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Abstract: Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry 

because of its cleaning effectiveness and relatively low cost to consumers. According to 

the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their 

principal cleaning agent. Widespread use of PCE is problematic because of its adverse 

impacts on human health and environmental quality. As PCE use is curtailed, effective 

alternatives must be analyzed for their toxicity and impacts to human health and the 

environment. Potential alternatives to PCE in dry cleaning include dipropylene glycol  

n-butyl ether (DPnB) and dipropylene glycol tert-butyl ether (DPtB), both promising to 

pose a relatively smaller risk. To evaluate these two alternatives to PCE, we established 

and scored performance criteria, including chemical toxicity, employee and customer 

exposure levels, impacts on the general population, costs of each system, and cleaning 

efficacy. The scores received for PCE were 5, 5, 3, 5, 3, and 3, respectively, and DPnB and 

DPtB scored 3, 1, 2, 2, 4, and 4, respectively. An aggregate sum of the performance criteria 

yielded a favorably low score of “16” for both DPnB and DPtB compared to “24” for PCE. 

We conclude that DPnB and DPtB are preferable dry cleaning agents, exhibiting reduced 

human toxicity and a lesser adverse impact on human health and the environment 

compared to PCE, with comparable capital investments, and moderately higher annual 

operating costs. 
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1. Introduction 

Due to the excellent solvent characteristics, degreasing properties and a non-flammable behavior, 

perchloroethylene (PCE) is widely used by the dry cleaning industry in the United States and Europe, 

with approximately 70% of dry cleaners using PCE as their primary solvent [1,2]. Studies have shown, 

however, that PCE is associated with various adverse human health effects, such as a stressed central 

nervous system and cancer of the liver, kidneys, and other organs [3–5]. These studies have prompted 

the United States Environmental Protection Agency (EPA) to reclassify PCE as a likely human 

carcinogen [6]. The chemical also is a known priority contaminant of air, soil, and groundwater. 

Increased regulation of PCE has been called for, including the EPA‟s ban on installing PCE-utilizing 

dry cleaning machines in residential buildings in 2006, and banning all existing PCE dry cleaning 

machines in residential buildings by the year 2020 [3]. PCE is ranked 85 out of 129 regulated priority 

pollutants for which analytical methods have been developed [4]. Use of PCE also has been curtailed 

by the National Emission Standards for Hazardous Air Pollutants (NESHAP) passed in 1990, which 

significantly expanded the EPA‟s authority on the regulation of toxic air pollutants.  

The best means of control for PCE may be a continued decrease and ultimately the replacement of 

the solvent with more sustainable chemical alternatives. Characteristics of a suitable replacement for 

PCE in dry cleaning will include: limited environmental and human health impacts, relatively low 

capital and operational costs, as well as adequate cleaning efficacy. A range of alternatives exist, 

including super critical liquid carbon dioxide (CO2), hydrocarbon solvents, n-propyl bromide, and last 

but not least, various glycol ethers (GEs). Although CO2 is a greenhouse gas, use of supercritical CO2 

does not add to the burden of greenhouse gas emissions in the atmosphere as the process relies on 

existing gas [7]. Super critical liquid CO2 is not widely used, however, because it currently is 

considered to be cost prohibitive [8]. Use of hydrocarbons as PCE alternatives are controversial, as 

these solvents can contribute to the formation of low-level ozone (O3), as well as adverse human health 

effects [7]. n-propyl bromide, another alternative, previously was determined to be cost-prohibitive 

and may cause adverse reproductive effects [9,10]. 

Among the PCE alternatives identified in the literature, GEs appear to be particularly attractive, and 

among these specifically dipropylene glycol n-butyl ether (DPnB) and dipropylene glycol  

tertiary-butyl ether (DPtB). Unfortunately, not all GEs are safe and some are known to be 

carcinogenic. For example, propylene glycol tertiary-butyl ether has toxicity and carcinogenic 

potential [10], and contributes to tumor growth in mice [11]; similarly, short chain ethylene GEs [12] 

can adversely affect testicular and ovarian functions [13,14]. In contrast, both DPnB and DPtB have 

been found to likely not pose adverse environmental effects [15], and the United Nations Environment 

Program (UNEP) publication of the Organization for Economic Co-operation and Development 

(OECD) Screening Information Data Sets (SIDS) considers DPnB within a category of chemicals that 
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does not warrant further work, as known effects of the compounds are non-adverse, reversible, or 

transient in nature [16].  

DPnB and DPtB both are relatively benign compounds not considered to act as carcinogens [15,16]. 

In contrast, PCE is known to have numerous adverse effects on humans, including: adverse effects on 

the neurobiological system, liver, and kidneys in acute and chronic exposure [5]; adverse reproductive 

effects in chronic exposure [17]; PCE also is classified as a likely human carcinogen [6]. The most 

common effects attributable to chronic PCE exposure in humans are neurological and sensory effects 

such as headaches and impaired color vision. Other adverse outcomes from PCE exposure include 

liver damage, cardiac arrhythmia, and possible kidney effects [5].  

The purpose of this paper was to provide a systematic comparison of DPnB and DPtB to PCE using 

specific criteria capturing potential adverse impacts on human health and the environment from usage 

of these substances as dry cleaning solvents. 

2. Methodology 

For our study, DPnB and DPtB were assumed to be interchangeable with respect to all 

characteristics discussed in this study, as they are both dipropylene glycol butyl ethers of very similar 

structure; therefore, all data for dipropylene glycol butyl ethers are a compilation of DPnB and DPtB, 

unless explicitly stated otherwise. This is in concordance with other literature, which has also used the 

two GEs interchangeably [15]. Our review queried the United States National Library of Medicine‟s 

Toxicology Data Network (Toxnet) and Web of Knowledge. Search terms included: 

perchloroethylene, tetrachloroethylene, dipropylene glycol tert-butyl ether, dipropylene glycol n-butyl 

ether, regulation, toxicity, and dry cleaning. 

Several criteria were chosen for this study to summarize human-health and environmental impacts 

of their respective solvent. The criteria selected for comparison were: costs to an operator, chemical 

toxicity, employee exposure, customer airborne exposure, impacts to the general population (including 

water contamination impacts), and cleaning effectiveness. 

Once the chemicals were analyzed for each criterion, scores were assigned to quantitatively assess 

disparities between the GEs (DPnB and DPtB) and PCE. The chemicals were scored using a rating 

system of “1” to “5”, with “1” being reflective of the most desirable characteristics with respect to 

adverse risk, cost, and acceptability of the cleaning solvent. Conversely, a high score of “5” in each 

category reflected the least desirable outcome. The scores in the various categories were weighted 

evenly for two primary reasons. First, to provide comparable importance to each criterion considered. 

Second, to acknowledge conclusions of the industry literature that shifting the usage pattern of 

chemical solvents is driven by both consumer demand and regulatory considerations [18]; thus a 

consumer may place equal weight on environmental risk as well as cleaning effectiveness. The 

following section explains the scoring methodology used for each criterion considered. 

For chemical toxicity, a score of “5” would be assigned for a carcinogen, a “4” for possible 

carcinogenicity, a “3” for potential to bioaccumulate, a “2” for mild effects from exposure, and a “1” 

for no apparent toxicity. Comparisons for employee exposure rates are based on occupational 

exposure, relative to regulation. Multiple exposure possibilities over the permissible exposure levels 

(PEL) were assigned a “5”. Single exposure possibilities in excess of the 8-hour time-weighted 
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average PEL were scored a “4”; a score of “3” was assigned for exposure limited to ranges within a 

given PEL; unregulated exposure because of a lack of regulatory data was assigned a “2”; and 

unregulated exposure with a chemical considered safe was assigned a “1”. For customer exposure 

levels, if garment off-gassing causes an exposure within 50% of employee PEL limits, a score of “5” 

was assigned. If exposure from garments between 25% and 50% of PEL limits, a score of “4” was 

assigned. Exposure less than 25% of a given PEL limit was assigned a score of “3”. If exposure is 

expected but no PEL is given, a “2” was assigned. If no exposure is expected, a “1” was assigned.  

A comparison of solvents for the impact to the general public is based on exposure routes, and 

whether exposure exceeds regulatory levels. A “5” was assigned to exposure expected through 

multiple routes and exposure exceeding regulatory limits. A “4” was assigned for exposure through 

multiple routes, with one route exceeding regulatory limits. A “3” was assigned for multiple exposure 

routes, within regulatory limits. A “2” was assigned for a single exposure route; and a score of “1”  

was assigned for no expected exposure. Scoring for cost analysis was based on financial advantage over 

PCE usage: 50% or more expensive received a “5”, 20% to 50% more expensive a “4”, within 5% (+/−) a 

“3”, 20% to 50% savings a “2”, and greater than 50% savings earned a score of “1”, Scoring for 

cleaning was based on PCE as a baseline. Considerably worse performance was assigned a score of 

“5”, considerably better performance earned a score of “1”. For convenience, the above categorical 

scores were summed up to compute a composite total score; alternative, non-even weighting 

approaches were not considered in this study but the data are presented in a fashion enabling such 

secondary computations. 

3. Results and Discussion 

An extensive literature review revealed that the use of GEs and other non-PCE chemicals for dry 

cleaning purposes is still very limited compared to PCE as of data from 2010 (see Figure 1; data taken 

from [1]). In the present work, we concentrated our attention on DPnB and DPtB (Figure 2; computed 

from data in reference [10,19,20]), as these compounds are among the most promising alternatives 

within their class.  

Figure 1. Relative chemical usage by dry cleaners in the United States. 

 

One class of alternatives that is generally considered non-toxic and relatively cost effective in 

replacing PCE in dry cleaning is GEs, or more specifically, DPnB and DPtB. Figure 2 shows the 

structure of PCE and both GE compounds. 
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Figure 2. Three chemicals under consideration in this study: (a) perchloroethylene  

(PCE) [19]; (b) dipropylene glycol tertiary-butyl ether (DPtB) [10]; and (c) dipropylene 

glycol n-butyl ether (DPnB) [20]. 

 

3.1. Chemical Toxicity  

The Agency for Toxic Substance and Disease Registry (ATSDR) has determined a chronic-duration 

minimum risk level (MRL) for PCE as low as 0.04 parts per million or ppm [21]. Any exposure above 

this value is considered to pose an increased risk. One common value for quantifying toxicity is the 

LD50, which is the dose at which 50% of the population dies from exposure; for this report only LD50 

values for oral administration to rats were included for consistency. The average LD50 found for PCE 

is 10,150 ± 8277 milligram per kilogram (mg/kg) with a range of 2600 to 19,000 mg/kg [1,19,22]. The 

EPA recently reclassified PCE as a likely human carcinogen [6]. 

There is no MRL for DPnB or DPtB from the ATSDR. The average LD50 found for GEs is  

3122 ± 1334 mg/kg with a range of 1850 to 5000 mg/kg [16,23,24]. Even at high exposure rates for 

both DPnB and DPtB, few adverse effects have been detected; and among those that have been 

detected, the effects were generally mild. Both chemicals are slightly irritating to the eyes, while 

exposures at elevated concentrations can cause depression of the central nervous system, resulting in 

headaches, weakness, slurred speech, tremors and blurred vision. At extreme concentrations, vapors 

may create erythema, edema, weeping, hyperpigmentation, photosensitization, and mucosal irritation [19]. 

The OECD SIDS considers DPnB a chemical that does not warrant further work as it is related to  

non-adverse, reversible, transient effects [16]. As such, because the effects of DPnB and DPtB are 

considered mild, a “2” was assigned. Because it is a likely human carcinogen, PCE was assigned a 

score of “5”. 

3.2. Employee Exposure Levels 

Due to its ubiquitous utilization throughout the traditional dry cleaning processes, PCE exposure is 

common among dry cleaning employees, customers, and in certain situations the local population as 

well. The U.S. Department of Labor‟s Occupational Safety & Health Administration (OSHA) has set 

occupational exposure regulations for dry cleaning establishments, relative to PCE. OSHA‟s 8-hour 

time-weighted average PEL is 100 ppm. The PEL for a five-minute period within three-hours is 200 ppm, 

with a maximum peak concentration exposure of 300 ppm at any point within that timeframe [25]. The 

OSHA PEL is based on neurotoxic effects; the current National Institute for Occupational Safety and 

Health (NIOSH) recommended exposure limit is “the lowest feasible level”, wherein these values were 

based on then-undetermined carcinogenicity [26]. 
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Studies have shown that workers occupationally exposed to PCE are susceptible to several adverse 

reproductive effects, which include: menstrual disorders, altered sperm counts, and reduced fertility [17], 

and that workers have increased rates of a variety of cancers, including esophagus, bladder, kidney, 

lung, pancreas, and cervical cancer [4]. These studies are complicated by exposure to other chemicals 

and/or lifestyle factors (e.g., smoking, diet, etc.) that can be difficult to account for and quantify in 

epidemiological studies.  

Generally, PCE studies have largely focused on the concentration of PCE in the air present where 

the measurements were taken, as inhalation is considered the primary route of concern with regard to 

human exposure [27]. Occupational exposure pathways related to dry cleaning with PCE included  

de-soiling, machine operators, customer service, and maintenance staff which are presented in Table 1. 

Reported concentrations of PCE ranged from 0.01 to 1139 ppm in air, with an average of 181 ± 294 ppm at 

dry cleaning establishments with a variety of operations including; dry-to-dry PCE machines, manual 

transfer machines, local exhaust ventilation, and non-ventilated systems [27–29].  

Table 1. PCE dry cleaning exposure pathways and concentrations. 

Exposure pathway Exposure level (ppm) 8-h TWA (ppm) 

De-soiling a 0.01 39 N/A N/A 

Transfer-based machine operated a 13 153 N/A N/A 

Dry-to-Dry machine operated b,c 0.3 83 4.1 5 

Pressing a,b 0.1 6.5 0.5 1.1 

Customer Service a,b 0 15 N/A 0.1 

Maintenance a N/A 334 N/A N/A 
a Gold et al. [28]; b Raisanen et al. [30], c McKernan et al. [31]. 

In contrast to PCE, dipropylene glycol butyl ethers are relatively unregulated in occupational 

settings. The California Department of Public Health‟s Hazard Evaluation System and Information 

System (HESIS) factsheet for GEs [29,32] states that “all propylene glycol ethers are currently 

believed to be relatively safe,” whereas “most ethylene glycol ethers with „methyl‟ in their names are 

relatively toxic” [33]. 

Similarly, OECD has found that exposure generally occurs when applying the chemical to surfaces, 

presumably indirect exposure risk may occur through inhalation of air containing DPnB released from 

products that have undergone or are the result of industrial processing. The off-gas from dry-cleaned 

garments was similarly categorized. OECD did not establish exposure limits for DPnB or DPtB [16]. 

Given that inhalation is the primary exposure of concern for employees, it is important to consider the 

degradation of PCE and the GEs of interest in the atmosphere. PCE undergoes degradation in the 

atmosphere by reacting with photo-chemically produced hydroxyl (OH) radicals. Degradation of PCE 

proceeds with a half-life in air ranging from 40 to 70 days, with an average of 52.3 ± 12.8 days [34–36]. 

While GE is a volatile organic compound (VOC), it is not categorized as a hazardous air pollutant 

(HAP); therefore, it is not regulated by the Clean Air Act. 

The photodegradation rate for DPnB results in an atmospheric degradation half-life of 2.6 h based 

on a 12-h day of sunlight (Atkinson estimation methodology based on OH radical reaction in the 

atmosphere) and a half-life in air was found to be 7.6 h (Mackay Level III assumes equal releases to all 

media) [16]. Based upon these rates, the GEs of interest will cause significantly reduced exposure 
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levels, due to the occurrence of rapid photodegradation. As PCE does not readily degrade in the 

atmosphere, it represents a significant long-term exposure risk to employees. 

PCE was assigned a “5” because it has multiple documented exposures above PEL exposure limits 

as the result of multiple processes, whereas DPnB and DPtB were assigned a score of “1” because 

California Department of Public Health, which has yet to assign an occupational exposure PEL, has 

stated that DPnB and DPtB are relatively safe [32]. 

3.3. Customer Exposure Levels 

Customer exposure to PCE principally occurs through exposure to residual PCE present on the 

garments. Chromatographic studies have shown that the residual amount of PCE on clothes that 

undergo dry cleaning varies based on the type of fabric. Studies have shown that polyester, cotton, and 

wool retain PCE at high levels, ranging anywhere from 10 to 56 nano-moles per centimeter squared 

(nmol/cm
2
), with polyester showing the greatest retention levels. Silk, on the other hand, does not 

retain appreciable amount of PCE. PCE residual concentrations were also found to increase over time 

with multiple dry cleaning applications, with cotton (peak concentration after two cycles), polyester 

(four cycles) and wool (peak concentration still increasing after six cycles) all demonstrating higher 

residual PCE levels [37]. Table 2 summarizes the residual concentration left on cotton, polyester, silk, 

and wool.  

Table 2. Residual concentrations of PCE on textiles. 

Concentration (nmol/cm
2
) Average Standard deviation 

Cotton  17.0 5.96 

Polyester 45.5 11.7 

Silk ND - 

Wool 31.5 11.8 

For DPnB and DPtB no inhalation exposure assessments for consumers could be found, with regard 

to dry cleaning exposure risks, as these exposure levels would likely be at or below the occupational 

levels. As noted, customer exposure to DPnB and DPtB can be reasonably expected, but few adverse 

effects have been detected; amongst exposures that may occur, the effects are expected to be  

generally mild.  

PCE yielded a score of “3” because its documented residuals are less than 25% of the given PEL. 

Comparatively, DPnB and DPtB were assigned a score of “2”, because exposure is expected (but not 

documented) and no PEL is assigned; this score acknowledges some ambiguity toward these 

compounds, due to still incomplete datasets when compared to PCE for dry cleaning. 

3.4. Impacts to General Population 

Exposure to the public occurs due to the intentional or unintentional release of dry cleaning 

chemicals to the surrounding environment. This includes the improper disposal and handling of 

chemicals, improper maintenance of dry cleaning systems, disposal to municipal sanitation systems, 

and venting and volatilization to the surrounding atmosphere [37].  
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The EPA has set risk assessment guidelines for oral and inhalation exposures of PCE, wherein the 

reference dose for chronic oral exposure is 0.006 mg/kg-day, and the reference dose for chronic 

inhalation exposure is 0.04 milligrams per meter cubed (mg/m
3
)

 
[38]. PCE mass discharged to 

municipal sewage systems will typically be removed by aeration processes at wastewater treatment 

facilities, resulting in atmospheric discharges in the immediate vicinity of the aeration basins [39]. The 

atmospheric release of PCE during the aeration process does not appear to be a significant exposure 

pathway to the population; however, pathway exposure risk is increased within the proximity of 

wastewater treatment plants [40]. 

When PCE is discharged to surface waters, volatilization will occur to the atmosphere, with the 

mass remaining in water slowly decreasing, due to PCE‟s higher density and modest water solubility. 

PCE will also readily leach through soil stratigraphy and is known to reach underlying saturated zones, 

resulting in groundwater contamination [38]. Reported Henry‟s Law constants for PCE range from 

1.44 × 10
−2

 to 1.80 × 10
−2

 atmospheres time meter cubed per mole (atm-m
3
/mol), with an average of 

1.68 × 10
−2

 ± 2.07 × 10
−3

 atm-m
3
/mol [16,19,41]. By comparison, equivalent data for release of GEs 

are lacking. But based upon estimated Henry‟s Law constants for GEs in the range of 5.7 × 10
−9

 to  

2.7 × 10
−6

 atm-m
3
/mol (average of 9.95 × 10

−7
 ± 1.48 × 10

−6
 atm-m

3
/mol), a limited potential exists for 

partitioning to occur from water to air; also, fugacity modeling indicates that GEs will partition in the 

environment approximately equally into soil and water, with small to negligible amounts remaining in 

air, sediment, and aquatic biota [16,38]. 

One study examining contamination of well water drawn downstream of a dry cleaning plant where 

PCE was stored in an underground storage tank, yielded PCE concentration between 120 to 27,000 

microgram per liter (µg/L) for sampling locations [42]. At the Long Prairie, Minnesota Superfund site, 

improper disposal and leakage of PCE by a dry cleaning establishment yielded maximum PCE 

concentrations of 280 µg/L in municipal well water, private well maximum concentrations of 1000 μg/L, 

and monitoring well maximum concentrations of 22,000 μg/L [43].  

Due to concerns over PCE contamination in drinking water, the EPA has set a maximum 

contaminant level (MCL) in water of 5 μg/L [44]. By comparison, no MCL has been set currently for 

dipropylene butyl GEs. This likely is because of research findings indicating that the chemicals are 

unlikely to persist in the environment [16].  

In 2002, a study reporting PCE concentrations measured in two New York City apartment buildings 

in which dry cleaning facilities were sited on the first floor found that mean PCE concentration 

throughout the building ranged from 650 µg/m
3
 to 6100 µg/m

3
 [45]. In 2005, another team measured 

concentrations of PCE in the indoor air of apartment buildings sited with dry cleaners in New York 

City, and found that in 12 of 24 apartment buildings assessed, PCE concentrations ranged from  

194 µg/m
3
 to 5000 µg/m

3
 [46]. Residents collocated with a dry cleaner, therefore, can expect to see 

consistently high concentrations long-term. These would decrease only with improved handling and 

release practices or with cessation of operations. 

No similar studies were found for populations collocated in buildings with DPnB or DPtB cleaners. 

In contrast to PCE, DPnB rapidly photodegrades with a half-life of 2.6 h [16], suggesting a quickly 

diminishing risk to non-customers when compared to PCE. Each VOC reacts at different rates and by 

different reaction mechanisms. For example, the initial reaction rates of VOCs with the OH radical 

vary by factors of 10,000, and the different molecular structures of VOCs imply that they possess 
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different potentials for photochemical O3 formation. In addition, depending on the local and regional 

industries, land-use and biogenic sources, they are also emitted into the atmosphere at different mass 

emission rates. Therefore, the relative contribution of VOCs to the photochemical O3 formation varies 

from one compound to another [47,48] and from region to region [49–51]. A photochemical trajectory 

model (PTM), using the Master Chemical Mechanism (MCM), has been used to simulate formation of 

photochemical O3 and generation of secondary oxidant in Europe [5,52–54]. The photochemical  

O3 creation potential (POCP), was developed to determine the contribution of each VOC to the 

regional O3 formation in north-west Europe. The POCP for a particular VOC is determined by 

quantifying the effect of a small incremental increase in its emission on O3 formation along the 

standard 5-day trajectory, relative to that resulting from an identical increase in the emission  

(on a mass basis) of a reference VOC, which is taken to be ethene [55]. Table 3 summarizes POCP 

values determined for PCE and GE compounds acting as oxygenated VOCs [56–58].  

Table 3. Dimensionless photochemical ozone creation potential (POCP) for PCE and 

Glycol Ether (GE) compounds expressed relative to the reference compound, ethene. 

POCP PCE 
a,b,c 

GE 
a,b 

Average 0.9 37.2 

Standard Deviation 0.7 21.6 

Min 0.0 17.0 

Max 2.0 80.0 
a Derwent et al. [56]; b Altenstedt et al. [57], c Koppmann [58]. 

The PCOP for PCE is shown to be one order of magnitude less than GE, this shows that the O3 

creation is minimal for PCE when compared to GE. The O3 created by GE will be released into the 

lower atmosphere which leads to photochemical smog and harmful effects to the human health and the 

environment. Because of PCE‟s known persistence in groundwater and in residences co-located with 

dry cleaners, PCE was assigned a score of “5”, whereas the degradable compounds which form O3, 

DPnB and DPtB, were assigned a score of “2”.  

3.5. Costs 

The operating costs assessment was developed by using a model developed for the USEPA in 2005 [59] 

and by contacting solvent manufacturing companies for updated cost figures [60–62]. According to 

Union Dry Cleaning Products, USA the capital costs for both PCE and GE machines would be 

approximately $1000 per pound machine and each installation would cost approximately $5000 

because the hook-up procedure is the same for each machine [63]. The model for the operating costs 

was created by analyzing case studies with various technologies and facility sizes. It must be stated 

that PCE had many cases but GE had only one case study that utilized the Rynex product. The 

assumptions for the PCE model are listed below:  

 Processing 40,000 pounds of clothing per year and 27 loads per week (1380 loads per year); 

 35-pound dry-to-dry closed-loop machine including secondary control; 

 60 gallons of PCE per year at a cost of $10 per gallon; 

 50 gallons of detergent per year at a cost of $25 per gallon; 
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 Annual electricity costs were based on case studies and brought to current 2014 dollars using 

CPI conversion factor for electricity prices; 

 Annual gas costs were based on case studies and brought to current 2014 dollars using CPI 

conversion factor for utility gas prices; 

 Spotting labor was found based on case studies to be 2.46 h per week at $10 per h labor cost; 

 Finishing labor was found based on case studies to be 9.85 h per week at $10 per hour  

labor cost; 

 Maintenance labor of one hour per week was found based on case studies at $10 per hour cost; 

 Due to use of spin disk filters in case studies, the maintenance equipment cost was assumed to 

be zero; 

 Compliance labor estimates were based on case studies and suggested one hour per week at 

$10 per hour labor cost; 

 Case studies showed that two drums of hazardous waste were produced per year and a disposal 

cost of $275 per drum;  

The assumptions for the GE model are listed below: 

 Processing of 40,000 pounds of clothing per year and 27 loads per week (1380 loads per year); 

 35-pound machine used; 

 Annual solvent use was found from the case study and lower volatility than PCE to be  

50 gallons per year at a cost of $33 per gallon from Caled and Rynex prices; 

 No detergent was used based on case study; 

 Annual electricity was normalized to 40,000 pounds of clothing cleaned per year; 

 Annual gas was normalized to 40,000 pounds of clothing cleaned per year; 

 Spotting labor was estimated based on a case study to be 1 h per week at $10 per hour  

labor cost; 

 Finishing labor was estimated based on a case study to be 9.85 h per week at $10 per hour  

labor cost; 

 Maintenance labor of 18 h per week was determined based on a case study with $10-per-hour 

associated costs; 

 Maintenance equipment cost was assumed to be zero based on the case study; 

 Compliance labor was based on case studies and found to be one hour per week at $10 per hour 

labor cost; 

 The case study shows that two drums of hazardous waste were produced per year and a 

disposal cost of $275 per drum.  

Total capital cost was $40,000 for both the PCE and GE systems, assuming 35-pound machines and 

installation. To update costs provided by the model, the CPI Index was used to adjust the PCE, 

detergent, gas, electricity, compliance, and waste disposal costs [64]. Figure 3 below provides an 

annual operating cost comparison for PCE and GEs use in dry cleaning facilities. The total annual 

operating cost for a PCE facility is $42,758 per year and a GE facility is $58,614 per year. The annual 

operating costs using GE is approximately 37% higher than operating a PCE facility. The assumptions 

above were used to find the cost of solvents, detergent, electricity to run the facility, gas to run the facility, 

spotting treatment labor, finishing treatment labor, compliance related activities, and waste disposal.  
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Figure 3. Cost comparison of annual operating costs using either PCE or GEs in dry 

cleaning operations. 

 

A side-by-side comparison suggests that GEs will always be more expensive than PCE, unless 

certain government eco-friendly incentives are realized, and costs are decreased by improved methods 

and favorable scales-of-economy in the manufacturing of GEs in dry cleaning. As such, DPtB and 

DPnB scored a “4” for associated costs, and PCE scored a “3”. This assessment did not consider the 

full life-cycle costs, which may be higher for PCE, due to the burden incurred by resultant health 

effects and significant costs associated with liabilities for environmental cleanup following spill events. 

3.6. Cleaning Effectiveness 

A study was completed by The International Committee of Professional Textile Care (CINET) 

evaluating the effectiveness of PCE alternatives in the dry cleaning industry. A textile mixture of nine 

items was bought new, the garments included a black men‟s suit (composition: wool 88%, polyamide 

8%, elastane 4%), a ladies skirt (composition: polyester 43%, wool 30%, viscose 6%, nylon 3%, 

polyacryl 18%), a tie (100% silk, PCE only), a sweater (100% wool), test cloths for shrinkage, and test 

cloths for graying. The garments and test materials were cleaned three times with each cleaning 

technology by medium-volume dry cleaners. The study was performed during typical working hours 

and using average-sized cleaning loads mixed with customer garment items. The GE solvent was 

tested on an older multi-solvent machine where the drying process was not optimized, which may 

cause a higher shrinkage when compared to PCE or an alternate, optimized drying process. The results 

for each cleaning performance parameter are presented in Figure 4. The model stain removal was 

calculated by the percent removal of the following stains: sebum (wool), red wine, tea, blood/milk/ink, 

blood, cacao/lanolin, olive oil/carbon, mineral oil/carbon, sebum (polyester/cotton), egg yolk, sebum, 

spinach (wool), grass, make-up, and lipstick. For the stain removal experiments, the garments were not 

treated for spotting before or after the wash cycle. The percent shrinkage of wool and cotton was found 

for the garments after three cleaning cycles without the finishing step. The average percent shrinkage 

of the garments was found after three cleaning cycles and the finishing step. The average greying of 

cotton and wool were measured after three cleaning cycles [1]. 

GEs showed encouraging results with respect to stain removal and avoidance of greying of the 

garments cleaned; yet, their level of greying induction was higher than that of PCE. GEs‟ ability to 

remove stains is comparable to that of current PCE processes; however, increased shrinkage occurred 

with the GE solvent. Minimal pilling or roughening was seen on the test cloths for either of the 

solvents. The zippers on the garments were more difficult to operate after being cleaned with GEs [62]. 

Many of these findings have been duplicated by TURI, the Toxics Use Reduction Institute of the 
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University of Massachusetts-Lowell [65]. A report for Cal EPA‟s Department of Toxic Substances 

Control and EPA Region IX confirmed that GEs perform well in scaled-up spotting and tests [66]. 

Figure 4. Comparison of cleaning efficacy of GEs with PCE as a benchmark. 

 

Because GEs were found to perform generally similar and acceptable with higher cotton and 

average shrinkage and cotton and wool greying, DPnB and DPtB were assigned a score of “4”. PCE, 

as the baseline, received a score of “3”.  

3.7. Overall Comparison 

Use of both DPnB and DPtB was determined to result in significant reductions in adverse employee 

exposure and exposure to the general population when compared to PCE. These results can partially be 

attributed to: the classification of PCE as a carcinogen, the ability of PCE to persist in air, and 

uncontrolled venting of PCE to the ambient atmosphere. The performance criteria for scoring included 

chemical toxicity, employee and customer exposure levels, impacts on the general population, costs of 

each system, and cleaning efficacy. PCE received a score of “5” for chemical toxicity, “5” for 

employee exposure, “3” for customer exposure, “5” for impacts to the general population, “3” for cost 

of the system, and “3” for cleaning efficacy. DPnB and DPtB received a score of “3” for chemical 

toxicity, “1” for employee exposure, “2” for customer exposure, “2” for impacts to the general 

population, “4” for cost of the system, and “4” for cleaning efficacy. An aggregate sum of the 

performance criteria yielded a score of “16” for DPnB and DPtB, and “24” for PCE. The overall scores 

provided for DPnB, DPtB and PCE were not weighted for the purpose of allowing individual dry 

cleaner‟s preferences to weigh each performance criterion according to customer needs. Figure 5 

depicts these reduced impacts, as well as the results stated for each performance criterion. 

Despite its reduced environmental and human health impacts, DPnB and DPtB still represent a 

higher economic investment than PCE, and they both have certain cleaning limitations not associated 

with PCE. Figure 3 illustrates similar capital investment and 37% higher annual operating cost for 

DPnB and DPtB when compared to PCE. Additionally, use of DPnB and DPtB is associated with 

cleaning disadvantages such as greying and impaired zipper functioning after cleaning. Table 4 

includes a comprehensive look at the results found in this review comparing GEs to PCE.  
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Figure 5. Overall comparison of PCE to GEs using the scoring algorithm described in 

detail in the text. 

 

Table 4. Comprehensive results for PCE vs. GEs. 

Criteria PCE GE 

Chemical 

Toxicity 

The EPA reclassified PCE as a likely human 

carcinogen: The average LD50 is 10,150 ± 

8277 mg/kg 

Fewer adverse effects have been detected; and 

among having been detected, effects generally were 

mild: No HAP Lower fire-hazard cost, the average 

LD50 is 3122 ± 1334 mg/kg 

Employee 

Exposure Levels 

Susceptible to several adverse reproductive 

effects PCE with an average of 181 ±  

294 ppm in air at dry cleaning establishments 

PCE degradation corresponds with a half-life 

in air ranging from 40 to 70 days with an 

average of 52.3 ± 12.8 days 

“All propylene GEs are currently believed to be 

relatively safe,” and “most ethylene GEs with 

„methyl‟ in their names are relatively toxic.” A  

half-life in air was found to be 7.6 h 

Customer 

Exposure Levels 

Principally occurs through exposure to 

residual PCE present on the garments at high 

levels, ranging anywhere from 10 to 56 

(nmol/cm2) 

No inhalation exposure assessments for consumers 

appears to have been conducted with regard to dry 

cleaning exposure risks  

Impacts to 

General 

Population 

PCE‟s persistence in groundwater and in 

residences co-located with dry cleaners The 

average of Henry‟s Law constant for PCE is 

1.68 × 10−2 ± 2.07 × 10−3  

atm-m3/mol at 25 °C 

DPnB and DPtB are readily biodegradable: The 

average of Henry‟s Law constant for GEs is 9.95 × 

10−7 ± 1.48 × 10−6 atm-m3/mol at 25 °C 

Costs $1,000/lb machine cost with $1,000 install 

fee totalled a $40,000 capital investment 

(assuming 35-pound machine) approximately 

$43,000/year operating cost 

With a comparable capital investment (assuming 35-

pound machine) the operating cost for GE is 37% 

higher than that of PCE at approximatly 

$59,000/year; Shorter wash cycle corresponds to 

less chemical usage 

Cleaning 

Effectiveness 

Less cotton shrinkage, less average 

shrinkage, less wool greying when compared 

to GE 

Effective on water and oil-based stains Safer for 

most fabrics; impared zipper functions 

The comparison is limited to two types of GEs even though the available GE solvents for dry 

cleaning applications may include other compounds. Due to the patented chemical mixture of the GE 

solvents the stated and likely compounds of GE ether (DPnB and DPtB) were considered. Limited data 

were available for GE in many areas of the evaluation, including exposure amount and cost evaluation 

case studies, chemical toxicity and exposure tests, and general information pertaining to the GEs in the 

dry cleaning industry. The solvent, detergent, machine, and installation costs were obtained by 

contacting various companies that provide these services. All other costs were based on a model 
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created in 2005 for small dry cleaning establishments (40,000 pounds cleaned per year) based on case 

studies. The GE model was based on only a single, available case study, which could affect the results 

depending on location, size, and daily operation of facilities. The cleaning effectiveness was assessed 

using one comprehensive study including GE and various other solvents. Studies on cleaning 

effectiveness solely examining PCE were not considered for the present analysis. The evaluation 

completed was limited in detail due to the breadth of the subject; a number of more focused 

evaluations may be completed in the future for the various performance criteria of interest. This study 

used an approach of un-weighted scoring, and included rankings in a summary metric reported. 

Presented data may be reanalyzed to reflect the weighting preferences of individual readers. 

4. Conclusions 

This study identified DPnB and DPtB as acceptable and desirable alternatives to PCE in dry 

cleaning, using an evenly weighted scoring approach for six criteria. This conclusion is driven in part 

by the reduced environmental and human health impacts associated with the two dipropylene glycol 

butyl ethers when compared with PCE. The increased economic costs and cleaning limitations are 

compensated for by the decreased environmental and human health impacts. Future research 

opportunities include analyzing the properties of harmful GEs and examining the possible existence of 

parallels between these and DPnB and DPtB. This would give further insight into the potential for 

human health risks from using DPnB and DPtB. Other opportunities for future research include 

expanded toxicity studies specifically including DPtB and DPnB. The scoring algorithm presented 

here also may form the basis for a more comprehensive future study comparing DPnB, DPtB, and PCE 

to supercritical CO2, hydrocarbons, n-propyl bromide, and wet cleaning. 

Acknowledgments 

The authors would like to thank Samuel J. Jacoby, Josh G. Smith, and Scott R. Unger for their 

contributions to an early draft of this research article and Arjun Venkatesan for proof-reading the 

manuscript. This project was supported in part by awards R01ES015445, 1R01ES020889 and their 

supplements from the National Institute of Environmental Health Sciences (NIEHS). The content is 

solely the responsibility of the authors and does not necessarily represent the official views of the 

NIEHS or the National Institutes of Health (NIH). 

Conflicts of Interest 

The authors declare that there are no conflicts of interest. 

Author Contributions 

N.H. was responsible for the organization of this report and co-wrote the first draft. C.M.F. was 

responsible for the cost analysis and co-wrote the first draft of the manuscript. R.U.H. conceived and 

oversaw the project and edited the final draft.  



Toxics 2014, 2 129 

 

References 

1. Anonymous. Solvetex ii Quality Performents of Solvents; CINET Professional Textile Care: 

Ophemert, Gelderland, The Netherlands, 2011. 

2. Rastkari, N.; Yunesian, M.; Ahmadkhaniha, R. Exposure assessment to trichloroethylene and 

perchloroethylene for workers in the dry cleaning industry. Bull. Environ. Contam. Toxicol. 2011, 

86, 363–367. 

3. Raaschou-Nielsen, O.; Hansen, J.; Christensen, J.M.; Blot, W.J.; McLaughlin, J.K.; Olsen, J.H. 

Urinary concentrations of trichloroacetic acid in danish workers exposed to trichloroethylene. 

1947–1985. Am. J. Ind. Med. 2001, 39, 320–327. 

4. Mundt, K.A.; Birk, T.; Burch, M.T. Critical review of the epidemiological literature on 

occupational exposure to perchloroethylene and cancer. Int. Arch. Occup. Environ. Health 2003, 

76, 473–491. 

5. Aschengrau, A.; Weinberg, J.M.; Janulewicz, P.A.; Romano, M.E.; Gallagher, L.G.;  

Winter, M.R.; Martin, B.R.; Vieira, V.M.; Webster, T.F.; White, R.F. Affinity for risky behaviors 

following prenatal and early childhood exposure to tetrachloroethylene (pce)-contaminated 

drinking water: A retrospective cohort study. Environ. Health 2011, 10, 1–13. 

6. USEPA. Fact Sheet on Perchloroethylene, also Known as Tetrachloroethylene; EPA: 

Washington, DC, USA, 2012. 

7. USEPA. Dry Cleaning Alternative Solvents: Health and Environmental Impacts; California 

Environmental Protection Agency Air Resource Board: Sacramento, CA, USA, 2012. 

8. USEPA. Case Study: Liquid Carbon Dioxide (co2) Surfactant System for Garment Care; EPA: 

Washington, DC, USA, 2012. 

9. Lee, M.K.C. 10.5 Synthetic Solvent Drycleaning, Permit Handbook; Bay Area Air Quality 

Management District: Washington, DC, US, 2007. 

10. Hoover, S. Comments on Human Health and Environmental Hazards for Dry Cleaning Solvents 

Included in sf Environment’s Alternatives Assessment Fact Sheet; Office of Environmental Health 

Hazard Assessment: Sacramento, CA, USA, 2012. 

11. NTP. Toxicology and carcinogenesis studies of propylene glycol mono-t-butyl ether (cas no. 

57018-52-7) in f344/n rats and b6c3f1 mice and a toxicology study of propylene glycol  

mono-t-butyl ether in male nbr rats (inhalation studies). Natl. Toxicol. Progr. Tech. Rep. 2004, 

515, 1–306. 

12. Cordier, S.; Multigner, L. Occupational exposure to glycol ethers and ovarian function.  

Occup. Environ. Med. 2005, 62, 507–508. 

13. Cordier, S.; Garnier, R.; Gazin, V.; Multigner, L.; Vasseur, P.; Beausoleil, C.; Laudet-Hesbert, A.; 

Bonnin, F.; Bonvallot, N.; Chenu, C. Éthers de glycol: Nouvelles données toxicologiques; Inserm: 

Paris, France, 2006. 

14. Hsieh, G.; Wang, J.; Cheng, T.; Chen, P. Prolonged menstrual cycles in female workers exposed 

to ethylene glycol ethers in the semiconductor manufacturing industry. Occup. Environ. Med. 

2005, 62, 510–516. 



Toxics 2014, 2 130 

 

15. Staples, C.A.; Davis, J.W. An examination of the physical properties, fate, ecotoxicity and 

potential environmental risks for a series of propylene glycol ethers. Chemosphere 2002, 49,  

61–73. 

16. OECD Screening Information Data Set. Initial Assessment Report for Siam 17—Propylene Glycol 

Ethers; SIAM: Arona, Italy, 2003. 

17. Brown Dzubow, R.; Makris, S.; Siegel Scott, C.; Barone, S. Early lifestage exposure and potential 

developmental susceptibility to tetrachloroethylene. Birth Defects Res. Part B 2010, 89, 50–65. 

18. Murphy, I.P. Rather Switch than Fight? Available online: 

https://americandrycleaner.com/articles/rather-switch-fight-part-2-2 (accessed on 13 June 2012).  

19. Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency. Chemical 

Summary for Perchloroethylene; EPA: Washington, DC, USA, 1994. 

20. Anhui Lixing Chemical Co., Ltd. Chemical Book, Di(Propylene Glycol) Tert-Butyl Ether Basic 

Information. Available online: http://www.chemicalbook.com/ProductIndex_EN.aspx (accessed 

on 1 June 2008).  

21. MacWilliam, L. The Dry Cleaning Dilemma. Available online: http://www.myhealthyhome.com/wp-

content/uploads/2011/02/TheDryCleaningDilemmawReferences.pdf (accessed on 5 June 2010).  

22. Company, M.A. Material Safety Data Sheet-Pce. Available online: http:// 

www.MartinAsphalt.com (accessed on 17 December 2006). 

23. Environmental Health Dept.-Grace Construction Products. Material Safety Data Sheet. Available 

online: http://www.na.graceconstruction.com/concrete/download/DARACMMR.PDF (accessed 

on 27 January 2000). 

24. EMD Millipore. Dipropylene Glycol Monomethyl Ether. Available online: 

http://www.emdmillipore.com/is-bin/INTERSHOP.enfinity/WFS/Merck-US-Site/en_CA/-/USD 

/ViewPDF-Print.pdf?RenderPageType=ProductDetail&CatalogCategoryID=CDSb.s1LnJwAAAEW 

geEfVhTl&ProductUUID=FUCsHfETqKQAAAE2scxwtCII&PortalCatalogUUID=t02b.s1LX0MA

AAEWc9UfVhTl (accessed on 25 March 2014).  

25. U.S. Department of Labor Occupational Safety and Health Administration. Reducing Worker 

Exposure to Perchloroethylene (perc) in Dry Cleaning. Available online: 

http://www.osha.gov/Publications/osha3253.html (accessed on 24 April 2005). 

26. USDHH. Centers for Disease Control and Prvention, National Institute for Occupational Safety 

and Health, Niosh Pocket Guide to Chemical Hazards; National Institute for Occupational Safety 

and Health: Cincinnati, OH, USA, 2010. 

27. USEPA. Cleaner Technologies Substitutes Assessment: Professional Fabricare Processes 

(Appendix c). EPA: Washington, DC, USA, 1998. 

28. Gold, L.S.; De Roos, A.J.; Waters, M.; Stewart, P. Systematic literature review of uses and levels 

of occupational exposure to tetrachloroethylene. J. Occup. Environ. Hyg. 2008, 5, 807–839. 

29. Materna, B.L. Occupational exposure to perchloroethylene in the dry cleaning industry. Am. Ind. 

Hyg. Assoc. J. 1985, 46, 268–273. 

30. Räisänen, J.; Niemelä, R.; Rosenberg, C. Tetrachloroethylene emissions and exposure in dry 

cleaning. J. Air Waste Manag. Assoc. 2001, 51, 1671–1675. 

http://www.martinasphalt.com/
http://www.osha.gov/Publications/osha3253.html


Toxics 2014, 2 131 

 

31. McKernan, L.T.; Ruder, A.M.; Petersen, M.R.; Hein, M.J.; Forrester, C.L.; Sanderson, W.T.; 

Ashley, D.L.; Butler, M.A. Biological exposure assessment to tetrachloroethylene for workers in 

the dry cleaning industry. Environ. Health 2008, 7, 1–10. 

32. California Department of Public Health Division of Environmental and Occupational Disease 

Control Occupational Health Branch. Glycol ethers. Hazard Evaluation System and Information 

System, Fact Sheet; California Department of Public Health Division of Environmental and 

Occupational Disease Control Occupational Health Branch: Sacramento, CA, USA, 2009. 

33. Permissible Exposure Limits for Chemical Contaminants. Available online: 

https://www.dir.ca.gov/title8/ac1.pdf (accessed on 15 August 1994). 

34. Edney, E.; Kleindienst, T.; Corse, E. Room temperature rate constants for the reaction of oh with 

selected chlorinated and oxygenated hydrocarbons. Int. J. Chem. Kinet. 1986, 18, 1355–1371. 

35. Tuazon, E.C.; Atkinson, R.; Aschmann, S.M.; Goodman, M.A.; Winer, A.M. Atmospheric 

reactions of chloroethenes with the oh radical. Int.J. Chem. Kinet. 1988, 20, 241–265. 

36. Chiao, F.; Currie, R.; McKone, T. Intermedia Transfer Factors for Contaminants Found at 

Hazardous Waste Sites: Trichloroethylene (tce). Final Draft Report, Risk Science Program; 

Department of Environmental Toxicology, University of California: Davis, CA, USA, 1994. 

37. Sherlach, K.S.; Gorka, A.P.; Dantzler, A.; Roepe, P.D. Quantification of perchloroethylene 

residues in dry‐cleaned fabrics. Environ. Toxicol. Chem. 2011, 30, 2481–2487. 

38. USEPA. Toxicological Review of Tetrachloroethylene (Perchloroethylene); EPA: Washington, 

DC, USA, 2012. 

39. Agency for Toxic Substances and Registry (ASTDR). Toxicological Profile for 

Tetrachloroethylene; ASTDR: Atlanta, GA, USA, 2012. 

40. Tansel, B.; Eyma, R.R. Volatile organic contaminant emissions from wastewater treatment plants 

during secondary treatment. Water Air Soil Pollut. 1999, 112, 315–325. 

41. Science in the Courtroom. TCE and PCE Toxicity, Uses, and Properties. Available online: 

http://serc.carleton.edu/woburn/issues/tce_toxicity.html (accessed on 18 June 2009). 

42. Kido, K.; Shiratori, T.; Watanabe, T.; Nakatsuka, H.; Ohashi, M.; Ikeda, M. Correlation of 

tetrachloroethylene in blood and in drinking water: A case of well water pollution. Bull. Environ. 

Contam. Toxicol. 1989, 43, 444–453. 

43. Canter, L.W.; Sabatini, D.A. Contamination of public ground water supplies by superfund sites. 

Int. J. Environ. Stud. 1994, 46, 35–57. 

44. USEPA. Basic Information about Tetrachloroethylene in Drinking Water; EPA: Washington, DC, 

USA, 2012. 

45. Schreiber, J.S.; Hudnell, H.K.; Geller, A.M.; House, D.E.; Aldous, K.M.; Force, M.S.;  

Langguth, K.; Prohonic, E.J.; Parker, J.C. Apartment residents‟ and day care workers‟ exposures 

to tetrachloroethylene and deficits in visual contrast sensitivity. Environ. Health Perspect. 2002, 

110, 655. 

46. McDermott, M.J.; Mazor, K.A.; Shost, S.J.; Narang, R.S.; Aldous, K.M.; Storm, J.E. 

Tetrachloroethylene (pce, perc) levels in residential dry cleaner buildings in diverse communities 

in New York city. Environ. Health Perspect. 2005, 113, 1336. 

47. Atkinson, R. Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ. 

Part A 1990, 24, 1–41. 



Toxics 2014, 2 132 

 

48. Carter, W.P. Development of ozone reactivity scales for volatile organic compounds. Air Waste 

1994, 44, 881–899. 

49. Derwent, R.; Jenkin, M.; Saunders, S. Photochemical ozone creation potentials for a large number 

of reactive hydrocarbons under european conditions. Atmos. Environ. 1996, 30, 181–199. 

50. Chang, C.-C.; Chen, T.-Y.; Lin, C.-Y.; Yuan, C.-S.; Liu, S.-C. Effects of reactive hydrocarbons 

on ozone formation in southern taiwan. Atmos. Environ. 2005, 39, 2867–2878. 

51. Cheng, H.; Guo, H.; Saunders, S.; Lam, S.; Jiang, F.; Wang, X.; Simpson, I.; Blake, D.; Louie, P.; 

Wang, T. Assessing photochemical ozone formation in the pearl river delta with a photochemical 

trajectory model. Atmos. Environ. 2010, 44, 4199–4208. 

52. Derwent, R.; Jenkin, M.; Passant, N.; Pilling, M. Reactivity-based strategies for photochemical 

ozone control in Europe. Environ. Sci. Policy 2007, 10, 445–453. 

53. Evtyugina, M.; Pio, C.; Nunes, T.; Pinho, P.; Costa, C. Photochemical ozone formation at 

Portugal west coast under sea breeze conditions as assessed by master chemical mechanism 

model. Atmos. Environ. 2007, 41, 2171–2182. 

54. Pinho, P.; Lemos, L.; Pio, C.; Evtyugina, M.; Nunes, T.; Jenkin, M. Detailed chemical analysis of 

regional-scale air pollution in western portugal using an adapted version of mcm v3. 1.  

Sci. Total Environ. 2009, 407, 2024–2038. 

55. Saunders, S.; Jenkin, M.; Derwent, R.; Pilling, M. Protocol for the development of the master 

chemical mechanism, mcm v3 (part a): Tropospheric degradation of non-aromatic volatile organic 

compounds. Atmos. Chem. Phys. 2003, 3, 161–180. 

56. Derwent, D. Reactivity Scales as Comparative Tools for Chemical Mechanisms: SAPRC vs. 

MCM. Available online: http://www.arb.ca.gov/research/reactivity/3-25-2009/derwent-

present.pdf (accessed on 28 March 2009). 

57. Altenstedt, J.; Karin, P. POCP for Individual VOC under European Conditions; Swedish 

Environmental Research Institute: Stockholm, Sweden, 1998. 

58. Koppmann, R. Volatile Organic Compounds in the Atmosphere; John Wiley & Sons: Hoboken, 

NJ, USA, 2008; pp. 1–512. 

59. Morris, M.; Wolf, K. Evaluation of New and Emerging Technologies for Textile Cleaning. 

Available online: https://dtsc.ca.gov/PollutionPrevention/upload/P2_ 

REP_Emerging_Technology_Textile_Cleaning.pdf (accessed on 1 August 2005). 

60. The Dow Chemical Company. Product Safety Assessment Dipropylene Glycol n-Butyl Ether. The 

Dow Chemical Company: Midland, MI, USA, 2008. 

61. CALED. Caled better Cleaning with Chemistry. Available online: 

http://www.caledclean.com/index.cfm/category/37/solvents.cfm (accessed on 1 August 2014). 

62. Rynex. Rynex-3 Dry Cleaning Solvent Equinox Chemicals. Available online: http://rynex.com/ 

PDF/Rynex%20MSDS%20WEBSITE.pdf ( accessed on 10 November 2010). 

63. UNION. Drycleaning Products, Perchloreoethylene machines L & P 800 series. Available online: 

http://www.uniondc.com/products/union-products-perc-lp800.html (accessed on 17 August 2012). 

64. Index, C.P. Archived Consumer Price Index Detailed Report Information: Available online: 

http://www.bls.gov/cpi/cpi_dr.htm (accessed on 1 May 2007). 

65. Anonymous. Assessment of Alternatives to Perchloroethylene for the Dry Cleaning Industry; 

Toxic Use Reduction Institute: University of Massachusetts, Lowell, 2007. 



Toxics 2014, 2 133 

 

66. Wolf, K.; Morris, M. Spotting Chemicals: Alternatives to Perchloroethylene and 

Trichloroethylene in the Textile Cleaning Industry; Institute for Research and Technical 

Assistance: Los Angeles, CA, USA, 2007. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


