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Abstract: Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with
severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity
of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established.
Oleanolic acid acetate (OAA), a triterpenoid isolated from Vigna angularis, is commonly used to
treat inflammatory and allergic diseases. This study aimed to investigate the protective effects of
OAA against cisplatin-induced apoptosis and necroptosis using TCMK-1 cells and a mouse model.
In cisplatin-treated TCMK-1 cells, OAA treatment significantly reduced Bax and cleaved-caspase3
expression, whereas it increased Bcl-2 expression. Moreover, in a cisplatin-induced kidney injury
mouse model, OAA treatment alleviated weight loss in the body and major organs and also relieved
cisplatin-induced nephrotoxicity symptoms. RNA sequencing analysis of kidney tissues identified
lipocalin-2 as the most upregulated gene by cisplatin. Additionally, necroptosis-related genes such
as receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like (MLKL) were
identified. In an in vitro study, the phosphorylation of RIPKs and MLKL was reduced by OAA
pretreatment in both cisplatin-treated cells and cells boosted via co-treatment with z-VAD-FMK. In
conclusion, OAA could protect the kidney from cisplatin-induced nephrotoxicity and may serve as
an anti-cancer adjuvant.

Keywords: acute kidney injury; oleanolic acid acetate; cisplatin; necroptosis; apoptosis

1. Introduction

Cisplatin, a platinum-based agent, is one of the most widely used drugs in the treat-
ment of solid tumors such as lung, ovarian, and testicular tumors. However, cisplatin
is known to induce organ toxicity, particularly nephrotoxicity [1]. Previous reports iden-
tified kidney toxicity in approximately 30% of cancer patients treated with cisplatin [2].
These studies demonstrated that cisplatin treatment significantly increased the reactive
oxygen species, blood urea nitrogen (BUN), and serum creatinine levels in the kidney
injury model [3,4]. Nephrotoxicity was accompanied by rapid renal dysfunction along
with electrolytes and hematologic abnormalities, fluid overload, and multi-organ failure [5].
Even small changes in kidney function can lead to complications [6]. An increase in serum
creatinine levels has been associated with higher mortality and longer hospital stays in
patients with acute renal failure [7]. Additionally, BUN is often used as a clinical index for
kidney injury and function, similar to creatinine [8]. Furthermore, lipocalin-2 increased
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in urine before significant changes in clinical chemistry parameters were evident in kid-
ney injury and acute renal failure. These studies demonstrate the potential of LCN2 as a
biomarker of acute kidney injury in various disease processes [9–11].

Cisplatin is a DNA-damaging agent that interferes with DNA replication [12], induc-
ing programmed kidney cell death such as apoptosis, necroptosis, and ferroptosis [13,14].
An important mechanism of cisplatin-induced DNA damage in cell death is apoptosis [15],
which is a form of programmed cell death occurring in multi-cellular organisms. In the
apoptotic process, Bcl-2 (an anti-apoptotic protein) antagonizes Bax (a pro-apoptotic pro-
tein), triggering the activation of caspases [16,17]. Bcl-2 prevents the release of cytochrome
C from the mitochondria, whereas Bax induces the release of cytochrome C [18]. Cy-
tochrome C activates caspase-9, subsequently inducing the cleavage of caspase-3 and poly
ADP-ribose polymerase (PARP) [19,20]. Unlike necrosis, apoptosis involves the removal of
apoptotic bodies by phagocytes, and cellular contents do not spill out into other cells [21].

In contrast to programmed cell death mechanisms such as apoptosis, necroptosis (also
known as programmed necrosis) is initiated by cellular damage or pathogens [22,23] and
is primarily triggered by tumor necrosis factor-α (TNF-α) receptor-mediated necroptosis-
related proteins [24–26]. Under certain conditions, TNF receptor activation leads to the
phosphorylation of receptor-interacting protein kinase 1 (RIPK1), recruiting RIPK3. The
RIPK1/RIPK3 complex then recruits and phosphorylates the mixed lineage kinase domain-
like protein (MLKL). Ultimately, the phosphorylation of MLKL by RIPK3 results in necrop-
tosis via plasma membrane disruption and cell lysis [25,27–30]. Additionally, depending on
the cell type and context, the activation of RIPK1 causes apoptosis or inflammation [31,32].
Furthermore, necrostatin-1 (Nec-1) can block necroptosis by inhibiting the phosphorylation
of RIPK1 [33]. The z-VAD-FMK can hamper the activation of caspase-3, thereby blocking
apoptosis and boosting necroptosis [34].

Therefore, the search for new adjuvants is crucial to mitigate cisplatin-induced kid-
ney toxicity via cell death. Oleanolic acid acetate (OAA), a triterpenoid compound iso-
lated from Vigna angularis, is commonly used in daily diet or as a traditional medicine in
Asia [35,36]. Previous studies have demonstrated the various pharmacological activities
of V. angularis and OAA, such as anti-osteoporotic, anti-inflammatory, and anti-allergic
activities [35,37]. Nevertheless, the effects of OAA on cisplatin-induced nephrotoxicity
have not yet been investigated.

In the present study, we focused on the inhibitory effects of OAA on cisplatin-induced
cell death, particularly apoptosis and necroptosis caused by cisplatin treatment. Conse-
quently, we evaluated the protective effects and mechanisms of action of OAA against
cisplatin-induced nephrotoxicity in the mouse kidney cell line TCMK-1 and a mouse kidney
injury model.

2. Materials and Methods
2.1. Materials

Cisplatin, sodium thiosulfate (ST), oleanolic acid (OA), necrostatin-1 (Nec-1), and
z-VAD-FMK were purchased from Sigma-Aldrich (St. Louis, MO, USA). OAA was purified
from V. angularis as previously described [36]. Briefly, the V. angularis material was dried,
pulverized to a fine powder, and extracted twice with 95% ethanol (EtOH) at 70 ◦C. The
EtOH extracts were concentrated under reduced pressure. For fractionation, the EtOH
extract was resuspended in water and then extracted with ethyl acetate (EtOAc). To isolate
compound from the EtOAc fraction, it was further chromatographed on silica gel using
a gradient hexane-EtOAc solvent system. The recrystallization of H3 in EtOAc yielded
OAA. The primary antibodies RIP (#3493, rabbit monoclonal), phospho-RIP (#65746, rabbit
monoclonal), RIP3 (#95702, rabbit monoclonal), phospho-RIP3 (#91702, rabbit monoclonal),
MLKL (#37705, rabbit monoclonal), phospho-MLKL (#37333, rabbit monoclonal), and
β-actin (#4967S, rabbit monoclonal), as well as the anti-rabbit IgG horseradish peroxidase-
conjugated secondary antibody (#7074S) and anti-mouse IgG horseradish peroxidase-
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conjugated secondary antibody (#7076S), were purchased from Cell Signaling Technology
(Danvers, MA, USA).

2.2. Cell Culture

The mouse epithelial kidney cell line TCMK-1 (CCL-139) was purchased from the
American Type Culture Collection (Manassas, VA, USA). Cells were maintained in Eagle’s
minimum essential medium (EMEM) supplemented with heat-inactivated 10% fetal bovine
serum, 100 U/mL of penicillin G, and 100 µg/mL of streptomycin at 37 ◦C in 5% CO2.

2.3. Cell Viability

The cellular toxicity of OAA in TCMK-1 cells was analyzed using an EZ-Cytox assay
kit (Dogen, Seoul, Republic of Korea) according to the manufacturer’s protocol. Briefly,
TCMK-1 cells (1 × 105 cells/well in a 96-well plate) were seeded with 100 µL of EMEM
for 24 h. The cells were treated with various OAA concentrations for 21 h, and 50 µL of
supernatant was transferred to a new 96-well plate. The supernatant was mixed with 50 µL
of water-soluble tetrazolium salt (WST-1) solution, and absorbance was then measured
at 450 nm using a microplate reader (Thermo Fisher Scientific, Waltham, MA, USA). Cell
viability was calculated as the relative absorbance compared to control. The experiment
was repeated three times.

2.4. Flow Cytometric Analysis

The apoptosis assay was performed using the FITC Annexin V apoptosis detection
kit (556547; BD Biosciences, Oxford, UK). TCMK-1 cells (2 × 105 cells/well in a 12-well
plate) were cultured in 1 mL of EMEM for 24 h. Cells were treated with 1000 µM of sodium
thiosulfate and various OAA concentrations for 1 h and subsequently stimulated with
20 µM of cisplatin. Sodium thiosulfate, a chelator of cisplatin, was used as a positive
control drug [38]. After 21 h, the cells were harvested and stained with FITC Annexin V
and propidium iodide. Stained cells were subjected to flow cytometry using a BD Accuri
C6 Plus flow cytometer (BD Biosciences). The gate strategy for the total cells was counted
as 20,000, and the Annexin V/propidium iodide ratio was determined. The concentration
of each drug was used as previously described. [39,40]. The experiment was repeated
three times.

2.5. Proteome Profiler Mouse Apoptosis Array

The expression of apoptosis-related proteins was screened using a proteome profiler
mouse apoptosis array (R&D Systems, Minneapolis, MN, USA) according to the manufac-
turer’s protocol. Briefly, TCMK-1 cells (2 × 105 cells/well in a 6-well plate) were cultured
in 2 mL of EMEM for 24 h. The cells were treated with 1000 µM of sodium thiosulfate and
30 µM of OAA for 1 h and subsequently stimulated with 20 µM of cisplatin. After 21 h,
the cells were harvested and lysed in ice-cold cell lysis buffer (Cell Signaling Technology)
containing phosphatase and protease inhibitor cocktail (0.5 mM PMSG/DTT and 5 µg/mL
leupeptin/aprotinin) for 30 min at 4 ◦C. Cell lysates were incubated with nitrocellulose
membranes containing antibodies against apoptosis-related proteins. Signals were visu-
alized using a chemiluminescent substrate (Thermo Scientific, Waltham, MA, USA) and
detected by the ChemiDoc XRS imaging system (Bio-Rad Laboratories, Hercules, CA, USA).
The experiment was repeated three times.

2.6. Animals

All 8-week-old C57BL/6 mice were purchased from Orient Bio (Gwangju, South
Korea) and housed in a controlled environment with constant humidity (55 ± 5%) and
temperature (22 ± 2 ◦C) under a 12 h dark/12 h light cycle, with a standard laboratory diet
and water supply. The care and treatment of animals were conducted in accordance with
the guidelines established by the Public Health Service Policy on the Humane Care and
Use of Laboratory Animals and were approved by the Institutional Animal Care and Use
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Committee of the Korea Research Institute of Bioscience and Biotechnology (approval no.:
KRIBB-AEC-21054; date of approval: 22 February 2021).

2.7. Mouse Model of Cisplatin-Induced Nephrotoxicity

The mice were randomly divided into the following six experimental groups, with
seven mice each: (1) control group; (2) group treated with 20 mg/kg cisplatin; (3) group
treated with 20 mg/kg cisplatin and 1 g/kg sodium thiosulfate; (4) group treated with
20 mg/kg cisplatin and 50 mg/kg OA; (5) group treated with 20 mg/kg cisplatin and
25 mg/kg OAA; and (6) group treated with 20 mg/kg cisplatin and 50 mg/kg OAA. OA
and OAA were dissolved in a 0.5% carboxymethylcellulose solution and orally adminis-
tered once daily for 5 days. ST was dissolved in 0.9% saline and intraperitoneally injected
once daily for 5 days. Cisplatin was dissolved in 0.9% saline and intraperitoneally injected
as a single dose (20 mg/kg) 1 h after drug administration on the first day. The dose of each
drug was used as previously described [37,41,42].

2.8. Serum and Tissue Collection

At 24 h after the last cisplatin injection, the mice were sacrificed via 4% isoflurane expo-
sure. Blood samples were obtained from the mouse hearts, and the collected blood samples
were held at room temperature for 3 h. Subsequently, serum was obtained via centrifuga-
tion at 3000 rpm for 15 min at 4 ◦C. Organs (kidneys, liver, and spleen) were harvested and
washed with cold saline. The weight of the organs was measured, and the kidneys were
then fixed in 4% formaldehyde solution at room temperature for histopathology. Serum
and organ samples were stored at −80 ◦C until use.

2.9. Serum Analysis

Serum biochemical levels of BUN and creatinine were measured using FUJIFILM
DRI-CHEM NX500 with DRI-CHEM slide (FUJIFILM, Tokyo, Japan) according to the
manufacturer’s protocol.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

Serum levels of pro-inflammatory cytokines, including TNF-α, interleukin (IL)-1β,
and IL-6, were measured using ELISA kits (BD Biosciences, San Diego, CA, USA). All
measurements were performed according to the manufacturer’s instructions. Briefly,
capture antibodies (1:250) were coated into a 96-well immune plate at 4 ◦C overnight. The
plate was washed and blocked with 3% bovine serum albumin (BSA) solution for 1 h,
and the diluted samples (TNF-α, 1:10; IL-1β, 1:25; IL-6, 1:50) were placed in the wells of
the plate. After 2 h, the detection antibody (1:250) was added to each well, reacted for
1 h, and then incubated with streptavidin-HRP reagent for 1 h. Absorbance was detected
with substrate addition and measured at 450 nm using a microplate reader (Thermo Fisher
Scientific). Cytokine levels were calculated using a standard curve.

2.11. Histological Analysis

Mouse kidney samples were fixed in a 4% formaldehyde solution at room temperature
for 7 days and embedded in paraffin. Subsequently, the tissues were sectioned serially
at 0.3 µm and stained with hematoxylin and eosin (H&E) for observation of histological
alterations. Images were observed at ×200 magnification and photographed under a
microscope (Olympus, Tokyo, Japan). Cell infiltration in glomerular capsule, tubular
dilatation, cell death, and cast formation were scored 1 to 5 in terms of the severity of the
whole cortical area of the kidney slices. The criteria for histological scores are shown in
Table S1. The histological scores were scored in a blind manner.

2.12. RNA Sequencing

For the transcriptome analysis of kidney tissues, total RNAs were extracted using the
TruSeq Stranded Total RNA LT Sample Prep Kit (Illumina, San Diego, CA, USA) according
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to the manufacturer’s instructions. Clean reads were obtained from raw data by removing
adaptors, poly-N, and low-quality reads. For the calculation of the number of spliced reads
mapped onto each gene, HISAT2 was used to align the data to a mouse reference. The
expression level acquired by transcript quantification and reads per kilobase of transcript
per million mapped reads was obtained from the expression profile. Differential expression
analysis was conducted using the preprocess Core’R library with a false discovery rate of
≤0.05. KEGG enrichment analysis was also performed, and a heat map of differentially
expressed genes (DEGs) was utilized. Gene expression ratios were visualized as log2 for
each group.

2.13. Western Blot

TCMK-1 cells (2 × 106 cells/well in a 6-well plate) were cultured in 2 mL of EMEM
for 24 h. The cells were treated with 1000 µM of sodium thiosulfate and various OAA
concentrations for 1 h and were subsequently stimulated with 20 µM of cisplatin for 6 h. For
the mechanism study, the cells were treated with 10 µM of Nec-1 or 20 µM of z-VAD-FMK
for 1 h and were then stimulated with 20 µM of cisplatin for 6 h. The cells were harvested
and lysed in ice-cold cell lysis buffer (Cell Signaling Technology) containing phosphatase
and protease inhibitor cocktail (0.5 mM PMSG/DTT and 5 µg/mL leupeptin/aprotinin)
for 30 min at 4 ◦C. Afterward, the lysates were centrifuged at 12,000 rpm for 20 min at
4 ◦C, and the supernatants of cell lysates were separated. Equal amounts of protein lysates
were subjected to electrophoresis on a 10% SDS-PAGE gel, and the protein bands were then
transferred to a polyvinylidene difluoride membrane. After blocking with 5% BSA, the
membrane was incubated with the target primary antibody, washed, and subsequently in-
cubated with anti-IgG horseradish peroxidase-conjugated secondary antibody. The primary
and secondary antibodies were used at dilutions of 1:1000 and 1:2000, respectively. Im-
munoreactive protein bands were visualized using a chemiluminescent substrate (Thermo
Scientific), and the results were analyzed using the ChemiDoc XRS + system (Bio-Rad
Laboratories). Experiments were repeated three times.

2.14. Quantitative Polymerase Chain Reaction (qPCR)

For nephrotoxicity assessment, the gene expression in kidney tissues and TCMK-1
cells was analyzed using qPCR. Kidney tissues were collected after sacrificing the mice and
immediately frozen at −80 ◦C. For RNA extraction, 5 mg of kidney tissues was dissected
into small pieces. TCMK-1 cells (5 × 105 cells/well in a 12-well plate) were cultured in
1 mL of EMEM for 24 h. The cells were treated with 1000 µM of sodium thiosulfate and
various OAA concentrations for 1 h and were subsequently stimulated with 20 µM of
cisplatin for 4 h. Total RNA was isolated using the TRIzol Reagent (Invitrogen, San Diego,
CA, USA) according to the manufacturer’s protocol. First-strand complementary DNA
(cDNA) was synthesized using a Thermo cDNA synthesis kit (Thermo Scientific). qPCR
was performed using a Bio-Rad T100 thermal cycler (Bio-Rad Laboratories) according to
the manufacturer’s protocol. The primer sequences are shown in Table 1. The number of
cycles was optimized to ensure that the product accumulation was in the exponential range.
β-actin was used as an endogenous control for normalization. Experiments were repeated
three times.

Table 1. Primer sequences for qPCR.

Gene Origin Forward (5′–to–3′) Reverse (5′–to–3′)

RIPK1 Mouse GAC TGT GTA CCC TTA CCT CCG A CAC TGC GAT CAT TCT CGT CCT G
RIPK3 Mouse GAA GAC ACG GCA CTC CTT GGT A CTT GAG GCA GTA GTT CTT GGT GG
MLKL Mouse CTG AGG GAA CTG CTG GAT AGA G CGA GGA AAC TGG AGC TGC TGA T
LCN2 Mouse GGA CCA GGG CTG TCG CTA CT GGT GGC CAC TTG CAT TGT

Bax Mouse TGG CAG CTG ACA TGT TTT CTG AC TCA CCC AAC CAC CCT GGT CTT
Bcl-2 Mouse TCG CCC TGT GGA TGA CTG A CAG AGA CAG CCA GGA GAA ATC
β-actin Mouse TAG ACT TCG AGC AGG AGA TG TTG ATC TTC ATG GTG CTA GG
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2.15. Statistical Analysis

Statistical analysis was performed using GraphPad Prism statistical software version7
(GraphPad Software, La Jolla, CA, USA). Treatment effects were analyzed using one-way
analysis of variance, followed by Dunnett’s multiple range test. Statistical significance was
set at p < 0.05.

3. Results
3.1. OAA Suppressed Cisplatin-Induced Apoptosis In Vitro

Considering that tubular apoptosis is one of the most adverse cellular effects of
cisplatin-induced nephrotoxicity [13,15], we examined apoptosis in OAA-pretreated TCMK-
1 cells. Initially, we assessed the protective effect of OAA on cisplatin-induced cell
death using the WST assay. OAA pretreatment reduced cisplatin-induced cell death
in a concentration-dependent manner (Figure S1a). Subsequently, TCMK-1 cells stained
with Annexin V and propidium iodide were analyzed by flow cytometry to characterize
cisplatin-induced cell death. Cisplatin treatment led to an increase in both early and late
apoptotic cells, OAA treatment demonstrated a more significant decrease compared to OA
treatment (Figure 1a). Then, a mouse apoptosis array was performed in TCMK-1 cells. Bcl-2
and hypoxia-inducible factor-α (HIF-α) proteins were decreased by cisplatin treatment,
and increased by OAA treatment and, similarly, by ST treatment. Cleaved-caspase-3 and
heat shock protein 60 (HSP60) were increased by cisplatin treatment and decreased by
OAA treatment (Figure 1b). Gene expression of the apoptosis regulators Bcl-2 and Bax
was examined in OA- and OAA-pretreated TCMK-1 cells using real-time PCR. OAA treat-
ment resulted in decreased Bax expression and increased Bcl-2 expression (Figure 1c,d).
These results suggested that cisplatin induced apoptosis in kidney cells, whereas OAA
inhibited apoptosis.
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Figure 1. Effect of OAA on apoptotic responses in cisplatin-exposed TCMK-1 mouse kidney cells.
Percentage of apoptotic cells determined using a fluorescence-activated cell sorting analysis using
Annexin V and propidium iodide staining (a). Apoptosis-related protein expression was determined
using a proteome profiler mouse apoptosis array. 1: reference; 2: Bcl-2; 3: c-caspase-3; 4: HIF-1 α;
5: HSP60 (b). Gene expression of Bcl-2 and Bax by qPCR (c,d). All data are presented as mean ± SD
of three independent experiments. * p < 0.05, significantly different from cisplatin-treated group.
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3.2. OAA Alleviated Cisplatin-Induced Kidney Injury In Vivo

Nephrotoxicity is a recognized adverse effect associated with cisplatin treatment [1].
Therefore, we investigated the protective effects of OAA in a mouse model of cisplatin-
induced kidney injury. After the oral administration of OAA, cisplatin was injected in-
traperitoneally at a single dose of 20 mg/kg. The cisplatin-treated group exhibited a body
weight of more than 40%, and the OAA-treated group recovered more than the ST-treated
group (Figure 2a). Serum BUN and creatinine levels increased in the cisplatin-treated
group, whereas OAA treatment led to a significant reduction, particularly in the 50 mg/kg
OAA-treated group (Figure 2b). Similar to body weight, the kidney, liver, and spleen tissue
weights also decreased in the cisplatin-treated group and recovered in the group treated
with 50 mg/kg OAA (Figure 2c). Additionally, serum pro-inflammatory cytokines, such
as TNF-α, IL-1β, and IL-6, which exhibited elevations in the cisplatin-treated group, were
significantly decreased by OAA treatment (Figure 2d).
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Figure 2. Effect of OAA on renal dysfunction in a mouse model of cisplatin-induced nephrotoxicity.
Body weight change in C57BL/6 mice over 5 days in each group (a). Serum BUN and creatinine
levels were determined (b). Liver, spleen, and kidney tissue weights were determined (c). Serum
TNF-α, IL-1β, and IL-6 levels were measured using ELISA (d). All data are presented as mean ± SD.
* p < 0.05, significantly different from cisplatin-treated group.

Histological changes were observed on H&E-stained kidney tissues. OAA signifi-
cantly suppressed the cisplatin-induced tubular dilation and cast formation (Figure 3a,b).
These findings collectively suggest that OAA mitigates cisplatin-induced kidney injury, as
evidenced by improvements in body weight, organ weights, serum biochemical markers,
pro-inflammatory cytokine levels, and histological features.
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Figure 3. Effect of OAA on renal histology in a mouse model of cisplatin-induced nephrotoxicity.
Representative histology of H&E-stained renal tissues (×200). Scale bar = 500 µm. Arrows indicate
glomerular capsule (a). Clinical score of renal toxicity in the kidneys. Tubular cell death, tubular
dilation, and cast formation were scored from 1 to 5 in terms of the severity of the kidney slices (b).
All data are presented as mean ± SD. * p < 0.05, significantly different from cisplatin-treated group.

3.3. OAA Regulated the Pattern of Gene Expression through RNA Sequencing In Vivo

RNA sequencing was performed on mouse kidney samples to identify differentially
expressed genes (DEGs) and investigate the potential effects of OAA on cisplatin-induced
nephrotoxicity. In each group, genetic factors that could serve as novel targets for further
investigation were identified. The volcano plot indicated a total of 2463 DEGs that were sig-
nificantly altered by cisplatin treatment (1184 upregulated and 1279 downregulated genes,
cisplatin-treated group vs. control group) and were affected by OAA (1205 upregulated
and 1079 downregulated genes, 50 mg/kg OAA treated group vs. cisplatin-treated group)
(Figure 4a). A heat map was generated to visualize the DEGs in each group, which showed
that the gene expression patterns in the 50 mg/kg OAA-treated and control groups were the
most similar (Figure 4b). Using the KEGG pathway database, we identified DEGs related
to cancer mechanisms (Figure 4c). To confirm the apoptosis pathway, we analyzed the read
counts of apoptosis-related genes such as Bax, caspase7, and caspase8 in the RNA sequenc-
ing results, as depicted in Figure S3. The levels of necroptosis-related factors (RIPK3 and
MLKL) increased in the cisplatin-treated group but decreased in the OAA-treated group.
Furthermore, LCN2 increased significantly in the cisplatin-treated group but decreased
in the OAA-treated group (Figure 4d). The results from RNA sequencing suggest that
OAA not only alleviates cisplatin-induced cell death through apoptosis but also mitigates
non-apoptotic cell death, specifically necroptosis. This comprehensive analysis enhances
our understanding of the molecular mechanisms underlying the protective effects of OAA
against cisplatin-induced nephrotoxicity.
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Figure 4. Pattern of gene expression in renal tissues in a mouse model of cisplatin-induced
nephrotoxicity. The volcano plot shows the correlation between DEGs. Cisplatin vs. control and
cisplatin + 50 mg/kg OAA vs. cisplatin (a). Cluster heatmap shows the DEGs in each group (b).
KEGG pathway showing the top 20 enriched pathways (c). Read count of lcn2 and necroptosis-related
genes, such as ripk3 and mlkl, in RNA sequencing (d). All data are presented as mean ± SD. * p < 0.05,
significantly different from cisplatin-treated group.

3.4. OAA Inhibited Cisplatin-Induced Necroptosis

After RNA sequencing, we evaluated necroptosis, another form of kidney cell death,
in cisplatin-induced nephrotoxicity. Necroptosis induced by TNF receptors, followed by
RIPK1, RIPK3, and MLKL, is considered the main factor in this pathway [27,32]. We
assessed the effect of OAA on cisplatin-induced necroptosis at the mRNA level. Cisplatin
treatment resulted in an upregulation of RIPK1, RIPK3, and MLKL expression in TCMK-1
cells, whereas OAA treatment effectively inhibited their expression (Figure 5a).

Given that a prior study demonstrated the inhibitory effects of Nec-1, a RIPK1 inhibitor,
on necroptosis [33], we performed a Western blot analysis to confirm the effects of OAA.
We utilized Nec-1 as a positive control to inhibit RIPK1 phosphorylation in TCMK-1 cells.
Treatment with Nec-1 inhibited cell death induced by cisplatin treatment in TCMK-1 cells
(Figure S1b). RIPK1, RIPK3, and MLKL protein expression and phosphorylation were
measured after stimulation with cisplatin for 6 h. OAA, ST, and Nec-1 were treated 1 h
before stimulation. Phosphorylation of these proteins was inhibited similar to Nec-1 more
by OAA pretreatment than by ST pretreatment in a concentration-dependent manner
(Figure 5b).

We investigated whether OAA inhibited necroptosis via the RIPK pathway. z-VAD-
FMK was pretreated to further examine the role of OAA in cisplatin-induced necroptosis.
z-VAD-FMK pretreatment blocked the activation of caspase-3, thereby hindering apoptosis
and enhancing necroptosis [33]. Western blot analysis revealed that z-VAD-FMK increased
the phosphorylation of necroptosis-related proteins such as RIPK1, RIPK3, and MLKL.
Importantly, OAA pretreatment diminished the phosphorylation of necroptosis-related
proteins, which was enhanced by co-treatment with cisplatin and z-VAD-FMK (Figure 5c).
The densities of the Western blot bands are presented in Figure S4. These results indicate
that OAA prevented cisplatin-induced cell death, especially necroptosis, in kidney cells.
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Figure 5. Effect of OAA on the necroptosis pathway in cisplatin-exposed TCMK-1 mouse kidney cells.
The mRNA expression of necroptosis-related genes, such as ripk1, ripk3, and mlkl, measured by qPCR (a).
Phosphorylation of necroptosis-associated proteins, including RIPK1, RIPK3, and MLKL, was measured
by Western blot analysis (b). Phosphorylation of necroptosis-related proteins, such as RIPK1, RIPK3,
and MLKL, was measured by Western blot analysis (c). All data are presented as mean ± SD of three
independent experiments. * p < 0.05, significantly different from cisplatin-treated group.

4. Discussion

Kidney toxicity is widely acknowledged as one of the most dose-limiting factors
for cisplatin administration. In clinical practice, hydration via intravenous injection and
magnesium supplementation has protective effects against cisplatin-induced kidney toxi-
city [43]. While various recent studies have reported that the nephrotoxicity of cisplatin
could be ameliorated, FDA-approved drugs with protective adjuvants have not yet been
established. Therefore, we focused on developing a new and effective adjuvant derived
from natural products to reduce cisplatin-induced nephrotoxicity without diminishing
anti-tumor efficacy.

OAA, a major triterpenoid compound from V. angularis, exhibits various pharmaco-
logical effects. In a mouse model of allergic contact dermatitis, OAA treatment reduced
the levels of Th1 and Th17 cytokines. Furthermore, OAA treatment led to a decrease
in the gene expression of TNF-α, IL-1β, and IL-6 in TNF-α/IFN-γ-stimulated HaCaT
cells [44]. OAA administration suppressed the upregulation of pro-inflammatory cytokines
in collagen-induced arthritic mouse joints [37]. Additionally, OAA decreased the expression
of TNF-α in DNP-HSA-stimulated RBL-2H3 cells [45]. However, the protective effects of
OAA against cisplatin-induced nephrotoxicity have not been studied. In this study, to
investigate the protective effects of OAA in a mouse model of cisplatin-induced kidney
injury, we provided OAA via oral administration and cisplatin via intraperitoneal injection.
Compared to the cisplatin-treated group, the 50 mg/kg OAA-treated group showed a
reduction in body and organ weight loss and a decrease in serum BUN, creatinine, and
pro-inflammatory cytokine levels. To delve deeper into the mechanism by which OAA
inhibits cisplatin-induced kidney injury, we directed our attention towards mitigating cell
death, particularly apoptosis and necroptosis, induced by cisplatin treatment.

Previous studies have reported that oleanolic acid (OA) had potential anti-tumor
effects in various tumor cell lines. OA treatment induced apoptosis in osteosarcoma
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cells, a process regulated by Bcl-2 and caspase-3 through inhibition of the Notch signaling
pathway [46]. In contrast, OA had protective effects in neuronal cells, ameliorating oxidative
stress and neuronal apoptosis by inhibiting the Nrf2/HO-1 pathway [47]. These studies
suggest that OA has protective effects on normal cells and anti-tumor effects on cancer
cells. To investigate the protective effects of OAA against cisplatin-induced kidney injury,
cisplatin was treated in OAA-pretreated TCMK-1 cells. The results indicated that OA and
OAA treatment reduced cell death and apoptosis, inhibited the expression of Bax and
cleaved caspase-3, and increased the expression of Bcl-2 in cisplatin-treated TCMK-1 cells.
Notably, OAA exhibited a stronger protective effect against cisplatin-induced kidney cell
apoptosis than OA.

To identify the genetic factors as potential biomarkers or mechanisms of cisplatin-
induced nephrotoxicity, we performed RNA sequencing on mouse kidney samples. Cis-
platin treatment increased the expression of LCN2, an early diagnostic marker of kidney
toxicity that can be used to assess its severity and complications [9]. LCN2 was signifi-
cantly decreased after treatment with Nec-1, an inhibitor of necroptosis [48]. These results
suggest that LCN2 expression could be increased by necroptosis and in our results, LCN2
and necroptosis-related factors were increased in the cisplatin-treated group, whereas
those in the 50 mg/kg OAA-treated group were decreased. Therefore, we confirmed that
cisplatin-induced necroptosis in TCMK-1 cells.

Necroptosis is recognized an anti-tumor mechanism found in various cancers, includ-
ing breast and colon cancers, and in apoptosis-resistant HepG2/DDP cells [49–51]. How-
ever, cisplatin-induced necroptosis in the kidneys poses a serious adverse effect, prompting
recent studies to identify drugs that could reduce this phenomenon [40,52]. Our in vivo
results indicated that the serum TNF-α levels were increased in the cisplatin-treated group
but decreased in the OAA-treated group, suggesting that OAA regulated necroptosis. As
expected, OAA inhibited the gene expression of necroptosis-related factors, such as RIPK1,
RIPK3, and MLKL, which were upregulated by cisplatin. Furthermore, at the protein level,
cisplatin induced the phosphorylation of these factors, whereas OAA treatments inhibited
the phosphorylation of these factors. Inhibition of the phosphorylation of these proteins is
crucial for ameliorating cisplatin-induced kidney injury. Additionally, co-treatment with
cisplatin and z-VAD-FMK increased necroptosis, whereas OAA suppressed necroptosis.
OAA decreased the phosphorylation of these proteins, which was enhanced by cisplatin
and z-VAD-FMK. These results suggested that OAA protected against cisplatin-induced
nephrotoxicity by inhibiting necroptosis-related factors.

Finally, for future studies, it is necessary to determine the innocuous dosage of OAA
through toxicity evaluation and pharmacokinetic studies. These studies are essential for
the development of the drug. Combining these studies and the present results is expected
to further increase the potential for OAA to develop as an anti-cancer adjuvant.

5. Conclusions

In summary, our study demonstrated that OAA ameliorated cisplatin-induced apopto-
sis and necroptosis. Additionally, OAA suppressed cisplatin-induced kidney dysfunction
and inflammation in a mouse model. This study also identified a potential clinical target
for reducing the side effects of cisplatin. Taken together, OAA may serve as an anti-cancer
adjuvant for reducing kidney injury.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxics12040301/s1: Figure S1: Effect of OAA on cell death in
cisplatin-exposed TCMK-1 cells; Figure S2: Schematic representation of the experimental design;
Figure S3: Effect of OAA on apoptosis-related gene expression in a mouse model of cisplatin-induced
nephrotoxicity; Figure S4: The relative density of Western blot band of cisplatin-treated TCMK-1 cells;
Table S1: Criteria for histological scores.
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