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Abstract: The global burden of liver disease is enormous, which highlights the need for effective
hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of
diseases. In this study, we further evaluated allicin’s effect and mechanism in acute hepatic injury.
Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When
the first dose was given, CCl4 was given immediately after administration of different doses of
allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and
then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI,
80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first
administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury
following allicin treatment. This inhibition was evidenced by notable reductions in serum levels
of transaminases, specifically aspartate transaminase, along with mitigated histological damage to
the liver. In this protective process, allicin plays the role of reducing the amounts or the expression
levels of proinflammatory cytokines, IL-1β, IL-6. Furthermore, allicin recovered the activities of the
antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a
dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell
apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein
levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1
(NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced
RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related
factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective
effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis,
alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of
allicin as a hepatoprotective agent.
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1. Introduction

Liver disease remains a significant global burden with regard to mortality rates and
associated costs. The disease’s high morbidity and mortality levels contribute to its contin-
ued impact on global health [1]. It is becoming a major concern in terms of global public
health. It is estimated that more than 10% of the worldwide population suffers from this
condition. In China, the annual incidence of liver injury caused by medication alone is
estimated to be 23.80 cases per 100,000 individuals [2]. In addition, it also severely affects
the health of animals. Liver damage can be triggered by a variety of factors, such as drug
irritations, viral infections, alcohol, chemical poisons, or obesity [3,4]. Numerous studies
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have demonstrated that liver injury is triggered by two primary pathological processes: in-
flammation and oxidative stress [5,6]. Therefore, it is evident that mitigating inflammation
and oxidative stress plays a crucial role in alleviating acute liver injury. Liver disease poses
a significant threat to both human and animal health. This highlights an urgent need to
explore safe and effective “off-the-shelf” drugs for treatment. Many synthetic drugs have
been found to have negative impacts on the liver. As a result, there is now significant focus
on complementary and alternative medicines for the treatment of hepatic disorders.

Since antiquity, garlic has been utilized globally as a flavor enhancer and herb, holding
particular significance globally, especially in China and other regions of the world. Garlic
has become a prevalent ingredient in modern cuisine and has generated a lucrative market
for health supplements worth millions of pounds. Allicin constitutes the principal func-
tional constituent of raw garlic puree. It emerges from the transformation of alliin into
alliinase via the action of alliin, which is caused when the clove is crushed [7]. Garlic ex-
hibits a variety of pharmacological properties, including antimicrobial effects, the inhibition
of inflammatory response, and the scavenging of oxygen free radicals [8,9]. Allicin has been
found to ameliorate intervertebral disc degeneration through the inhibition of oxidative
stress and reduction in apoptosis [10], and it can also delay the progression of pulmonary
arterial hypertension through the modulation of proinflammatory and profibrotic markers
in the lung and heart [11]. Additionally, certain studies have indicated that allicin has
the potential to reduce hepatic steatosis and enhance cardiovascular phenotypes through
the modulation of gut microbiota [12–14]. Importantly, Zhao et al. [15] recently reported
that H2S-mediated Keap1 S-sulfhydration alleviates liver damage through the activation
of Nrf2 and that the administration of the exogenous H2S donor plays a protective role
in streptozotocin (STZ) plus HFD-induced, or CCl4-stimulated, liver dysfunction. Dong
et al. [16] found that by activating Nrf2, the levels of TNF-α and IL-1β in the hippocampus
can be significantly reduced, thereby alleviating oxidative stress injury in the hippocampus
of rats. Ma et al. [17] found inhibited Toll-like receptor 2 (TLR2) and Toll-like receptor 4
(TLR4) activation and mitogen-activated protein kinase (MAPK) phosphorylation, which
in turn inactivated the inflammatory cytokines in the livers of the CCl4-treated mice. Our
previous pilot study discovered that allicin can be converted to H2S upon administration
to rats. (Data not published). Therefore, in the present study, we investigated the potential
protective effect of allicin pretreatment on LPS-induced inflammation in a cell model and
CCl4-induced acute liver injury in a murine model.

2. Results
2.1. Allicin Pretreatment Inhibits NO Production and Cytokine Expression in LPS-Stimulated
RAW264.7 Cells

Figure 1A demonstrates that allicin has no effect on cell viability within the concentra-
tion range of 1−5 µg/mL when treated for 24 h. Therefore, we chose 1, 2.5, and 5 µg/mL
to treat the cells. We found that the production of NO in the allicin pretreatment groups
was obviously decreased with a dose-dependent manner (p < 0.01) compared with the
LPS group (Figure 1B). Considering that LPS accelerates inflammatory responses via the
production of proinflammatory cytokines in macrophages, we further detected the effect of
allicin on the expression of COX-2, IL-6, and IL-1β in RAW264.7 cells using qRT-PCR and
Western blot. The results showed that allicin at the concentration of 2.5 and 5 ug/mL could
significantly inhibit the mRNA expression of COX-2, IL-6, and IL-1β (p < 0.01) (Figure 1C).
Protein expression levels of IL-6 and IL-1β were significantly inhibited in RAW264.7 cells
after pretreatment with allicin (p < 0.05) (Figure 1D). The results indicated that allicin had a
protective effect on LPS-induced inflammation in RAW264.7 cells.
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Figure 1. Allicin pretreatment inhibits NO production and cytokine expression in LPS-stimulated
RAW264.7 cells. (A) The cytotoxicity of allicin in RAW264.7 cells was determined by CCK-8 assay
after 24 h treatment. (B) RAW264.7 cells treated with allicin (1, 2.5, 5 µg/mL) for 9 h and then induced
with LPS (1 µg/mL) for 18 h. (C) The effect of allicin on the expression of COX-2, IL-6, and IL-1β mRNA
in RAW264.7 cells. (D) The IL-6 and IL-1β expression proteins were detected using Western blotting.
Significant vs. untreated control, ## p < 0.01, # p < 0.05; significant vs. LPS treated cell, ** p < 0.01, * p < 0.05.

2.2. Allicin Suppressed ROS Generation in LPS-Stimulated RAW264.7 Cells

Compared with the blank control group, the ROS content of the cells in the LPS group
significantly increased (p < 0.01). Pretreatment of the RAW264.7 cells with high, medium,
and low doses of allicin for 9 h can significantly inhibit the generation of ROS in the cells in
a dose-dependent manner (p < 0.01), indicating that allicin can inhibit LPS-induced ROS
generation in RAW264.7 cells (Figure 2).

Figure 2. Allicin inhibited ROS generation in LPS-stimulated RAW264.7 cells. (A) ROS level in cells
was stained with DCFH2-DA. The images were captured by fluorescence microscopy. (B) Relative
levels of ROS reflected by fluorescence intensity. Significant vs. untreated control, ## p < 0.01;
significant vs. LPS treated cell, ** p < 0.01.
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2.3. Allicin Pretreatment Attenuates CCl4-Induced Acute Liver Injury in Mice

As shown in Figure 3A,B, the levels of serum AST and ALT were markedly elevated
in the CCl4 control group compared with the control group (p < 0.01), indicating that
the model of acute liver injury induced by CCl4 was successfully established. However,
allicin significantly decreased the serum AST and ALT in a dose-dependent manner when
compared with the CCl4 control group (p < 0.05). In addition, the level of AST and ALT in
the allicin high-dose group was even obviously lower than that of the CGI group (p < 0.05),
which is widely prescribed for treating hepatic injury. Histological changes are the gold
standard for evaluating hepatic tissue injury. Although the liver/body ratios were not
changed among the different groups, compared with the normal group, CCl4 induced
a severe destruction of hepatic architecture with various degrees of hepatocyte necrosis
and inflammatory cell infiltration, while allicin improved the morphology of the liver, the
degree of inflammation, and the size of hepatocyte necrosis in a dose-dependent manner
(Figure 3C,D).
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Figure 3. Allicin alleviated CCl4-induced acute liver injury in mice. (A) The inhibitory effects of Sal on
serum aspartate aminotransferase (AST) (B) The inhibitory effects of Sal on alanine aminotransferase
(ALT). (C,D) Effects of allicin on histopathological changes in the liver in mice with CCl4 acute liver
injury liver (Bar = 50 µm).

2.4. Allicin Alleviated CCl4-Induced Hepatocytes Apoptosis

The levels of Caspase 3, Caspase 9, and Bax protein expression in the liver tissues
were detected by Western blot to assess apoptosis. In comparison, the expression levels
of cleaved Caspase 3, cleaved Caspase 9, and Bax protein in the CCl4 model group were
significantly higher than those of the normal control (p < 0.01), indicating that CCl4 could
induce hepatocyte apoptosis. Allicin dose-dependently downregulated cleaved Caspase 3
expression in the liver when compared with the CCl4 model group (p < 0.05). High and
medium doses of allicin (40 and 20 mg/kg) significantly reduced the expression of cleaved
Caspase 9 and BAX in the liver tissue of mice (p < 0.05); the low dose of allicin had no
significant effect on the expression of cleaved Caspase 9 and BAX protein (Figure 4). CGI
also significantly decreased the level of cleaved Caspase 9 and BAX proteins (p < 0.05).
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Figure 4. Allicin inhibited CCl4-induced apoptosis in mice. (A) The BAX, Caspase 3, and Caspase
9 expression proteins were detected using Western blotting. (B) Statistical analysis of the protein
expression of BAX. (C) Statistical analysis of the protein expression of Caspase 3. (D) Statistical
analysis of the protein expression of Caspase 9. Values represent the mean ± SD (n = 6).

2.5. Allicin Suppressed CCl4-Induced Hepatic Inflammatory Response

Inflammatory responses play a pivotal role in inducing liver injury. In this study, we
assessed the release of three critical proinflammatory cytokines, TNF-α, IL-1β, and IL-6, in
the serum using ELISA kits. As shown in Figure 5, the levels of TNF-α, IL-1β, and IL-6 in the
CCl4 group were significantly higher than those in the normal control group and the allicin
control group (p < 0.01), indicating that CCl4 caused a large amount of inflammatory factors
release. Allicin with a high dose (40 mg/kg) could significantly reduce serum TNF-α, IL-1β,
and IL-6 levels in mice (p < 0.01), with a medium dose (20 mg/kg) only obviously reducing
the IL-1β level (p < 0.05). However, CGI can significantly reduce the serum content of TNF-α,
IL-1β, and IL-6 in mice (p < 0.05), showing a better anti-inflammatory effect.
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2.6. Allicin Attenuates CCl4-Induced Oxidative Stress in Mice

Based on the association of oxidative stress markers with hepatic injury following
CCl4 induction, we further measured MDA and CAT levels. As illustrated in Figure 6,
CCl4 resulted in a significant increase in hepatic MDA content and a decrease in CAT level
relative to the normal control (p < 0.01). Notably, allicin dose-dependently inhibited MDA
release and increased the activity of CAT (p < 0.01). CGI could also significantly increase
the content of CAT in the liver (p < 0.01); however, there was no obvious effect on MDA
level. This indicated that allicin as well as CGI had an antioxidant activity and relieved the
liver oxidative stress induced by CCl4.

Toxics 2024, 12, x FOR PEER REVIEW 6 of 15 
 

 

obviously reducing the IL-1β level (p < 0.05). However, CGI can significantly reduce the 

serum content of TNF-α, IL-1β, and IL-6 in mice (p < 0.05), showing a better anti-inflam-

matory effect. 

 

Figure 5. Allicin suppressed CCl4-induced inflammatory cytokines in mice. (A) Hepatic TNF-a, pro-

tein levels were detected by ELISA. (B) Hepatic IL-1β protein levels were detected by ELISA. (C) 

Hepatic IL-6 protein levels were detected by ELISA. Values represent the mean ± SD (n = 6). 

2.6. Allicin Attenuates CCl4-Induced Oxidative Stress in Mice 

Based on the association of oxidative stress markers with hepatic injury following 

CCl4 induction, we further measured MDA and CAT levels. As illustrated in Figure 6, CCl4 

resulted in a significant increase in hepatic MDA content and a decrease in CAT level rel-

ative to the normal control (p < 0.01). Notably, allicin dose-dependently inhibited MDA 

release and increased the activity of CAT (p < 0.01). CGI could also significantly increase 

the content of CAT in the liver (p < 0.01); however, there was no obvious effect on MDA 

level. This indicated that allicin as well as CGI had an antioxidant activity and relieved 

the liver oxidative stress induced by CCl4. 

 

Figure 6. Allicin modulated CCl4-induced oxidative stress in mice. (A) Hepatic MDA content. (B) 

Hepatic CAT activity. Values represent the mean ± SD (n = 6). 

2.7. Allicin Activates Nrf2/NQO1 Pathway following CCl4-Induced Acute Liver Injury 

Having found that allicin attenuates CCl4-induced oxidative stress, we also investi-

gated the pathway involved in the hepatoprotective effect of allicin. Nrf2 is considered 

critical for the activation of antioxidant activity. Therefore, we detected the expression of 

Nrf2 and its downstream target NAD(P)H:quinone oxidoreductase 1 (NQO1) protein in 

mouse liver tissue by Western blotting. As shown in Figure 7, the Nrf2 protein level was 

obviously downregulated in the CCl4 group compared with the normal control group (p 

< 0.01). However, allicin at 40 and 20 mg/kg markedly increased the levels of Nrf2 in the 

nucleoprotein (p < 0.01); the 10 mg/kg group showed a slightly higher expression but with 

no statistical significance (Figure 7A,B). In line with the above results, the expression of 

Figure 6. Allicin modulated CCl4-induced oxidative stress in mice. (A) Hepatic MDA content.
(B) Hepatic CAT activity. Values represent the mean ± SD (n = 6).

2.7. Allicin Activates Nrf2/NQO1 Pathway following CCl4-Induced Acute Liver Injury

Having found that allicin attenuates CCl4-induced oxidative stress, we also investi-
gated the pathway involved in the hepatoprotective effect of allicin. Nrf2 is considered
critical for the activation of antioxidant activity. Therefore, we detected the expression
of Nrf2 and its downstream target NAD(P)H:quinone oxidoreductase 1 (NQO1) protein
in mouse liver tissue by Western blotting. As shown in Figure 7, the Nrf2 protein level
was obviously downregulated in the CCl4 group compared with the normal control group
(p < 0.01). However, allicin at 40 and 20 mg/kg markedly increased the levels of Nrf2 in
the nucleoprotein (p < 0.01); the 10 mg/kg group showed a slightly higher expression but
with no statistical significance (Figure 7A,B). In line with the above results, the expression
of NQO1 proteins showed a similar tendency. Nevertheless, CGI did not show an obvious
effect on the expression of Nrf2 and NQO1. Together, these data indicated that allicin atten-
uated CCl4-induced liver injury via nuclear Nrf2 activation and upregulation of the Nrf2
downstream target NQO1. This highlights the clinical potential of allicin as a promising
therapeutic strategy for managing acute liver injury.
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Figure 7. Allicin upregulated the levels of hepatic Nrf2 and NQO1 protein expression in mice. (A) The
Nrf2 and NQO1 expression proteins were detected using Western blotting. (B) Statistical analysis
of the protein expression of Nrf2. (C) Statistical analysis of the protein expression of NQO1.Values
represent the mean ± SD (n = 6).
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3. Discussion

Liver diseases pose a global health concern, and currently available medical interven-
tions are often inadequately effective. In recent years, extensive research has indicated
that natural products offer hepatoprotective benefits through their various mechanisms of
action in oxidant/antioxidant balance, inflammation, apoptosis, and damage responses.
It is commonly acknowledged that allicin is linked to numerous health advantages in
humans such as the decreased probability of developing diverse cancers, especially in the
gastrointestinal tract [18], as well as cardiovascular disease [19] and type 2 diabetes [20].
In this study, the objective was to investigate the hepatoprotective impact and associated
mechanisms of natural allicin, which is a leading bioactive compound derived from garlic.
We provide demonstrable evidence that allicin effectively attenuates CCl4-induced acute
liver damage and enhances liver function in mice.

CCl4-induced acute liver injury in mice has been widely used as a classical animal
model to evaluate the hepatotoxicity of developed drugs [21]. CCl4 could activate the
liver microsomal cytochrome P450 to produce CCl3 and CCl3OO. Free radicals can react
with macromolecules such as lipids, proteins, and nucleic acids in hepatocytes, causing
lipid peroxidation and subsequently damaging the stability and integrity of various
biological membranes. In the course of liver injury caused by CCl4, AST, ALT, and ALP
are passively released into the extracellular milieu by dying or injured liver cells and
enter into blood; therefore, serum AST, ALT, and ALP are commonly used as indicators
for evaluating liver injury [22,23]. In this study, it is demonstrated that the levels of AST,
ALT, and ALP in the serum are associated with the extent of histopathological damage
found in the livers of mice treated with CCl4, and that allicin treatment can mitigate this
effect in a dose-dependent manner.

Two pathological events, namely oxidative stress and inflammation, are examined
in this investigation to reveal the mechanism underlying the hepatoprotective effect of
allicin [6,24]. We initially investigated the anti-inflammatory impact of allicin by utilizing
a LPS-induced cell model and CCl4-induced liver injury in mice. Our findings revealed
that allicin significantly restrained the classic inflammatory mediators, such as IL-6 and
IL-1β, in both mouse RAW264.7 macrophages and serum samples, indicating a robust
anti-inflammatory effect of allicin. Alternatively, some researchers regard that garlic being
protective across such a wide spectrum of diseases is related to garlic’s ability to alter
gaseous signaling molecules like NO generated by the L-arginine-NO synthase (NOS)
pathway by three NOS enzymes in mammals [25,26]. NO has been shown to play significant
roles in inflammation, infection, and diabetes [27]. In this study, it was demonstrated
that allicin, the primary component of garlic, can also suppress the production of NO
in RAW264.7 mouse macrophages stimulated with LPS. This may lead to a synergistic
inhibition of classic inflammatory factors, resulting in positive anti-inflammatory effects.
Our findings provide evidence to support previous studies that suggest a link between the
anti-inflammatory properties of garlic and the inhibition of NO production [28–31]. The
precise process of allicin altering gas signaling molecular NO deserves further investigation,
which will be helpful to clarify the mechanism of garlic being protective across such a wide
spectrum of diseases.

It is well known that oxidative stress caused by reactive oxygen species (ROS) like
CCl3· and CCl3OO· during damage results in hepatocellular inflammation, apoptosis, and
necrosis, and that the detoxifying system is essential for preventing ROS injury via the
elimination of free radicals [32]. In this study, we found allicin could reduce ROS and MDA
(the metabolic end product of lipid peroxidation, which can reflect the lipid peroxidation in
animals and can induce cell damage [33,34]) levels while increasing CAT (the important
endogenous antioxidants in animals) activity in cells or mice, which is similar to the effect of
allicin in a mouse model of hepatic I/R injury [35]. As anticipated, our findings demonstrate
that treatment with CCl4 leads to a noteworthy upsurge in the expression of Caspase 9,
Caspase 3, and BAX in the liver tissue. This indicates that CCl4 instigates the apoptosis of
hepatocytes. Compared with the CCl4 group, the protein expressions of Caspase 9, Caspase
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3, and BAX in the high- and medium-dose allicin groups were significantly decreased,
which proved that allicin plays a protective role in liver injury through anti-apoptotic
effects. Apoptosis represents the initial reaction of hepatocytes to various damaging factors.
Subsequently, necrosis commonly follows apoptosis, and the apoptotic process manifests
as a critical factor in hepatocyte necrosis development [36,37]. Our results indicate allicin
could protect cells from apoptosis to prevent progress to necrosis.

The Nrf2 signaling pathway boasts significant importance in terms of the body’s
response to oxidative stress-related damage. It has the potential to elevate the level of
antioxidants by upregulating the antioxidant proteins present in liver cells [38]. Under a
normal physiological state, Nrf2 and its suppressor Keap1 form an inactive complex in
the cytoplasm; however, when hepatocytes are stimulated by oxidative substances, Nrf2
dissociates from Keap1 and transfers into the nucleus to promote the expression of its
downstream proteins like NQO1, and, accordingly, to reduce the level of free radicals in
the body [39]. The research illustrates that allicin can substantially upregulate the protein
expression of both Nrf2 and NQO1 in the liver tissue whilst also modulating the Nrf2
signaling pathway. Moreover, it upgrades the body’s antioxidant potential and aids in
shielding the liver against CCl4-induced hepatic oxidative stress as well as its associated
signaling activities.

In addition, CGI have been proved to have anti-inflammatory, immune regulation,
and other effects, including promoting liver cell proliferation, and have been widely used
in clinical practice at this stage [40]. According to our results, allicin could be comparable
to the anti-inflammatory and hepatoprotective effects of drug CGI. Taken together, our
data indicate that allicin has significant protective effects against CCl4-induced liver injury
by reducing hepatocyte apoptosis, inhibiting oxidative stress, and reducing inflammation
through the regulation of the Nrf2/NQO1 pathway (Figure 8). Our study indicates that
the impact of allicin or garlic on health and disease processes may be far more complex
than initially believed, and their overall role in promoting contributions to health may have
been potentially underestimated.
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4. Materials and Methods
4.1. Reagents and Antibodies

Alliin (purity 84%) and aliases (titer > 10,000 IU/g) were obtained from Xinjiang
Medical University. CCl4 was purchased from Wanqinghua Glass Instrument Co., Ltd.
(Nanjing, China). Primary antibodies against β-actin, IL-1β, IL-6, Keap1, and Nrf-2 were
purchased from Abcam (Cambridge, MA, USA); Caspase 3, Caspase 9, and BAX monoclonal
antibodies were purchased from Abmart (Shanghai, China); compound glycyrrhizin (CGI)
tablets (Ganyu, China) (specification: glycyrrhizin 25 mg, glycyrrhizic acid 25 mg, DL-
methionine 25 mg) were purchased from Kain Technology Co., Ltd. (Beijing, China).

4.2. Allicin Preparation and Content Quantification

Alliinase catalyzes the conversion of alliin (1 g alliin) to allicin (0.458 g) and the
concentrations of allicin stock solution (1 mL/mg) produced by alliin (21.82 mg) were
rechecked by HPLC as previously described [41] in this study and used to conduct the
cell-based assays and animal studies (Figure 9A,B).
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4.3. Cell Culture

RAW264.7 cells, a line of mouse macrophage, were purchased from the cell bank of
the type culture collection committee of the Chinese Academy of Sciences, and cultured in
DMEM (Gibco) containing 10% fetal bovine serum (Zeta) in a 5% CO2 incubator at 37 ◦C.

4.4. LPS-Induced Inflammation in RAW264.7 Cells and Allicin Treatment
4.4.1. Cell Groups and Treatment

RAW264.7 cells were plated and then divided into 6 groups: normal cell control (NC
group, DMEM), allicin control (AC group), LPS control (LPS group, 1 µg/mL), and treat-
ment groups of allicin with high (AH group, 5 µg/mL), medium (AM group, 2.5 µg/mL),
and low doses (AL group, 1 µg/mL). In all allicin treatment groups, the cells were pre-
treated by allicin (5, 2.5 and 1 µg/mL) for 9 h and the cells were washed to discard the
allicin; then, 1 µg/mL LPS was added in cell culture for 18 h and the samples were collected
according to the detected indicators (Figure 10).
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4.4.2. Detection of NO Production in RAW264.7 Cells

The macrophages were treated with allicin followed by LPS stimulation as described
above. NO formation in the cultured medium was measured by mixing a 50 µL cul-
tured medium and a Griess reagent. The absorbance at 540 nm was measured. The NO
concentration was calculated using the sodium nitrite standard curve.

4.4.3. RNA Isolation and Real-Time Quantitative PCR (Real-Time RT-PCR)

In order to investigate the mRNA expression levels of COX-2 (cyclooxygenase-2), IL-6
(interleukin 6) and IL-1β (interleukin 1 beta) total RNA was isolated from cells treated with
allicin (1, 2.5, or 5 µg/mL) or LPS (1 µg/mL) for 12 h and reverse-transcribed to cDNA
using HiScript III RT SuperMix kit (Vazyme, Nanjing, China) based on the manufacturer’s
protocol. Then, the COX-2, IL-1β, IL-6, and β-actin cDNA was amplified by ChamQ SYBR
Color Qpcr Master Mix (Vazyme, Nanjing, China) using the following conditions: 1 cycle
for 180 s at 95 ◦C; 26 cycles for 55 s at 93 ◦C, 45 s at 60 ◦C, and 40 s at 72 ◦C; and 1 cycle for
100 s at 72 ◦C. The primers used in this experiment are presented in Table 1. All reactions
were conducted in triplicate. β-actin was used as an internal control, and the fold change
in gene expression was calculated using the 2−∆∆CT method.

Table 1. Gene primer sequence used in qPCR.

Numbers Genes Sequence (5’−3’) Product Length

NM_008361.4 IL-1β
F: GGGCCTCAAAGGAAAGAATC

183
R: TACCAGTTGGGGAACTCTGC

NM_031168.2 IL-6
F: AGTTGCCTTCTTGGGACTGA

191
R: CAGAATTGCCATTGCACAAC

NM_011198.5 Cox-2
F: AGAAGGAAATGGCTGCAGAA

194
R: GCTCGGCTTCCAGTATTGAG

NM_007393.5 β-actin
F: CCACAGCTGAGAGGGAAATC

193
R: AAGGAAGGCTGGAAAAGAGC

4.4.4. Western Blot Analysis for IL-6 and IL-1β Expression

The total proteins from RAW264.7 cells were extracted using Radio Immunopre-
cipitation Assay (RIPA) lysis solution (Beyotime, Shanghai, China) containing phenyl-
methanesulfonyl fluoride (PMSF) on ice, following the manufacturer’s instructions. Protein
quantification was conducted using the BCA protein content determination method. For
Western blotting analysis, an equal amount of protein (40 µg) was utilized, as described
previously [2]. Protein samples were separated on 12% v/v SDS-PAGE, transferred onto
NC membrane (Millipore, Billerica, MA, USA), and then subsequently blocked with TBST
(5% BSA) at room temperature for 1 h, followed by incubation at 4 ◦C overnight with
appropriate antibodies. After the samples were incubated with horseradish peroxidase-
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conjugated secondary antibody for 1 h at room temperature, the specific protein bands
were visualized by enhanced chemiluminescence (ECL) substrate (Beyotime, Shanghai,
China). The results were quantified by densitometry using ImageJ software (version 1.53)
and the densitometry results were normalized relative to the β-actin bands.

4.4.5. Detection of ROS Generation in RAW264.7 Cells

The original medium was removed, and DCFH-DA was diluted according to the
instructions of the ROS test kit. The DCFH-DA was added away from light, incubated
in a 37 ◦C cell incubator for 30 min, and washed for three times. Finally, the intracellular
fluorescence intensity was observed by inverted fluorescence microscope and quantified by
ImageJ software.

4.5. CCL4-Induced Acute Liver Injury and Allicin Pretreatment
4.5.1. Animal Experimental Design

Male Balb/c mice aged 6−7 weeks and weighing 18−22 g were procured from Jiangsu
Jicui Yaokang Biotechnology Co., Ltd. (Nanjing, China). They were housed in a controlled
environment with a temperature of 23 ± 2 ◦C, relative humidity of 50 ± 10%, and a 12-h
light–dark cycle. Prior to experimentation, all mice underwent a one-week acclimatization
period and were provided ad libitum access to food and water throughout the study.

Mice were randomly divided into 7 groups (6 mice/group) as the following: nor-
mal control (NC); allicin group (40 mg/kg); CCL4 group (CCL4); CCl4+Allicin 40 mg/kg,
CCl4+Allicin 20 mg/kg, and CCl4+Allicin 10 mg/kg; and CCl4+compound glycyrrhizin
group 80 mg/kg (CCl4+CGI80). The mice in the control and allicin groups were admin-
istrated with an equal volume of vehicle or allicin (40 mg/kg). In the CCl4 group, mice
were intraperitoneally (i.p.) injected with 1% CCl4 (dissolved in peanut oil, 10 mL/kg). In
the CCl4+Allicin 40 mg/kg, CCl4+Allicin 20 mg/kg, and CCl4+Allicin 10 mg/kg groups,
mice were given allicin prior to being intraperitoneally injected with 1% CCl4, and then
continued to be given allicin every 12 h by intragastric administration. The treatment of
CCl4+CGI80 group is the same with CCl4+Allicin groups. Following 24 h of hepatotoxicity
caused by CCl4, the mice in each group were weighed and sacrificed after being anes-
thetized with sevoflurane; blood and liver tissue were immediately collected. The livers
were weighed, washed with pre-cooled saline, and divided into samples. One part was
fixed in 4% paraformaldehyde for histopathological examination, while the remainder was
immediately frozen in liquid nitrogen for subsequent experiments. The serum was ex-
tracted by centrifuging the blood at 3000 rpm for 10 min at 4 ◦C, and immediately subjected
to biochemical analysis.

4.5.2. Hepatic Histological Detection

The liver lobes from each group, fixed in 10% formalin, were embedded in paraffin and
sectioned into 4 µm thick slices for subsequent H&E staining. All sections were examined
and photographed using an optical microscope.

4.5.3. Liver Function Evaluation

The levels of serum transaminase (ALT) and aspartate transaminase (AST), which are
critical indicators of hepatocellular injury, were measured by using an Automated Chemical
Analyzer (Mindray BS-240VET, Mindray Biomedical Electronics Co., Ltd., Shenzhen, China)
with the standard diagnostic kits (Mindray Biomedical Electronics Co., Ltd., Shenzhen, China).

4.5.4. Assay of Malondialdehyde (MDA) Activities and Catalase (CAT) Activities

The liver was homogenized in nine volumes of cold phosphate buffer (pH 7.4). The
supernatants were separated at 10,000 rpm for 10 min at 4 ◦C and used to assay the activities
MDA and CAT with a commercially available assay kit (Solarbio, Beijing, China) according
to the method described.
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4.5.5. Cytokine Measurement Using Enzyme Linked Immunosorbent Assay (ELISA)

The levels of TNF-α, IL-6, and IL-1β in serum were analyzed by the ELISA kits
according to the manufacturer’s instructions (Proteintech, Wuhan, China), respectively.

4.5.6. Western Blot Analysis of Related Proteins in Liver Tissue

The ground liver tissue was placed in pre-cooled cracking solution and homogenized
in a multi-sample tissue homogenizer at a frequency of 60 Hz for 20 s, and placed on ice
for 5 min to ensure complete cracking. After centrifugation at high speed at 4 ◦C and
12,000 r/min for 20 min, the supernatant was taken to obtain the total protein. After the
protein concentration was determined by BCA method, the protein concentration was
4 mg/mL, 12% SDS-PAGE was prepared, the sample size was 10 µL; and the protein
was transferred to NC membrane by the semi-dry conversion method, enclosed in 5%
(g/mL) defatted milk for 2 h at room temperature, and incubated overnight at 4 ◦C with
the primary antibody. TBST was washed and reacted with the secondary antibody for 2 h.
After washing, ECL luminescent solution was added and exposed.

4.6. Statistical Analysis

All data are presented as mean ± SD. The statistical analyses were performed using
SPSS V11.5. A one-way analysis of variance (ANOVA; Pb0.05) was used to determine
significant differences between groups and the individual comparisons were obtained by
Tukey’s HSD (honestly significant difference) post hoc test. A p-value < 0.05 was considered
as statistical significance.
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