–237,240–243,246,247,249–251,254,260–262,264,
265,267–269], followed by arsenic (n = 18; 31.6%) [73,112,139,218,223,241,244,252,255–258,260–
262,265,266,269], chromium (n = 14; 24.6%) [112,139,218,219,225,229,233,239,241,253,259,260,
263,265], cadmium (n = 12; 21.1%) [139,218,233,234,237,243,247,248,259,260,264,265], and
nickel (n = 11; 19.3%) [112,139,218,225,233,237,241,247,259,260,264]. A few studies have as-
sessed the genotoxicity of other metals, such as iron [226,237,245,250], cobalt [64], iridium [238],
antimony [221], and uranium [264]. In studies on lead exposure, this metal has either been
the only element assessed (n = 16; 44.0%), or it has been measured in combination with other
metals (n = 20; 56.0%). In the latter group, arsenic (n = 10), cadmium (n = 10), and nickel
(n = 8) are the most prevalent co-exposures. The group of studies with metals other than lead
is dominated by studies on arsenic (n = 8) and chromium (n = 7).

Overall, 20 studies (34.5%) have assessed lead exposure. Sixteen studies have only
assessed lead exposure. Four studies have measured exposure to lead and other metals. In
these four studies, exposure groups have had different levels of lead exposure, whereas
there has been the same level of exposure to other metals. Thus, there is only an exposure
contrast of lead in these four studies [234,250,251,268]. In 16 studies (80.0%), a significant
increase in DNA strand breaks in lead-exposed subjects was observed [220,222,224,227,228,
231,234,236,240,242,243,249–251,254,268], whereas 4 studies have shown unaltered levels
of strand breaks [230,232,235,246]; 1 study additionally showed increased DNA damage in
exposed subjects although they were not exposed to lead alone [149]. Assessment of the
studies with a measurement of multiple types of heavy metals indicates that five of them
(22.7%) have found consistency between increased exposure and DNA strand breaks [233,
261,262,269], whereas nine (40.9%) demonstrated no effect on this outcome [73,139,218,223,
241,247,260,265,267]. One study (4.5%) had unaltered levels of lead exposure yet increased
levels of DNA strand breaks in subjects from a uranium mining district who were exposed
to manganese and uranium [264]. Interestingly, there seems to be an over-representation
of positive test results in lead-exposed subjects in studies that have assessed mainly lead
(80.0%, 16 out of 20 studies; [220,222,224,227,228,231,234,236,240,242,243,249–251,254,268]
versus [230,232,235,246]) compared to studies with a more elaborate exposure assessment
(35.7%, 5 out of 13 studies; [233,261,262,269] versus [73,139,218,223,241,247,260,265,267]).

All studies with only an arsenic exposure assessment found increased levels of DNA
strand breaks (n = 5) [244,252,255–257,266]. In studies with multiple metal exposures, there
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are many that have found statistically significant effects of arsenic exposure on levels
of DNA strand breaks (n = 7) [73,241,258,261,262,269]. However, some studies with the
assessment of multiple metals have not found elevated arsenic exposure (and therefore
no association between exposure and DNA damage) or no association between arsenic
exposure and levels of DNA strand breaks [112,139,218,260,265].

Five out of the thirteen (38.5%) studies were restricted to the effects of chromium
exposure [219,229,239,253,263], as well as four studies, including chromium and other
metals [225,233,237,259], found increased levels of DNA strand breaks in the exposed pop-
ulation. Conversely, two studies found no genotoxic effect [139,260], one study showed an
increased level of DNA strand breaks in subjects who were not exposed to chromium [218],
and two studies found unaltered levels of DNA strand breaks in subjects without chromium
exposure contrast [112,241]. The parameters used to express the comet assay data (one or
more in the same study) were as follows: % DNA in tail/tail intensity in 24 studies, tail
length in 22 studies, tail moment in 16 studies, DNA damage index in 5 studies, and olive
tail moment in 4 studies.

In summary, this comprehensive analysis of various studies on the genotoxic effects of
heavy metals indicates increased levels of DNA strand breaks in subjects exposed to lead,
arsenic, and chromium compared with the non-exposed subjects. Interestingly, studies
that primarily examined lead exposure exhibited a higher proportion of positive results in
comparison with the studies with broader exposure assessments, suggesting a potential
bias in favour of detecting lead-related effects. Moreover, some contradictory results among
the chromium studies might suggest that the impact of this metal on DNA strand breaks
may be insignificant at low exposure levels and that other factors may contribute to this
outcome. Further research is necessary to fully understand the potential effects of some
metals (alone or combined with other metals and substances) regarding DNA damage.

3.5. Pesticides

Pesticides represent a large group of substances which are used in pest control, broadly
classified based on target organisms (e.g., insecticides, herbicides, and fungicides), chemical
structure (e.g., organochlorines, organophosphates, carbamates, and pyrethroids), or the
mechanism of action and toxicity [272]. Although over 80% of pesticide use is attributed
to agriculture, a significant percentage (around 20%) of these substances is employed in
public health protection programs (e.g., to protect plants from pests, weeds, or diseases, and
humans from vector-borne diseases), maintenance of non-agricultural areas as urban green
spaces and sports fields, production of pet shampoos, building and food cover materials,
as well as paints for boat protection [273–275].

Recent data from the Food and Agriculture Organization (FAO) suggest that in the past
30 years, negligible changes in the land area used for agriculture occurred, but that the use of
active substances in pesticides significantly increased—from 1.8 million—to 3.5 million tons
annually, which corresponds to an increase from 1.22 kg/ha to 2.26 kg/ha of land [276]. Since
pesticides are designed to improve crop yields, they are intentionally and diffusely applied
to large areas, making their control difficult. Considering that the adverse nature of these
compounds includes persistency (some can persist for even years in the environment) and
lipophilicity (enabling biomagnification through the food web), their residues can be found in
soil, freshwater, groundwater, air, and food [272,277,278]. Additionally, over 95% of pesticides
have a harmful effect on non-target organisms, which include humans, as their mechanisms
of action include inhibition of neural signals by disrupting the sodium/potassium balance,
cholinesterase inhibition, opening sodium channels, blockage of receptors, or competition for
hormonal receptors [278,279].

Humans can ingest, inhale, and absorb pesticides through the skin. Most individuals
are exposed to low concentrations of pesticides in food, water, and the general environment;
however, specific populations can experience a high concentration of exposure due to their
occupation (e.g., open-field and greenhouse farmers, pesticide industry workers, public
health agents, and pest exterminators) [273,278,280]. Moreover, due to their high body
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surface area to weight ratio, specific physiology, and behaviour, children represent a
population vulnerable to developing health effects from pesticide exposure [281].

Apart from the environmental effects [275,279], pesticide exposure is associated with
several human health effects, such as asthma, diabetes, Parkinson’s disease, cognitive
impairment, reproductive health effects, immunotoxicity, cardiotoxicity, leukaemia, and
different types of cancer [273,278,280,282–286]. However, it is difficult to establish a firm
link between pesticide exposure and DNA damage due to complex exposure assessment,
control for other effect-changing variables, as well as a lack of adequate studies and
inconsistent epidemiological data [287].

Our systematic scoping review gathered 90 reports assessed for eligibility, of which
25 were eliminated, mostly because they lacked comet assay data. Finally, 65 reports
(representing 59 studies, some being published in more than one article) were included in
the qualitative analysis—see Figure 5 and Table 5.
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Considering that around 2 million tons of pesticides from a total global production
of 3.5 million tonnes (57.1%) is used in the Americas and Asia [276], it was expected
that most included studies would have been performed in these regions (n = 55; 84.6%).
Effectively, from a total of 65 studies, 30 studies (46.2%) were conducted in Asia (mainly
India), 25 studies (38.5%) in the Americas (mainly Brazil), 8 studies (12.3%) in Europe, and
2 studies (3.1%) in Africa. The majority of the studies compared levels of DNA damage
between non-exposed subjects and agriculture workers (n = 45; 69.2%) and pesticide
industry workers (n = 11; 16.9%). In addition, a few of the studies assessed health agents
who are occupationally exposed to these compounds (n = 3; 4.6%) or focused on the
environmental exposure of children (n = 6; 9.2%).
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Table 5. Summary of findings from the included studies on pesticides.

Author Year Main Chemical
Exposure Country

Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

Occupational exposure

Abhishek 2010 -- India --

67
(40 exposed,

27 unexposed
agricultural workers

• %DNA tail: exposed (10.56 ± 3.63)
vs. unexposed (5.18 ± 2.60); sig.

• Damage Index: exposed
(150.25 ± 60.84) vs. unexposed
(31.37 ± 27.85); sig.

[288]
10.1089/rej.2009.0931

Aiassa 2019
Glyphosate,

cypermethrin,
chlorpyrifos

Argentina --

52
(30 exposed,

22 unexposed)
agricultural workers

• Comet tail moment—Mean:
exposed (3206 ± 785.4 µm) vs.
unexposed (269.7 ± 67.91 µm); sig.

[289]
10.1007/

s11356-019-05344-2

Ali 2018
Cyhalothrin,
endosulfan,

deltamethrin
Pakistan

Serum concentrations:
Deltamethrin: exposed

(0.54 ± 0.22) vs.
unexposed (0.28 ± 0.13);

p < 0.01
Endosalfan: exposed

(1.07 ± 0.52) vs.
unexposed (0.36 ± 0.12);

p < 0.001
Cyhalothrin: exposed

(1.04 ± 0.38) vs.
unexposed (0.33 ± 0.15);

p < 0.01

138
(69 exposed,

69 unexposed)
cotton-picking

workers

• Comet tail length—Before:
exposed (14.64 ± 2.68 µm) vs.
unexposed (9.6 ± 2.31 µm);
sig.—After: exposed
(18.29 ± 2.75 µm) vs. unexposed
(9.8 ± 2.40 µm); sig.

• Comet tail length—Mean:
exposed (16.47 ± 2.65 µm) vs.
unexposed (9.7 ± 2.34 µm); sig.

[290]
10.1080/

01480545.2017.1343342

Alves 2016

Dithiocarbamate,
carbamate,

dicarboximide,
organophosphate,

neonicotinoid,
pyrethoid,

isoxazolidinone,
dinitroaniline

Brazil List of compounds
commonly used in the area

137
(77 exposed,

60 unexposed)
tobacco farmers

• Damage index: exposed
(28.01 ± 21.43) vs. unexposed
(9.72 ± 7.50); sig.

• Damage frequency: exposed
(19.54 ± 13.03) vs. unexposed
(6.75 ± 4.73); sig.

[291]
10.1590/0001-

3765201520150181
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Exposure Country

Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

Arshad 2016
Carbamates,

organophosphates,
pyrethroids

Pakistan

Blood malathion levels:
detected in 72% of the

exposed blood samples
with na average value of

0.14 mg/L (range
0.01–0.31 mg/L)

58
(38 exposed,

20 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Mean:
exposed (7.04 ± 0.21 µm) vs.
unexposed (0.94 ± 0.2 µm); sig.

• Malathion correlated with TL

[292]
10.1016/

j.shaw.2015.11.001

Benedetti 2013

Organophos
phorouscarbamates,

pyrethroids,
organochlorines

Brazil

BuChE—U/L: exposed
(8231 ± 1368) vs.

unexposed (8068 ± 920);
p > 0.05

List of compounds used
by volunteers

127
(81 exposed,

46 unexposed)
agricultural workers

• Damage index (0–400): exposed
(38.5 ± 19.9) vs. unexposed
(19.6 ± 10.3); sig.

• % damage frequency: exposed
(23.1 ± 9.4) vs. unexposed
(13.3 ± 6.4); sig.

[293]
10.1016/

j.mrgentox.2013.01.001

Bhalli 2006
Organophosphates,

carbamates,
pyrethroids

Pakistan --

64
(29 exposed,

35 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Mean:
exposed (20.0 ± 2.87 µm) vs.
unexposed (7.4 ± 1.48 µm); sig.

[294]
10.1002/em.20232

Bhalli 2009

Carbamate,
organophosphate,

organochlorine,
pyrethroids

Pakistan

Cypermethrin, cyhalothrin,
deltamethrin, and

endosulfan serum levels
before and after spraying

97
(47 exposed,

50 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (before: 14.90 ± 2.99 µm
and after: 19.00 ± 3.63 µm) vs.
unexposed (6.54 ± 1.73 µm); both
comparisons; sig.

[295]
10.1002/em.20435
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Exposure Country

Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

Bian 2004

Pyrethroids
(fenvalerate),

organophosphorus
compounds
(phoxim),

carbamates
(carbaryl)

China

Fenvalerate concentration
21.55 × 10−4 mg/m3

(operation site) vs.
1.19 × 10−4 mg/m3

(control site), and dermal
contamination 1.59 mg/m2

higher than control

63
(21 exposed,

23 internal controls,
19 external controls)

pesticide-
manufacturing

workers

• Olive tail moment—Mean of
comet sperm: exposed (3.80
[1.10–5.90]) vs. internal controls
(1.50 [0.65–3.05]) (p = 0.016) vs.
external controls (2.00 [0.60–2.80]);
sig.

• %DNA tail: exposed (11.30
[2.85–18.45]) vs. Internal controls
(5.60 [1.98–10.5]) (p = 0.044) vs.
External controls (5.10 [1.50–7.10]);
sig.

[296]
10.1136/

oem.2004.014597

Carbajal-López 2016

Organochlorines,
organophosphorus,

carbamates,
pyrethroids

Mexico List of compounds
commonly used in the area

171
(111 exposed,
60 unexposed)

agricultural workers

• Comet tail length—Mean:
exposed (190.77 ± 10.4 µm) vs.
unexposed (106.08 ± 2.6 µm); sig.

[297]
10.1007/

s11356-015-5474-7

Cayir 2019

Propineb, captan,
boscalid,

pyraclostrobin,
cycloxydim,

cypermethrin,
alphacypermethri,

deltamethrin,
chlorpyrifos,
permethrin

Turkey

Pesticides exposure
assessment

List of compounds used by
the volunteers

86
(41 exposed,

45 unexposed)
greenhouse workers

• Damage index—Median AU
(0–400): exposed (8.72 [min–max:
1.62–25.09]) vs. unexposed (3.47
[min–max: 0.00–14.57]); sig.

[298]
10.1080/

1354750X.2019.1610498

Chen 2014
Fungicides,
herbicides,
inseticides

China Pesticides exposure
assessment

337
(83 low exposure,

113 high exposure,
141 unexposed)

fruit growers

• Comet tail moment—Mean: low
exposed (2.18 ± 0.05 µm) vs. high
exposed (2.14 ± 0.04 µm) vs.
unexposed (1.28 ± 0.01 µm); sig.

[299]
10.1155/2014/965729.
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Characteristics DNA Damage Reference

Costa 2014
Fungicides,
herbicides,
inseticides

Portugal

Urinary metabolites:
organic farmers PYR
0.06 ± 0.05, OP/CRB

1.86 ± 0.30, THIO
62.56 ± 5.60; pesticide

workers PYR 0.08 ± 0.03,
OP/CRB 2.23 ± 0.19,
THIO 54.33 ± 3.16,

unexposed PYR
0.13 ± 0.04, OP/CRB

1.54 ± 0.23, THIO
51.83 ± 3.28

BuChE—U/L: exposed
farmers (6245.62 ± 191.41)

vs. exposed pesticide
workers (7063.66 ± 202.31)

vs. unexposed
(6425.44 ± 224.15);

p = 0.943
List of compounds used

by volunteers

182
(36 organic farmers,

85 pesticide workers,
61 unexposed)

agricultural workers

• %DNA tail: exposed pesticide
workers (15.05 ± 0.85) vs.
unexposed (8.03 ± 0.73); sig.

[300]
10.1016/

j.toxlet.2014.02.011

da Silva 2008 Carbamates and
organophosphates Brazil --

173
(108 exposed,
65 unexposed)

agricultural workers

• Comet Damage Index—Mean:
unexposed (4.42 ± 5.85) vs.
exposed < 3 days ago
(20.44 ± 11.19) vs.
exposed > 3 days ago
(20.14 ±12.23); sig.

[301]
10.1093/mutage/

gen031
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Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

da Silva 2012 -- Brazil --

167
(111 exposed,
56 unexposed)

tobacco farmers

• Damage index (0–400): exposed
pesticide applicators
(17.35 ± 14.40) vs. exposed harvest
(23.85 ± 17.70) vs. unexposed
(5.91 ± 6.86); sig.

• % damage frequency: exposed
pesticide applicators (11.64 ± 9.02)
vs. exposed harvest (16.15 ± 11.59)
vs. unexposed (4.02 ± 4.65); sig.

[302]
10.1016/

j.jhazmat.2012.04.074

da Silva 2014

Organophosphorate,
carbamate,

dithiocarbamate,
pyrethroid

Brazil
BuChE activity—did not
differ between exposed

and unexposed

60
(30 exposed,

30 unexposed)
tobacco farmers

• Damage frequency: exposed
(10.57 ± 7.83) vs. unexposed
(4.97 ± 4.76); sig.

[303]
10.1016/

j.scitotenv.2014.05.018

Dalberto 2022

Neonicotinoid,
pyrethroid,
carbamate,

organophosphate

Brazil List of compounds used by
the volunteers

241
(84 exposed harvest,
72 exposed grading,

85 unexposed)
tobacco farmers

• Visual score (0–400)—Mean:
unexposed (15.3 ± 13.6) vs.
harvest (37.4 ± 23.0) vs. grading
(26.4 ± 19.6); sig.

[304]
10.1016/

j.mrgentox.2022.503485
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Population
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Dhananjayan 2019

Organophosphorus,
organochlorine,

synthetic
pyrethroid,

benzoylurea,
limonoid, ben-

zoylphenylurea,
organosulfite,
quinazoline,

stereoisomers,
triazole, copper

compounds,
diphenyl ether,

phosphanoglycine,
chlorophenoxy-

acetic, ammonium
salt, bipyridilium

India

AchE activity—U/mL:
exposed (2.86 ± 0.75) vs.
unexposed (3.93 ± 0.87);

p < 0.001
BuChE activity—U/mL:
exposed (2.02 ± 0.74) vs.
unexposed (2.60 ± 0.74);

p < 0.001

143
(77 exposed,

66 unexposed) tea
garden workers

• Comet tail length—Mean:
exposed (9.45 ± 5.28 µm) vs.
unexposed (2.09 ± 0.95 µm); sig.

• Olive tail moment—Mean:
exposed (4.15 ± 2.18 µm) vs.
unexposed (0.59 ± 0.44 µm); sig.

• %DNA tail: exposed (13.1 ± 8.17)
vs. unexposed (2.26 ± 1.63); sig.

[305]
10.1016/

j.mrgentox.2019.03.002

Dutta and
Bahadur 2019

Organophosphates,
carbamates,
pyrethroids

India

AchE
activity—µmol/min/mL:
exposed (6.43 ± 1.85) vs.
unexposed (11.81 ± 3.40);

p ≤ 0.001
BuChE

activity—µmol/min/mL:
exposed (3.50 ± 1.89) vs.
unexposed (4.73 ± 1.84);

p ≤ 0.001

155
(95 exposed,

60 unexposed) tea
garden workers

• Comet tail length—Mean:
exposed (45.98 ± 4.25 µm) vs.
unexposed (15.14 ± 2.99 µm); sig.

• Olive tail moment—Mean:
exposed (6.41 ± 0.78 µm) vs.
unexposed (2.32 ± 0.36 µm); sig.

• %DNA tail: exposed (17.23 ± 1.05)
vs. unexposed (5.99 ± 0.82); sig.

[306]
10.1016/j.mrgentox.

2019.06.005

Franco 2016

Pyrethroids,
carbamates,

organophosphates,
organochlorines,

benzoylureas

Brazil --

249
(161 exposed,
88 unexposed)

community
health agents

• Olive tail moment—Mean:
exposed (7.8 ± 10.4) vs.
unexposed (4.7 ± 3.8); sig.

[307]
10.1007/

s11356-016-7179-y
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Garaj-Vrhovac
and Želježić * 2000

Atrazine, alachlor,
cyanazine,

dichlorophenoxyacetic
acid, malathion

Croatia --

20
(10 exposed,

10 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Mean:
exposed after high exposure
period (50.1 ± 9.4 µm) vs. exposed
after no exposure period
(17.2 ± 0.4 µm) vs. unexposed
(13.3 ± 1.5 µm); sig.

• Comet tail moment—Mean:
exposed after high exposure
period (60.8 ± 18.2 µm) vs.
exposed after no exposure period
(13.8 ± 0.4 µm) vs. unexposed
(10.5 ± 1.1 µm); sig.

[308]
10.1016/s1383-

5718(00)00092-9

Garaj-Vrhovac
and Želježić * 2001

Atrazine, alachlor,
cyanazine, 2,4-

dichlorophenoxyacetic
acid, malathion

Croatia --

40
(20 exposed,

20 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Range:
exposed after high exposure
period (16.3–95.2 µm) vs. exposed
after no exposure period
(11.0–30.5 µm) vs. unexposed
(6.3–20.4 µm); sig.

• Comet tail moment—Range:
exposed after high exposure
period (11.7–85.1) vs. exposed
after no exposure period
(6.35–25.4) vs. unexposed
(5.0–15.1); sig.

[309]
10.1016/s0300-

483x(01)00419-x

Garaj-Vrhovac
and Želježić * 2002

Atrazine, alachlor,
cyanazine, 2,4-

dichlorophenoxyacetic
acid, malathion

Croatia --

30
(10 exposed,

20 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Mean:
exposed (50.13 ± 9.44 µm) vs.
unexposed (13.06 ± 1.36 µm); sig.

• Comet tail moment—Mean:
exposed (60.85 ± 18.17 µm) vs.
unexposed (10.33 ± 1.21 µm); sig.

[310]
10.1002/jat.855
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Godoy et al. 2019
Organochlorines,

carbamates,
pyrethroids

Brazil List of compounds used by
the volunteers

163
(74 exposed,

89 unexposed)
agricultural workers

• Comet tail length—Median:
exposed (14.75 ± 18.97 µm) vs.
unexposed (9.68 ± 5.49 µm); sig.

• Olive tail moment—Mean:
exposed (6.08 ± 8.79 µm) vs.
unexposed (3.87 ± 3.16 µm); sig.

• %DNA tail: exposed
(21.63 ± 20.23) vs. unexposed
(14.73 ± 8.93); sig.

[311]
10.1007/

s11356-019-05882-9

Grover 2003
Organophosphates,

carbamates,
pyrethroids

India --

108
(54 exposed,

54 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Mean:
exposed non-smokers
(18.26 ± 2.13 µm) vs. unexposed
non-smokers (7.03 ± 2.39 µm); sig.
Mean: exposed smokers
(19.75 ± 2.22 µm) vs. Unexposed
smokers (10.34 ± 2.38 µm); sig.

[312]
10.1093/mutage/

18.2.201

Kahl 2018

Glyphosate,
flumetralin,
clomazone,

imidacloprid,
sulfentrazone,

dithiocarbamate,
magnesium
aluminium
phosphide,
fertilizers

Brazil --

242
(121 exposed,

121 unexposed)
tobacco farmers

• Damage index (0–400): exposed
(22.1 ± 1.6) vs. unexposed
(4.6 ± 0.4); sig.

[313]
10.1016/

j.ecoenv.2018.04.052
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Kasiotis 2012

Chlorpyrifos,
captan,

myclobutanil,
propargite,

acetamiprid,
cypermethrin,
deltamethrin

Greece

Serum levels:
Myclobutanil:
1.12–5.54 ppb
Cypermethrin:

22.92–30.32 ppb
Deltamethrin:

<LOD–30.96 ppb
Propargite, chlorpyrifos,

captan, acetamiprid <LOD

19 (all exposed)
fruit growers

• %DNA tail: before exposure
(12.10) vs. after exposure (24.17);
sig.

• %DNA tail: workers with
detectible residues vs.
non-detectible; sig.

[314]
10.1016/j.toxlet.

2011.10.020

Kaur 2011
Carbamates,

organophosphates,
pyrethroids

India
List and frequency of

compounds used by the
volunteers

260
(210 exposed [60 of
them selected for

follow-up],
50 unexposed)

agricultural workers

• Comet tail length—Mean: fresh
exposed (72.22 + 20.76 µm) vs.
unexposed (46.92 + 8.17 µm) vs.
followed-up (66.67 + 24.07 µm);
sig.

[315]
10.4103/0971-

6866.92100

Kaur and
Kaur § 2020

Organophosphates,
carbamates,
pyrethroids

India --

450
(225 exposed,

225 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (111.03 ± 24.7 µm) vs.
unexposed (45.89 ± 11.00 µm); sig.

• Total comet DNA migration:
exposed (86.05 ± 16.9 µm) vs.
unexposed (44.55 ± 8.07 µm); sig.

• Frequency of cells showing DNA
migration: exposed (53.27 ± 14.9)
vs. unexposed (15.89 ± 7.89); sig.

[316]
10.1007/

s11033-020-05600-6
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Kaur and
Kaur § 2020

Organophosphates,
carbamates,
pyrethroids

India --

450
(225 exposed,

225 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (111.03 ± 24.7 µm) vs.
unexposed (45.89 ± 11.00 µm); sig.

• Total comet DNA migration (µm):
exposed (86.05 ± 16.9) vs.
unexposed (44.55 ± 8.07); sig.

• Frequency of cells showing DNA
migration: exposed (53.27 ± 14.9)
vs. unexposed (15.89 ± 7.89); sig.

[317]
10.1080/1354750X.

2020.1794040

Kaur and
Kaur § 2021

Organophosphates,
carbamates,
pyrethroids

India List of compounds used by
the volunteers

450
(225 exposed,

225 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (86.05 ± 16.9 µm) vs.
unexposed (44.55 ± 8.07 µm); sig.

[318]
10.1016/j.mrgentox.

2020.503302

Khayat 2013
Glyphosate,

fenpropathrin,
carbofuran

Brazil List of pesticide mixtures

73
(41 exposed,

32 unexposed)
agricultural workers

• Comet tail length—Median:
exposed (4.9 ± 1.81 µm) vs.
unexposed (3.82 ± 2.34 µm); sig.

• Comet tail moment—Median:
exposed (0.18 ± 0.13 µm) vs.
unexposed (0.02 ± 0.04 µm); sig.

• Olive tail moment—Median:
exposed (0.54 ± 0.21 µm) vs.
unexposed (0.09 ± 0.13 µm); sig.

• %DNA tail: exposed (5.71 ± 1.63)
vs. unexposed (1.13 ± 1.25); sig.

[319]
10.1007/s11356-013-

1747-1
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Lebailly 2003 Fungicide captan France

UK Predictive Operator
Exposure Model suggested

14.4 mg (0.9–66.1 mg) of
captan absorbed.

List of other compounds
used a day before

19 (all exposed)
fruit growers

• Comet tail moment—Mean:
exposed in the morning
(4.35 ± 1.11) vs. exposed the
morning day after (4.80 ± 2.57);
sig.

• %DNA damage: exposed in the
morning (10%, ranging 2–21%) vs.
exposed the morning day after
(13%, ranging 5–49%); sig.

[320]
10.1136/

oem.60.12.910

Liu G 2006

Organophosphates,
carbamates,
pyrethroid
insecticides,

fungicides, growth
regulator

China
(Taiwan)

List of pesticides used,
area of use, and frequency

of use

197
(43 low exposure,
48 high exposure,
106 unexposed)

agricultural workers

• Comet tail moment—Mean: low
exposed (1.92 ± 0.04 µm) vs. high
exposed (2.35 ± 0.06 µm) vs.
unexposed (1.33 ± 0.03 µm); sig.

[321]
10.1158/1055-

9965.EPI-05-0617

Muniz 2008 Organophosphonate USA

Adjusted urinary
dialkylphosphate (DAP)
metabolite levels: sum
methyl DAP (µmol/L):

Farmworker 1.03 ± 37%,
Applicator 0.774 ± 36%,

Control 0.126 ± 42%

31
(10 farmworkers,

12 applicators,
9 unexposed)

agricultural workers

• Comet tail length—Mean:
exposed applicator (7.674 ± 0.295 µm)
vs. exposed farmer
(7.478 ± 0.312 µm) vs. unexposed
(4.509 ± 0.312 µm); sig.

• Comet tail moment—Mean:
exposed applicator
(3.643 ± 0.111 µm) vs. exposed
farmer
(3.200 ± 0.11 µm) vs. unexposed
(2.354 ± 0.118 µm); sig.

[322]
10.1016/j.taap.

2007.10.027

Naravaneni,
Jamil 2007

Carbamates,
organophosphates,

pyrethroids
India

AchE activity- U/mL:
exposed (253.5 ± 21.7) vs.
unexposed (311.1 ± 7.99);

p < 0.001

370
(210 exposed,

160 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (26.13 ± 4.21 µm) vs.
unexposed (7.61 ± 1.85 µm); sig.

[323]
10.1177/

0960327107083450
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Paiva 2011

Organochlorates,
organophosphates,

pyrethroids,
carbamates

Brazil List of compounds used by
the volunteers

63
(16 exposed region A,
16 exposed region B,

31 unexposed)
agricultural workers

• Damage index (0–400): exposed
region A (14.15 ± 0.95) vs.
exposed region B (18.83 ± 0.68) vs.
unexposed (5.63 ± 2.77); sig.

• % damage frequency: exposed
region A (10.16 ± 0.92) vs.
exposed region B (9.56 ± 0.82) vs.
unexposed (4.22 ± 0.81); sig.

[324]
10.1002/em.20647

Paz-y-Miño 2004
Fungicides,
herbicides,
inseticides

Ecuador List of compounds used by
the volunteers

66
(45 exposed,

21 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (31.58 ± 3.22 µm) vs.
unexposed (25.94 ± 7.77 µm); sig.

[325]
10.1016/j.mrgentox.

2004.05.005

Prabha, Chadha 2017 -- India --

100
(50 exposed,

50 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Mean:
exposed (26.27 ± 0.83 µm) vs.
unexposed (15.89 ± 0.39 µm); sig.

[326]
10.1080/09723757.

2015.11886263

Ramos 2021

Glyphosate,
dichlorophenoxy-

acetic acid, atrazine,
cypermethrin,
deltamethrin,

Brazil --

360
(180 exposed,

180 unexposed)
agricultural workers

• %DNA tail: exposed (18.4 ± 8.1%)
vs. unexposed (15.8 ± 7.7%); sig.

[327]
10.1016/j.scitotenv.

2020.141893

Remor 2009
Fungicides,
herbicides,
inseticides

Brazil
ALA-D and BuChE
activity—lower in

exposed group

57
(37 exposed,

20 unexposed)
agricultural workers

• Damage index (0–400): exposed
(21.38 ± 14.80) vs. unexposed
(3.10 ± 1.59); sig.

• % damage frequency: exposed
(16.38 ± 11.68) vs. unexposed
(2.35 ± 1.31); sig.

[328]
10.1016/j.envint.

2008.06.011
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Rohr 2011

Bipyridyl,
organophosphates,

copper sulfate,
carbamates

Brazil

Pesticide exposure
assessment

List of compounds used by
the volunteers

173
(108 exposed,
65 unexposed)

agricultural workers

• Damage Index: exposed
(150.25 ± 60.84) vs. unexposed
(31.37 ± 27.85); sig.

• Damage index (0–400): exposed
(20.26 ± 11.76) vs. unexposed
(4.42 ± 5.85); sig.

• % damage frequency: exposed
(10.97 ± 3.76) vs. unexposed
(1.91 ± 2.09); sig.

[329]
10.1002/em.20562

Saad-Hussein 2017

Malathion,
chloropyrifos,
dimethoate,
carbofuran

Egypt List of compounds
commonly used in the area

101
(51 exposed,

50 unexposed)
agricultural workers

• Comet tail length—Median:
exposed (14.59, ranging from 2 to
37 µm) vs. unexposed (8.50,
ranging from 1 to 19 µm); sig.

• Comet tail moment—Median:
exposed (0.73, ranging from 0.12 to
1.48 µm) vs. unexposed (0.08,
ranging from 0.05 to 1.48 µm); sig.

• %DNA tail: exposed (4.21%,
ranging from 0.83 to 17.84) vs.
unexposed (0.18%, ranging from
0.00 to 5.61); sig.

[330]
10.1016/j.mrgentox.

2017.05.005
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Author Year Main Chemical
Exposure Country

Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

Saad-Hussein 2019
Malathionchloropyrifos,

dimethoate,
carbofuran

Egypt

BuChE activity—U/L:
rural exposed (2836 ± 189)

vs. rural unexposed
(3444.9 ± 148.4) vs. urban
exposed (2653.2 ± 112.6)

vs. urban unexposed
(3040.8 ± 83.4)

200
(50 rural exposed,
50 urban exposed,

50 rural unexposed,
50 urban unexposed)
agricultural workers

• Comet tail length—Mean: rural
exposed (17.84 ± 1.07 µm) vs.
rural unexposed (8.4 ± 0.72 µm)
vs. urban exposed
(16.95 ± 2.15 µm) vs. urban
unexposed
(7.55 ± 0.70 µm); sig.

• Comet tail moment—Mean: rural
exposed (0.73 ± 0.05 µm) vs. rural
unexposed
(0.08 ± 0.001 µm) vs. urban
exposed (0.30 ± 0.05 µm) vs.
urban unexposed
(0.08 ± 0.002 µm); sig.

• %DNA tail: rural exposed
(4.57 ± 0.40%) vs. rural unexposed
(0.84 ± 0.19%) vs. urban exposed
(3.11 ± 0.54%) vs. urban
unexposed (0.89 ± 0.21%); sig.

[331]
10.1016/j.mrgentox.

2018.12.004

Sapbamrer 2019
Organophosphates,

glyphosate,
paraquat

Thailand -- 56 (all exposed)
agricultural workers

• Comet tail length—Median:
pre-application (5.66, ranging from
4.55 and 6.58 µm);
post-application (5.67, ranging
from 4.63 and 6.55 µm); non-sig.

• Comet tail moment—Median:
pre-application (2.84, ranging from
2.63 and 3.20 µm); pos-application
(2.83, ranging from 2.66 and
3.27 µm); non-sig.

[332]
10.1007/s11356-019-

04650-z
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Author Year Main Chemical
Exposure Country

Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

Simoniello 2008

Thiophthalimide,
inorganic-copper,
dithiocarbamate-

inorganic zinc,
organophosphorus,

carbamate,
pyrethroid,

organophosphorus,
organochlorine,
chloronicotinyl,

phosphonoglycine

Argentina List of compounds used
by volunteers

84
(27 farmers,

27 pesticide workers,
30 unexposed)

agricultural workers

• Damage Index: exposed farmers
(221.66 ± 19.95) vs. exposed
pesticide workers (215.29 ± 15.06)
vs. unexposed (113.20 ± 13.68);
sig.

[333]
10.1002/jat.1361

Simoniello 2010

Thiophthalimide,
inorganic-copper,
dithiocarbamate-

inorganic zinc,
organophosphorus,

carbamate,
pyrethroid,

organophosphorus,
organochlorine,
chloronicotinyl,

phosphonoglycine

Argentina

AchE activity—U/L:
exposed farmers

(7651.52 ± 2062.07) vs.
exposed pesticide workers

(6740.33 ± 1454.48) vs.
unexposed

(9045.54 ± 2191.56);
p < 0.05

BuChE activity—U/L:
exposed farmers

(6313.86 ± 1268.26) vs.
exposed pesticide workers

(6777.77 ± 1281.84) vs.
unexposed

(6993.31 ± 1131.92);
p > 0.05

123
(23 farmers,

18 pesticide workers,
82 unexposed)

agricultural workers

• Damage Index—Mean: exposed
farmers (224.73 ± 20.56) vs.
exposed pesticide workers
(212.94 ± 14.79) vs. unexposed
(113.56 ± 16.01); sig.

[334]
10.3109/

13547500903276378
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Exposure Country

Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

Singh 2011

Pirimiphos methyl,
chlorpyrifos,

temephos,
malathion

India

AchE activity—KAU/L:
exposed (3.45 ± 0.95) vs.
unexposed (9.55 ± 0.35);

p < 0.001
Pesticides exposure index

140
(70 exposed,

70 unexposed)
pesticide-

manufacturing
workers

• Comet tail moment—Median:
exposed (14.48 ± 2.40 µm) vs.
unexposed (6.42 ± 1.42 µm); sig.

• %DNA tail: exposed (60.43 ± 5.16)
vs. unexposed (31.86 ± 6.35); sig.

[335]
10.1016/

j.etap.2010.11.005

Singh 2011 Organophosphate India Pesticides exposure index

230
(115 exposed,

115 unexposed)
pesticide-

manufacturing
workers

• Comet tail moment—Median:
exposed (14.41 ± 2.25 µm) vs.
unexposed (6.36 ± 1.41 µm); sig.

[336]
10.1016/j.mrgentox.

2011.06.006

Singh 2012 Organophosphate India

AchE activity—KAU/L:
exposed (3.76 ± 1.06) vs.
unexposed (9.33 ± 0.52);

p < 0.001
PONase activity

nmol/min/mL: exposed
(180.97 ± 37.59) vs.

unexposed (246.70 ± 43.23)
Pesticides exposure index

268
(134 exposed,

134 unexposed),
Community health

agents

• Comet tail moment—Median:
exposed (14.32 ± 2.17) vs.
unexposed (6.24 ± 1.37); sig.

[337]
10.1016/j.mrgentox.

2011.11.001

Singh 2011 Organophosphate India

AchE activity—KAU/L:
exposed (3.71 ± 1.04) vs.
unexposed (9.33 ± 0.52);

p < 0.001
PONase activity

nmol/min/mL: exposed
(181.76 ± 37.10) vs.

unexposed (246.70 ± 43.24)
Pesticides exposure index

284
(150 exposed,

134 unexposed)
community health

agents

• Comet tail moment—Median:
exposed (14.37 ± 2.15) vs.
unexposed (6.24 ± 1.37); sig.

[338]
10.1016/

j.taap.2011.08.021
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Exposure Assessment
[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure

Population
Characteristics DNA Damage Reference

Valencia-
Quintana 2021

Organophosphate,
carbamate,

organochlorine,
piretroides

Mexico

AchE activity—U/L:
exposed (52.35 ± 10.04) vs.
unexposed (35.32 ± 11.07);

p ≤ 0.006
BuChE activity—U/L:

exposed (297.73 ± 60.78)
vs. unexposed

(231.76 ± 81.60);
p ≤ 0.047

List of compounds used by
the volunteers

80
(54 exposed,

26 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (78.80 ± 25.00 µm) vs.
unexposed (55.62 ± 13.88 µm); sig.

• Comet tail moment—Mean:
exposed (6.34 ± 5.02 µm) vs.
unexposed (1.89 ± 1.24 µm); sig.

• Olive tail moment—Mean:
exposed (6.31 ± 9.73 µm) vs.
unexposed (0.24 ± 1.18 µm); sig.

[339]
10.3390/

ijerph18126269

Varona-Uribe 2016

Organochlorines,
organophosphorus,

carbamates,
ethylenethiourea

Colombia

Blood/serum/urine
concentrations:

Organophosphorus
(8 substances) range

0.56–21.05;
Carbamates (2 substances)

range 0.03–0.04;
Dithiocarbamates
(1 substance) 0.90;
Organochlorines

(14 substances) range
0.42–46.36

223 (all exposed)
agricultural workers

• Comet tail length—Median:
exposed (17.79, ranging from 3.24
and 232.83 µm).

• %DNA tail: exposed (6.53%,
ranging from 0.15% to 97.96%)

[340]
10.1080/19338244.

2014.910489

Venkata 2017

Carbamates,
organochlorine,

organophosphorus,
pyrethroid

India

AchE activity—U/L:
exposed (1090.76 ± 71.28)

vs. unexposed
(1290.80 ± 78.68); p = 0.02
List of compounds used by

the volunteers

212
(106 exposed,

106 unexposed)
tea garden workers

• Comet tail length—Mean:
exposed (15.61 ± 2.54 µm) vs.
unexposed (7.40 ± 1.86 µm); sig.

[341]
10.1080/1354750X.

2016.1252954
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[Mean Concentration
Pesticides (ppm)] or

Biomarkers of Exposure
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Wilhelm 2015
Fungicides,
herbicides,
inseticides

Brazil List of compounds
commonly used in the area

74
(37 exposed,

37 unexposed)
floriculturists

• % DNA tail: exposed (4.22 ± 3.89)
vs. unexposed (1.51 ± 2.55); sig.

• Damage index: exposed
(4.73 ± 4.27) vs. unexposed
(1.95 ± 3.88); sig.

[342]
10.1007/s11356-014-

3959-4

Wong G 2008

Organophosphates,
carbamates,
pyrethroid
insecticides,

fungicides, growth
regulator

China
(Taiwan)

List of pesticides used,
area of use, and frequency

of use

241
(62 low exposure,
73 high exposure,

106 unexposed) fruit
growers

• Comet tail moment—Mean: low
exposed (2.03 ± 0.05 µm) vs. high
exposed (2.31 ± 0.06 µm) vs.
unexposed (1.33 ± 0.03 µm); sig.

[343]
10.1016/j.mrgentox.

2008.06.005

Yadav 2011 Organophosphates India List of compounds used by
the volunteers

62
(33 exposed,

29 unexposed)
agricultural workers

• Comet tail length—Mean:
exposed (52.18 ± 3.74 µm) vs.
unexposed (7.01 ± 1.47 µm); sig.

• Comet tail moment—Mean:
exposed (16.91 ± 2.14 µm) vs.
unexposed (1.04 ± 0.32 µm); sig.

• Olive tail moment—Mean:
exposed (15.58 ± 1.57 µm) vs.
unexposed (1.82 ± 0.32 µm); sig.

• % DNA in tail: exposed
(27.45 ± 1.64) vs. unexposed
(9.04 ± 0.67); sig.

[344]
10.1080/09723757.

2011.11886131
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Biomarkers of Exposure

Population
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Zepeda-Arce 2017
Organochlorines,

carbamates,
pyrethroids

Mexico

AchE—U/g Hb: moderate
exposed (19.4) vs. high

exposed (20.5) vs.
unexposed (18.8); p > 0.05
BuChE—U/L: moderate

exposed (5943.97) vs. high
exposed (4333.2) vs.
unexposed (6673.27);

p > 0.05
MDA concentration

(nmol/mL): moderate
exposed (0.98) vs. high

exposed (1.0) vs.
unexposed (0.97); p = 0.79.

Pesticides exposure
assessment

List of compounds used by
the volunteers

208
(186 moderate

exposure, 60 high
exposure,

22 unexposed)
agricultural workers

• Comet tail moment—Median:
moderate exposed (7.8) vs. high
exposed (9.8) vs. unexposed (7.5);
non-sig.

• Olive tail moment—Median:
moderate exposed (2.9) vs. high
exposed (3.4) vs. unexposed (2.8);
non-sig.

[345]
10.1002/tox.22398

Želježić,
Garaj-Vrhovac *

2001
Atrazine, alachlor,

cyanazine, 2,4-
dichlorophenoxyacetic

acid, malathion

Croatia --

40
(20 exposed,

20 unexposed)
pesticide-

manufacturing
workers

• Comet tail length—Mean:
exposed after high exposure
period (50.1 ± 9.44 µm) vs.
exposed after no exposure period
(17.2 ± 0.44 µm) vs. unexposed
(13.3 ± 1.47 µm); sig.

• Comet tail moment—Mean:
exposed after high exposure
period (60.8 ± 18.17) vs. exposed
after no exposure period
(13.8 ± 0.39 µm) vs. unexposed
(10.5 ± 1.13); sig.

[346]
10.1093/mutage/

16.4.359
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Pesticides (ppm)] or

Biomarkers of Exposure

Population
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Environmental exposure

Alvarado-
Hernandez 2013 Organochlorine Mexico

17 analysed pesticides
(detection range 58–100%

in maternal blood, and
66–100% in umbilical

cord blood)
Most abundant in
maternal blood:

Heptachlor epoxide:
3764 ng/g lipids;

Oxychlordane: 1672 ng/g
lipides;

Beta-HCH: 1320 ng/g
lipides.

Most abundant in
umbilical cord blood:
Heptachlor epoxide:
8707 ng/g lipides;

Oxychlordane: 1411 ng/g
lipides;

Beta-HCH: 2815 ng/g
lipides.

50 mother–infant
pairs, pregnant

women and their
infants from
rural areas

• Olive tail moment—Mean
maternal blood (7.36 ± 6.45 µm)
vs. cord blood (8.87 ± 5.04); sig.

[347]
10.1002/em.21753
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Pesticides (ppm)] or

Biomarkers of Exposure

Population
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Dwivedi 2022 Organochlorines India

10 analysed pesticides:
maximum concentration

found for aldrin
(3.26 mg/L) in maternal

blood and dieldrin
(2.69 mg/L) in cord blood

221
(104 preterm delivery,

117 full-term
delivery)

pregnant women and
their infants from

rural areas

• Comet tail length—Mean
(maternal blood): larger preterm
(18.29 ± 2.75 µm) vs. small
preterm (16.42 ± 1.58 µm) vs.
full-term appropriate for
gestational age (8.10 ± 1.60 µm) vs.
full-term small for gestational age
(9.8 ± 2.31 µm); Mean (cord
blood): larger preterm
(14.64 ± 1.88 µm) vs. small
preterm
(12.12 ± 1.27 µm) vs. full-term
appropriate for gestational age
(7.40 ± 1.82 µm) vs. full-term
small for gestational age
(8.3 ± 1.52 µm); sig.

• Olive tail moment—Mean
(maternal blood): larger preterm
(3.93 ± 0.52 µm) vs. small preterm
(2.16 ± 0.81 µm) vs. full-term
appropriate for gestational age
(0.68 ± 0.31 µm) vs. full-term
small for gestational age
(0.99 ± 0.45 µm); mean (cord
blood): larger preterm
(2.81 ± 0.51 µm) vs. small preterm
(1.05 ± 0.55 µm) vs. full-term
appropriate for gestational age
(0.55 ± 0.37 µm) vs. full-term
small for gestational age
(0.62 ± 0.35 µm); sig.

[348]
10.1016/j.envres.

2021.112010
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How 2014 Organophosphates Malaysia

Blood cholinesterase
levels—unexposed

(79.55 ± 13.48) vs. exposed
(56.32 ± 12.35)

180
(95 exposed, 85

unexposed) children
exposed lived < 2 km
from paddy farmland

• Comet tail length—Mean:
exposed (8.45 ± 3.89 µm) vs.
unexposed (4.38 ± 1.66 µm); sig.

[349]
10.1080/1059924X.

2013.866917

Kapka-
Skrzypczak 2019

Carbetamide,
carbofuran,
chloridazon,
dodemorph,

cyclopropanecar-
boxamide,

permethrin

Poland

Sweat pesticides
(19 positive samples) for
carbetamide, carbofuran,
chloridazon, dodemorph,
cyclopropanecarboxam-

ide, permethrin
AchE activity and BuChE
activity significantly lower

in exposed group

200 children
(108 exposed,

92 unexposed), lived
<1 km from the
nearest orchards,
cultivated fields,

greenhouses

• Comet tail length—Mean:
exposed (23.39 ± 8.26% in blood
samples and 24.10 ± 8.43% in
sweat-positive samples) vs.
unexposed (19.84 ± 7.70%); sig.

• Mean FPG-sensitive sites:
exposed (7.30 ± 5.65% in blood
samples and 4.79 ± 4.05% in
sweat-positive samples) vs.
unexposed (3.05 ± 4.05%); sig.

[350]
10.1016/j.mrgentox.

2018.12.012

Leite 2019 -- Paraguay
Plasma cholinesterase
activity did not differ

among groups

84 children
(43 exposed,

41 unexposed).
Children exposed
were born < 1 km
from fumigated

fields and have been
living in that location

for >5 years

• Comet tail length—Mean:
exposed (59.1 µm) vs. unexposed
(37.2 µm); sig.

• Comet tail moment—Mean:
exposed (32.8 µm) vs. unexposed
(14.4 µm); sig.

• %DNA tail: exposed (45.2%) vs.
unexposed (27.6%)

• %DNA head: exposed (54.8%) vs.
unexposed (72.4%)

[351]
10.4103/

ijmr.IJMR_1497_17

Sutris 2016

Dimethyphosphate,
diethylphosphate,

dimethylthiophosp,
diethylthiophosph,
dimethylthiophosph
diethyldithiphosph

Malaysia

Urine organophosphate
metabolites:

46.7% positive results:
dimethyphosphate (46.7%),
diethylphosphate (16.7%),
dimethylthiophosphate (3.3%)

180 children (all
exposed) living on
agricultural island

• Comet tail length—Median: 37.1
(IQR 17.5 to 54.5) µm;
pesticide-positive volunteers: 43.5
(30.9–68.1) µm vs. negative
volunteers: 24.7 (9.5–48.1) µm; sig.

[352]
10.15171/

ijoem.2016.705

*, §, G—updated studies from the same author/group of authors.
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Regarding exposure assessment, it is important to highlight that the exposure assess-
ment in the reviewed papers was highly heterogeneous. Only 12 studies (18.5%) had a good
exposure assessment (including blood, urine, or skin analyses for pesticide residues), while
around one-third (n = 21; 32.3%) presented a medium exposure assessment by evaluation
of the enzymatic activities related to possible pesticide exposure (usually AchE or BuChE),
or by using a model to predict the exposure. Almost half of the studies (n = 32; 49.2%) had
no exposure assessment or simply provided a list of pesticides that volunteers might have
been in contact with.

The effects measured by the comet assay were nearly consistent among studies
(n = 63/65 reports; 96.9%), showing significantly higher DNA damage outcomes for the
exposed populations. Only two papers did not find significant changes in these measures,
both assessing agricultural workers either using a moderate- vs. high-exposure groups
approach [345] or a before–after pesticide application design [320]. The descriptors used to
express the comet assay data (one or more in the same study) were as follows: tail length
in 33 studies, tail moment in 22 studies, % DNA in tail/tail intensity in 17 studies, DNA
damage index in 13, olive tail moment in 11 studies, and other descriptors in 10 studies.

In summary, despite the high variability in the number of pesticides and classes of
compounds (with different effects and mechanisms of action), the findings indicate that
human populations exposed to pesticides have higher levels of DNA damage. However,
the evaluation of exposure as well as the impact of the factors affecting the comet assay
results (e.g., smoking, family history of cancer, other potential carcinogens exposure, UV
exposure, and body mass index) [353] were scarcely considered.

3.6. Solvents

Organic solvents, such as benzene, toluene, and xylene (BTX), are a group of chemicals
widely used in several occupational settings and are common components of air pollution
(volatile organic compounds, VOCs) as a result of traffic and industry emissions. Although
these substances are (highly volatile) ground-water contaminants, exposure occurs mainly
via inhalation, either in occupational settings or through outdoor/indoor environments.
Exposure to organic solvents, often in mixtures, is linked to different types of organ
toxicities, such as neurological, hepatic, and respiratory [354–357]. Genotoxic effects of
these substances have been repeatedly reported as attributable to the generation of oxidative
stress and reactive metabolites able to form DNA adducts [358]. These mechanisms are also
associated with carcinogenesis, and some organic solvents are well-known carcinogens:
benzene is classified by the IARC as Group 1 (carcinogenic to humans), and styrene and
perchloroethylene as Group 2A (probably carcinogenic to humans). Epidemiological studies
reported an increased cancer risk for workers exposed to organic solvents, such as painters
(sufficient evidence for mesothelioma and cancers of the urinary bladder and lung) [359]
and shoemaking (leukaemia, nasal, and bladder cancer) [360] and petrochemical industry
workers (mesothelioma, skin melanoma, multiple myeloma, and cancers of the prostate
and urinary bladder) [361].

Our systematic scoping review identified 183 articles—180 from databases and 3 by
manual entry, of which 75 were eliminated as duplicates. After the preliminary screening
by title and abstract, 51 documents were excluded. From the articles eligible for full-text
assessment, seven were excluded (mostly because they did not present comet assay data).
A total of 50 studies were finally included in the qualitative analysis, as summarised in
Figure 6 and Table 6.
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Table 6. Summary of findings from the included studies on solvents.

Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Occupational exposure

Al Zabadi ** 2011 PAHs, VOCs France Air concentration PAH
and benzene

64 sewage workers
(34 exposed,

30 unexposed)

• % DNA tail (urine genotoxicity):
exposed (8.07 ± 3.12) vs.
unexposed (2.70 ± 0.58); sig.

[41]
10.1186/1476-069X-

10-23

Azimi 2017 Perchloroethylene Iran --
59 dry cleaners

(33 exposed,
26 unexposed)

• % DNA tail (lymphocytes):
exposed (23.03; ranging 5.73 to
48.85) vs. unexposed (8.77;
ranging 3.05 to 21.03); sig.

• Comet tail length: exposed (25.85;
ranging 6.63 to 67.2) vs.
unexposed (5.61; ranging 2.65 to
18.53); sig.

• Comet tail moment: exposed (7.07;
ranging 0.42 to 44.29) vs.
unexposed (1.03; ranging 0.14 to
5.12); sig.

[362]
10.15171/

ijoem.2017.1089

Buschini 2003 Styrene Italy

Passive air samplers
(TWA8h)

Urinary excretion of MA
and PGA

62 workers in
polyester resins and
fibreglass-reinforced

plastics factories
(48 exposed,

14 unexposed)

• Comet tail moment (peripheral
WBC): unexposed (TM 7.4 ± 0.5,
TM99 12.4 ± 4.9) vs. exposed
(TM7.8 ± 0.8, TM99 34.1 ± 14.0);
sig.

[363]
10.1002/em.10150

Careree ** 2002
Benzene and other

aromatic
hydrocarbons

Italy Passive air samplers
(TWA7h)

190 traffic policemen
(133 exposed,

57 unexposed)

• Comet tail moment (PBMNC) in
subgroups by sex and smoking
status: exposed (0.46 ± 0.46) vs.
controls (0.36 ± 0.32); non-sig.

[49]
10.1016/s1383-

5718(02)00108-0
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Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Cassini 2011 Paint complex
mixtures Brazil --

62 painters
(33 exposed,

29 unexposed)

• DNA damage (Arbitrary Units,
WBC): unexposed (30.11 ± 2.08)
vs. exposed (71.42 ± 2.77); sig.

[364]
10.2478/s13382-011-

0030-2

Cavallo 2018 Styrene Italy
Passive air samplers (4–7 h)

Urinary excretion of MA
and PGA

39 workers in
fibreglass-

reinforced plastics
factories

(11 workers on open
moulding plastic

process, 16 workers
on closed moulding

plastic process,
12 controls)

• Comet Tail moment (lymphocyte
SBs): all workers (6.11 ± 3.16) vs.
controls (8.53 ± 2.49); non-sig.

[365]
10.1016/j.toxlet.

2018.06.006

Cavallo 2021 VOC Italy Personal VOCs exposure
Urinary VOCs metabolites

35
(17 shipyard painters,

18 unexposed)

• % DNA tail (lymphocytes):
exposed (17.68 ± 4.35) vs.
unexposed (11.56 ± 2.62); sig.

[366]
10.3390/ijerph18094645

Cok 2004 Toluene, other
VOCs Turkey Urinary hippuric acid

and o-cresol

40
(20 male glue sniffers,

20 smoking habit
matched controls)

• Total Comet score (visual)
(lymphocytes): exposed
(142.45 ± 9.61) vs. controls
(103.30 ± 2.81); sig.

[367]
10.1016/j.mrgentox.

2003.10.009

Costa 2012 Styrene Portugal
Styrene in workplace air
Urinary mandelic and
phenylglyoxylic acids

152
(75 workers from a
fibreglass factory,

77 unexposed)

• Comet tail length (PBMNC):
exposed (49.39 ± 0.84) vs.
unexposed (47.43 ± 0.52); sig.

[368]
10.1080/15287394.

2012.688488

Costa-Amaral 2019 Benzene Brazil
Benzene and toluene in air
Urinary excretion of MA

and S-PMA

86
(51 employees of

filling stations,
35 controls)

• % DNA tail (leukocytes): exposed
(21.34 ± 20.32) vs. controls
(28.73 ± 17.72); non-sig.

[369]
10.3390/

ijerph16122240
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Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

de Aquino 2016 Xylene, other
organic solvents Brazil --

29 technicians in
pathology laboratory

(18 exposed,
11 unexposed)

• DNA damage (Arbitrary Units,
WBC): exposed (19.61 ± 7.95) vs.
unexposed (8.36 ± 6.47); sig.

[370]
10.1590/0001-

3765201620150194

Everatt ** 2013 Perchloroethylene Lithuania PCE concentration in air:
31.40 ± 23.51

59 dry cleaning
workers

(30 exposed,
29 unexposed)

• Comet tail length (lymphocytes):
exposed (10.45 ± 6.52) vs.
unexposed (5.77 ± 2.31); sig.

[66]
10.1080/15459624.

2013.818238

Fracasso 2010 Benzene Italy

Personal passive air
samplers

Urinary excretion of MA
and S-PMA

133
(33 petrochemical

industry operators,
28 service station
staff, 21 gasoline

pump staff,
51 unexposed)

• Comet tail intensity
(lymphocytes): exposed
(2.78 ± 0.92) vs. unexposed
(2.26 ± 0.56); sig.

[371]
10.1016/j.toxlet.

2009.04.028

Fracasso 2009 Styrene Italy

Personal passive air
samplers

Urinary excretion of MA
and S-PMA

63 workers in
fibreglass-reinforced

plastics factories
(34 exposed,

29 unexposed)

• Comet tail length (lymphocytes):
exposed (3.47 ± 1.14) vs.
unexposed (2.44 ± 0.48); sig.

[372]
10.1016/j.toxlet.

2008.11.010

Godderis 2004 Styrene Belgium

Urinary mandelic acid:
201.57 mg/g

creatinine ± 148.32 in
exposed workers

88 workers in
fibreglass-reinforced

plastics factories
(44 exposed,

44 unexposed)

• % DNA tail (PBMNC): exposed
(0.80 ± 0.31) vs. unexposed
(0.80 ± 0.34); non-sig.

[373]
10.1002/em.20069

Göethel ** 2014 Benzene and CO Brazil

Urinary t,t-muconic acid
(t,t-MA) and 8OhdG
Carboxyhaemoglobin

(COHb) in whole blood

99
(43 gas station staff,

34 drivers,
22 unexposed)

• DNA damage index (Arbitrary
Units): gas station staff
(89.8 ± 21.5) vs. drivers
(94.2 ± 12.8) vs. unexposed
(48.6 ± 35.9); sig.

[70]
10.1016/j.mrgentox.

2014.05.008
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Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Hanova 2010 Styrene Czechia Styrene concentration at
workplace and in blood

122 hand lamination
workers in a plastics

factory
(71 exposed,

51 unexposed)

• Comet assay (lymphocytes):
1.20 ± 0.70 SSB/109 Da, subjects
exposed to low: 0.77 ± 0.39
SSB/109 Da, and high: 0.51 ± 0.41
SSB/109; sig. but negative effect

[374]
10.1016/

j.taap.2010.07.027

Heuser 2005 Toluene, n-hexane,
acetone, MEK Brazil Urinary hippuric acid

70
(29 solvent-based
adhesive workers,

16 water-based
adhesive workers,

25 controls)

• DNA damage (Arbitrary Units,
lymphocytes): exposed
(8.46 ± 7.79) vs. controls
(2.82 ± 2.87); sig.

[375]
10.1016/j.mrgentox.

2005.03.002

Heuser 2007 Toluene, n-hexane,
acetone, MEK Brazil Urinary hippuric acid

94 footwear workers
(39 exposed,
55 unexposed)

• DNA damage (Arbitrary
Units, lymphocytes): exposed
(2.13 ± 2.45 and 8.35 ± 7.85) vs.
controls (3.44 ± 3.24); sig.

[376]
10.1016/

j.tox.2007.01.011

Keretetse 2008 BTX South Africa Air samplers (TWA)
40

(20 petrol station
staff, 20 controls)

• Comet tail intensity
(lymphocytes): exposed
(15.06 ± 9.10) vs. unexposed
(6.30 ± 3.37); sig.

[377]
10.1093/annhyg/

men047

Ladeira 2020 Styrene, xylene Portugal
Styrene and xylene

air-monitoring campaigns
(NIOSH 1501)

34 workers in
polymer producing

factory
(17 exposed,

17 unexposed)

• % DNA tail (PBMNC): exposed
(23.83 ± 20.84) vs. unexposed
(5.99 ± 5.01); sig.

[378]
10.1016/

j.yrtph.2020.104726

Laffon 2002 Styrene Spain

Urinary mandelic acid:
average exposures of 16.76
± 5.9, 17.51 ± 4.64, 19.33 ±

9.95 ppm)

44 workers in
fiberglass-reinforced

plastics
factory

(14 exposed,
30 unexposed)

• Comet tail length (PBMNC):
exposed (48.68 ± 0.33) vs.
unexposed (43.34 ± 0.18); sig.

[379]
10.1016/s0300-

483x(01)00572-8
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Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Lam 2002 Benzene China --

718 workers in
elevator

manufacturing
factory

(359 workers
manufacturing,

205 department staff,
154 controls)

• Tail moment (lymphocytes):
non-exposed 0.53 (0.49–0.56),
exposed: 0.74 (0.68–0.80); sig.

[380]
10.1016/s1383-

5718(02)00010-4

Li 2017 Benzene, toluene China

Air levels of benzene and
toluene
Urinary

S-phenylmercapturic acid
(SPMA) and

S-benzylmercapturic acid
(SBMA)

196
(96 petrochemical
staff, 100 controls)

• % DNA tail (WBC): exposed
(6.51 ± 2.03) vs. controls
(5.84 ± 2.24); sig.

[381]
10.1080/1354750X.

2016.1274335

Londoño-
Velasco 2016 Organic solvents Spain --

104
(52 painters,

52 unexposed)

• % DNA tail (lymphocytes):
exposed (11.09 ± 0.65) vs.
unexposed (7.29 ± 0.31); sig.

[382]
10.3109/15376516.

2016.1158892

Martino-Roth 2003 Organic solvents,
lead Brazil --

40
(10 car painters,
10 storage staff,

20 controls)

• Comet tail length (buccal cells):
car painters (33.85± 0.507) vs.
matched controls (30.73 ± 0.162)
vs. storage staff (34.18 ± 0.484) vs.
matched controls (30.54 ± 0.136);
sig.

[383]

Migliore ¥ 2006 Styrene Italy

Urinary excretion styrene
metabolites, mandelic, and

phenylglyoxylic acids
(MAPGA)

67 workers in
fibreglass-reinforced

plastics factory
(42 exposed,

25 unexposed)

• % DNA tail (sperm): exposed
(11.02 ± 2.99) vs. unexposed
(7.42 ± 2.30); sig.

[384]
10.1093/

mutage/gel012
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Author Year Main Chemical
Exposure Country Exposure Assessment or

Biomarkers of Exposure
Population

Characteristics DNA Damage Reference/DOI

Migliore ¥ 2002 Styrene Italy Urinary concentration of
mandelic acid (MA)

73 workers in
fibreglass-reinforced

plastics factory
(46 exposed,

27 unexposed)

• % DNA tail (sperm): exposed
(10.09 ± 3.0) vs. unexposed
(7.4 ± 2.30); sig.

• Olive tail moment: exposed
(1.5 ± 0.6) vs. unexposed
(0.8 ± 0.4); sig.

[385]
10.1093/humrep/

17.11.2912

Moro 2012 Toluene Brazil Urinary levels of hippuric
acid (HA)

61 painters
(34 exposed,

27 unexposed)

• Damage index (visual score,
WBC): exposed (60.4 ± 3.6) vs.
unexposed (39.4 ± 2.5); sig.

[386]
10.1016/j.mrgentox.

2012.02.007

Navasumrit 2005 Benzene Thailand

Personal benzene exposure
by diffusive badges

Urinary metabolites, blood
benzene

148
(28 children in

Chonburi,
41 children in

Bangkok, 29 gasoline
service staff in

Bangkok, 23 factory
staff, 27 controls)

• Olive tail moment (WBC):
children Chonburi (0.13 ± 0.01) vs.
children Bangkok (0.22 ± 0.01);
sig.

• Olive tail moment (WBC):
gasoline service (0.24 ± 0.01) vs.
factory staff (0.44 ± 0.06) vs.
controls (0.24 ± 0.01); sig.

[387]
10.1016/

j.cbi.2005.03.010

Pandey 2008 BTX India
Benzene monitoring in air

Benzene, toluene, and xylene
in blood samples

200 petrol pump
workers

(100 exposed,
100 unexposed)

• % DNA tail (lymphocytes):
exposed (11.92 ± 2.74) vs.
unexposed (7.79 ± 1.17); sig.

• Comet tail length: exposed
(54.61 ± 7.81) vs. unexposed
(50.33 ± 9.83); sig.

[388]
10.1002/em.20419
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Poça 2021 Benzene in gasoline Brazil Urinary t,t-muconic acid

349
(154 exposed filling

station workers,
95 convenience store

workers,
100 unexposed office

workers)

• DNA damage (Whole blood): the
filling and convenience store
workers had significantly higher
DNA damage (Class 1) than the
comparison group (p ≤ 0.001); sig.

• Comet assay (Whole blood): office
workers [class 0 (96.00), class 1
(4.00), class 2 (0.00), class 3 (0.00)];
convenience store workers [class 0
(94.00), class 1 (5.33), class 2 (0.00),
class 3 (0.00)]; filling station [class
0 (94.67), class 1 (5.33), class 2
(0.00), class 3 (0.00)]

[389]
10.1016/j.mrgentox.

2021.503322

Rekhadevi 2010 BTX India
Monitoring of ambient and

breathing zone air
BTX in blood

400
(200 fuel station staff,

200 controls)

• Tail length WBC: exposed
(25.10 ± 2.28) vs. controls
(10.27 ± 1.52); sig.

[390]
10.1093/

annhyg/meq065

Roma-Torres 2006 BTX Portugal

Urinary t,t-Muconic acid
(t,t-MA), hippuric acid (HA),

and methylhippuric
acid (MHA)

78
(48 petroleum unit

workers, 30 controls)

• Comet tail length (WBC): exposed
(52.90 ± 0.85) vs. controls
(48.09 ± 0.74); sig.

[391]
10.1016/j.mrgentox.

2005.12.005

Sakhvidi 2022
Benzene found in

petroleum
compounds

Iran Air sampling for benzene

32 petroleum
products workers

exposed to benzene,
32 non-exposed
administrative

• Tail length (TL), tail density (TD),
tail momentum (TM), percentage
of tail in the DNA (%DNA), and
%TAC (WBC): in control group
were 78.59, 8.35, 1.20, 10.05, and
25.58, and in the exposure group
were 59.21, 75.74, 57.74, 3.5, and
16.58, respectively; sig.

[392]
10.1007/s11356-022-

19015-2
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Sardas 2010 Welding fume,
solvent base paint Turkey --

78
(26 welders,
26 painters,
26 controls)

• % DNA tail (lymphocytes): all
exposed (12.34 ± 2.05) vs. controls
(6.64 ± 1.43); p < 0.05

• % DNA tail: welders
(13.59 ± 1.89) vs. painters
(11.10 ± 1.35); sig.

[96]
10.1177/

0748233710374463

Scheepers ** 2002 Diesel exhaust
(benzene, PAHs)

Estonia, Czech
Republic

Analysis of air samples
Urinary metabolites of PAH

and benzene

92 underground
miners (drivers of

diesel-powered
excavators)

(46 underground
workers, 46 surface

workers)

• DNA damage (lymphocytes,
visual scoring): underground
workers (134) vs. surface workers
(104); non-sig.

[97]
10.1016/s0378-

4274(02)00195-9

Sul * 2002 Benzene South Korea Urinary t,t-muconic acid
(t,t-MA), and creatinine

81 printing factory
(41 exposed,

41 unexposed)

• Olive tail moment (lymphocytes
and granulocytes): exposed
(1.75 ± 0.29) vs. unexposed
(1.47 ± 0.41); sig.

• Comet tail moment (lymphocytes):
exposed (3.86 ± 0.71) vs.
unexposed (1.51 ± 0.39); sig.

• Comet tail moment
(granulocytes): exposed
(3.61 ± 0.75) vs. unexposed
(2.60 ± 0.59); sig.

[393]
10.1016/s0378-

4274(02)00167-4

Sul * 2005 Benzene South Korea

Personal sampler benzene
Urinary trans, trans-muconic

acid (t,t-MA), phenol,
creatinine

61 subjects (working
in printing,

shoemaking,
production of

methylene di-aniline
(MDA), nitrobenzene,

carbomer, and
benzene)

• Olive tail moment: 1.73 ± 0.81
• Correlation levels of

benzene/DNA damage in
lymphocyte of workers; sig.

[394]
10.1016/j.mrgentox.

2004.12.011
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Teixeira 2010 Styrene Portugal

Styrene in inhaled air
Urinary excretion styrene

metabolites, mandelic, and
phenylglyoxylic acids

(MAPGA)

106
(52 fibreglass

workers, 54 controls)

• Comet tail length (PBMNC):
exposed (49.20 ± 0.93) vs. controls
(47.64 ± 0.64); non-sig.

[395]
10.1093/mutage/

geq049

Tovalin ** 2006 VOCs, PM2.5,
ozone Mexico

Personal occupational and
non-occupational

monitoring

55 city traffic
exposure

(28 outdoor workers,
27 indoor workers)

• Comet tail length (WBC): outdoor
workers (median 46.80 [maximum
132.41]) vs. indoor workers
(median 30.11 [maximum 51.47]);
sig.

[104]
10.1136/

oem.2005.019802

Xiong 2016
Benzene, toluene,
ethylbenzene, and

xylenes (BTEX)
China Air sampling

252 gas station
workers

(200 refueling
workers, 52 controls)

• Comet tail moment (lymphocytes):
exposed (0.094 [0.045–0.215]) vs.
controls (0.064 [0.027–0.113]); sig.

[396]
10.3390/

ijerph13121212

Zhao 2017

Benzene, acetone,
xylene, toluene,

lead, isopropanol,
and physical

factors

China Air sampling

722 workers in
electronics factory

(584 exposed,
138 controls)

• % DNA tail (peripheral blood):
lead+high temp (12.06 ± 17.89) vs.
isopropanol (20.15 ± 15.41) vs.
controls (6.36); sig.

[397]
10.1016/j.mrfmmm.

2017.07.005

Environmental exposure

Avogbe ** 2005 Benzene, ultrafine
particles Benin Ambient UFP

Urinary excretion of S-PMA

135 city traffic
exposure

(29 drivers,
37 roadside residents,

42 suburban,
27 rural)

• % DNA tail (PBMNC): drivers
(6.09 ± 3.46) vs. roadside residents
(6.32 ± 4.00) vs. suburban
(5.42 ± 2.28) vs. rural (4.26 ± 1.76);
sig.

[121]
10.1093/carcin/bgh353

Koppen ** 2007
PAHs, VOCs
(benzene and

toluene)
Belgium

Outdoor ozone
concentrations

Urinary concentrations of
PAH, t,t′-muconic acid,

o-cresol, VOCs metabolites

200 adolescents
air pollution

• % DNA tail (WBC): 1.16 ± 0.51
• Correlation DNA

damage/o-cresol and OHpyrene;
sig.

[138]
10.1002/jat.1174
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Mukherjee ** 2013
Particulate

pollutants and
benzene

India Urinary trans, trans-muconic
acid

105
(56 biomass users,

49 cleaner liquefied
petroleum gas users)

• % DNA tail (sputum cells):
biomass users (36.2 ± 9.4) vs. gas
users (9.0 ± 4.1); sig.

• Comet tail length (sputum cells):
biomass users (44.2 ± 6.0) vs. gas
users (32.3 ± 7.3); sig.

• Olive tail moment (sputum cells):
biomass users (6.2 ± 2.2) vs. gas
users (1.2 ± 0.5); sig.

[144]
10.1002/jat.1748

Pelallo-
Martínez **,G 2014 Lead, benzene,

toluene, PAHs Mexico Urinary and blood Pb,
benzene, toluene, PAHs

97 children, air
pollution

(44 Allende,
37 Nuevo Mundo,
16 Lopez Mateos)

• Olive tail moment (WBC):
Allende (8.3 [3.1–16.8]) vs. Nuevo
Mundo (10.6 [5.6–22.9]) vs. Lopez
Mateos (11.7 [7.4–15.9]); sig.

[149]
10.1007/s00244-014-

9999-4

Sørensen 2003 Benzene Denmark

Exposure benzene, toluene,
MTBE

8-oxodG in blood
Urinary ttMA, S-PMA

40 subjects, air
pollution

• Visual score (lymphocytes):
13.0 (7.0–21.5)

• No correlation comet/exposure

[398]
10.1016/S0048-
9697(03)00054-8

Wilhelm **,G 2007 PAH, benzene,
heavy metals Germany

Monitored ambient air
quality data

Urinary (PAH) metabolites,
benzene metabolites

935 air pollution
close to industrial

settings
(620 exposed

children,
315 unexposed)

• Comet tail moment (lymphocytes):
—percentile 50: exposed (1.99) vs.
unexposed (1.32); sig.

• Comet tail moment—percentile
90: exposed (6.69) vs. unexposed
(1.89); non-sig.

[160]
10.1016/

j.ijheh.2007.02.007

Zani ** 2020
PM10, PM2.5, NO2,

CO, SO2,
benzene, O3

Italy Air monitoring by
regional agency

152 children, air
pollution

Saliva leukocytes from sputum

• Comet tail intensity: 6.2 ± 4.3
• Visual score: 182.1 ± 30.9; non-sig.

[162]
10.3390/

ijerph17093276

PBMNC—Peripheral blood mononuclear cells. WBC—Whole blood cells. ¥ Updated studies from the same author/group of authors. * We noted that the studies have most likely been
conducted on partly overlapping samples of benzene-exposed workers in a printing company (4 out of 41 samples from the first study appear to have been included in the second). The
references are counted as separate studies; ** studies also in air pollution table; G studies also in heavy metals table.
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The studies mostly focused on occupational exposure to organic solvents, namely ben-
zene, toluene, xylenes, ethylbenzene, styrene, perchloroethylene, and isopropyl alcohol. In
many cases, subjects were exposed to mixtures of different organic solvents or mixtures
of solvents and other toxicants such as heavy metals, PAHs, or pesticides. Around 40%
of the studies (n = 20) evaluated workers in factories (plastics, polymers, shoemaking and
others) [96,97,363,365,368,372–376,378–380,384,385,387,393–395,397], a quarter (n = 12; 24.0%)
assessed gas station and petrochemical industry workers [70,369,371,377,381,387–392,396]
and fewer studies addressed painters (n = 6; 12.0%) [96,364,366,382,383,386], dry cleaners
(n = 2; 4.0%) [66,362], biomedical laboratory workers (n = 1; 2.0%) [385], sewage work-
ers (n = 1; 2.0%) [41], and employees in biomass fuel burning (n = 1; 2.0%) [144]. Nine
studies (18.0%) evaluated exposure to pollutants in adults [49,104,121,398] or in adoles-
cents/children [138,149,160,162,387] and one (2.0%) in glue sniffers [367]. Around half of
the studies were conducted in Europe (n = 23; 46.0%), one-third in Asia (n = 14; 28.0%) and
around 22% in Southern America (n = 11); only two studies were performed in Africa (4.0%).

All the studies were observational, and most of them used a cross-sectional de-
sign comparing the exposed and non-exposed subjects. Only a few studies (n = 3;
6.1%) evaluated the correlation between DNA damage and exposure markers in the
exposed subjects [138,394,398].
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Overall, 43 studies (86.0%) used either environmental or biological monitoring of
exposure or both. Studies with exposure evaluation by questionnaire (n = 7; 14.0%) [96,362,
364,370,380,382,383] were considered as limited regarding evidence. A significant increase
in DNA damage in subjects exposed to solvents, or a positive correlation between DNA
damage and exposure markers, was reported in 41 studies (82.0%) [of which 7 were limited
based on the exposure evaluation], whereas in 8 studies (16.3%), the authors did not find
any effect; in 1 paper (2.0%) a significant decrease in DNA damage was observed in the
exposed subjects [374].

All of the studies reviewed took into consideration participants’ age and sex matching
or a correction for variables in their analysis (19 were restricted to male subjects, and 2 to
female participants). In the majority of the included studies (n = 48, 96.0%), a smoking habit
was considered as a confounding factor, or the study was conducted in non-smokers, with
the exception of two studies [384,392] that did not consider smoking. Alcohol drinking
was evaluated in 13 (26.0%) studies. With the exception of Azimi [362], statistical power
calculations were not presented.

The parameters used to express the comet assay data (one or more in the same study)
were as follows: % DNA in the tail was used in 19, tail moment in 13, tail length in 13,
and visual scoring in 9 papers. The cells used for biomonitoring were mostly blood
cells, with saliva leukocytes from sputum in two cases [144,162]. In one study, urine
genotoxicity was assessed [41], and in another, buccal cells were used to monitor exposure
in car painters [383], while two studies focused on sperm DNA in workers in plastic
factories [384,385].

In summary, the synthetised evidence from 50 studies confirms the positive effect
of solvent exposure (different types/mixtures) on DNA damage (both in adults and
children/adolescents) measured by the comet assay in sentinel cells. However, further
well-designed observational studies properly accounting for confounding variables are
still needed.

4. Considerations

This broad systematic scoping review provides a critical assessment of the available
evidence on the use of the comet assay in human biomonitoring, based on 334 different
primary studies on the genotoxic effects from occupational or environmental exposures to
six major groups of chemical substances (i.e., air pollutants, anaesthetics, antineoplastic
drugs, heavy metals, pesticides, and solvents). In general, the information gathered in this
scoping systematic review shows that the comet assay can be a good candidate to provide
reliable information for health risk evaluations; and the volume of publications that applied
this methodology contributes to its validation.

The comet assay has, in fact, become an important method in the field of bio-assaying
to assess genetic damage in a great variety of cells in exposed populations. Historically,
peripheral blood mononuclear cells (PBMNCs), mainly represented by lymphocytes, have
been regarded as long-living sentinel cells [399], which are useful for detecting past expo-
sures to genotoxic compounds and are widely used in human biomonitoring studies [400].
Lately, whole blood preparations containing all leukocytes have been increasingly used in
spite of their lower cellular homogeneity, as they do not involve cell isolation procedures
and can be readily and safely stored frozen [17]. Moreover, there is already a substantial
number of studies of exfoliated buccal cells obtained by a minimally invasive method. The
comet assay is recommended for monitoring populations chronically exposed to genotoxic
agents, combined with the cytokinesis-blocked micronucleus assay [16,203], since the first
identifies injuries resulting from a recent exposure (over the previous few weeks), which
are still reparable, such as single- and double-strand DNA breaks, alkali labile lesions
converted to strand breaks under alkaline conditions, and single-strand breaks associ-
ated with incomplete excision repair sites [12,18,401,402]. It is highly desirable that each
laboratory should set up and implement standard operating procedures for experimen-
tal protocols, manipulation of samples, and analyses [12,18,401,402]. To facilitate this, a
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compendium of comet assay protocols for the analysis of different types of samples was
recently published [14].

The results of this systematic scoping review indicate that, in general, for all the
groups of chemicals included, for both occupational and environmental exposure, increased
levels of DNA damage are seen in subjects exposed in comparison to the non-exposed
subjects, with a majority of statistically significant results. There is great heterogene-
ity in the assessment of exposure-outcome association, with a preponderance of studies
with a lack of exposure assessment and/or biomarkers of exposure and accountability
of confounding variables scarcely considered, which fits with the underuse of exposure
assessment tools [403].

Human biomonitoring provides additional information, which can contribute to a
more accurate risk assessment at the individual and/or group level. With respect to
occupational exposure and the biomonitoring of workers, the scenario is clearer, and three
main goals can be drafted as follows: the first is an individual or collective exposure
assessment, the second is health protection, and the ultimate objective is an occupational
health risk assessment [404].

Biomonitoring tools provide information for several actions related to occupational
health interventions, such as the following: determining if a specific exposure has oc-
curred and if it implies a risk to workers’ health; providing knowledge of exposure by
all possible exposure routes; realising if health outcomes can be expected from exposure;
helping to clarify the results from clinical testing in some circumstances; recognising the
adequacy of control measures in place; helping to demonstrate the link between occupa-
tional exposure and a health effect [405]; and ultimately supporting health monitoring and
surveillance programmes [406].

Emphasis should be given to monitoring populations which—at the environmental
and/or occupational levels—are known to be exposed to hazardous substances, and to
providing reliable health risk evaluations. This information can also be used to support
regulations on environmental protection and/or to define limits in occupational settings.
However, it is important to point out a critical issue in the application of any predictive
biomarker in public health policies involving environmental and/or occupational expo-
sures, namely, the meaning of the differing levels of predictive biomarkers at an individual
level versus a group level. The latter (conservative approach) considers risk prediction
to be valid only at a group level, allowing the effect of inter-individual variability and
variability due to technical parameters being neglected [407]. The other (progressive ap-
proach) advocates that variability is a fundamental source of information, allowing the
application of preventive measures in subsets of high-risk subjects. The other crucial aspect
of predictive biomarkers is validation. A biomarker must be validated before it can be used
for health risk assessments, especially as far as regulatory aspects are concerned.

The biomonitoring studies provide results on the associations between exposures
and genotoxicity. There is an over-representation of studies with statistically significant
increases in DNA damage in exposed subjects. Many studies use relatively simple statistical
analyses such as ANOVA (or Student’s t-test) or the corresponding non-parametric tests
(i.e., Kruskal–Wallis and Mann–Whitney U tests). The smallest studies have roughly group
sizes of 20–30 subjects, whereas the largest studies have more than a hundred subjects in
each exposure group. A conservative estimate indicates that a group size of 40 subjects
is necessary to obtain a statistically significant two-fold difference between two groups if
the coefficient of variation in each group is 100% (α = 0.05, β = 0.80, calculated in Stata
version 15, StataCorp, College Station, TX, USA). Correction for confounding by multi-
variate analyses decreases the statistical power, implying that more subjects are required
to obtain the same statistical significance as with a crude analysis (i.e., adjusted analyses
decrease the effect size in cases of classical confounding). However, some studies in the
database also make use of confounders in stratified analyses of genotoxicity, such as the
genotoxic effects of exposure in the strata of non-smokers and smokers. Statistical planning
before conducting studies on the interactions between host factors and exposures requires
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knowledge of the anticipated effects of both factors. In addition, it is important to consider
both the intra- and inter-individual variations when assessing the statistical power of
studies on comet assay endpoints. Inter-individual variation is relatively easy to assess as
the difference between levels of DNA damage; coefficient of variation values range between
10% and 100% in different biomonitoring studies and larger studies typically have larger
variations than small studies. The lower variation in small studies is most likely due to less
effect of the between-day variation in the comet assay, which is an important contributor to
the overall variation. The relatively large between-day variation in the comet assay also
increases the uncertainty of the intra-individual variation assessments because it contributes
to the overall variation if the samples are isolated and analysed on different days. The
alternative—specimens are stored and analysed in the same batch—entails uncertainty
about the stability of stored samples for the comet assay and/or whether, for instance, the
freezing/thawing of samples affects DNA damage in case cryopreservation is used to store
the samples. Given the current knowledge of the sources of variability in the comet assay, a
conservative approach is that the magnitude of the intra- and inter-individual variations
are similar, and both of these contributors are smaller than the between-day variation in
the comet assay. Therefore, it may be relevant to use block designs when analysing samples
in biomonitoring studies. This can be accomplished by analysing matched samples in
the same comet assay experiment in biomonitoring studies where individual or group
matching has been used in the study design.

Our study has some limitations. No quantitative analyses or further in-depth com-
parisons among studies were possible given the heterogeneity of data from the different
study designs and the lack of studies properly reporting outcomes measurements and units.
Moreover, most studies have a small number of subjects, rendering them insufficiently
powerful to tease out the statistical effects of individual chemicals in complex mixtures,
which is often the case in human biomonitoring studies. The absence of a core outcome set
or standardised reporting of data [408] using the comet assay may contribute to selective
bias and a loss of information and may impair evidence gathering on the effects of occupa-
tional or environmental exposures to different types of substances in different populations.
Yet, although the results are only exploratory, a systematic and critical review process was
followed in our study; the data summarised by means of tables support the development
of further research in this field. It should be noted that the findings and conclusions of the
studies were considered as presented by the authors, meaning that the results cannot be
generalised to different scenarios/settings and geographical regions.

In summary, our findings may support further scientific, technological, and innovative
development in this field, especially regarding the incorporation of the comet assay as a
validated tool for human biomonitoring studies. The gathered evidence may also be used
to monitor and reassess the value of this assay, as well as to assist in the development
of guidelines.
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