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Abstract: Changes in the homeostasis of metals and microelements have been demonstrated in
Parkinson’s disease, whose etiology includes both a genetic and environmental basis. We studied
the difference of microelements in the hair of Parkinson’s disease subjects (n = 46) compared with
healthy controls (n = 24). Hair was chosen as a representative matrix to measure microelements, since
it is a vehicle of substance excretion from the human body and it allows for long-term evaluation
of metal exposure. An inductively coupled plasma mass spectrometry (ICP-MS) analysis of hair
collected from 24 Parkinson’s patients compared with their healthy relatives used as controls shows a
significant decrease in Ca (U = 166, p = 0.012),), Mg (U = 187, p = 0.037), and Sr (U = 183, p = 0.030).
Cd and Ca/Mg were decreased, and Cu was increased, in patients with respect to their healthy
related controls at the limit of significance (p = 0.0501). Principal Component Analysis (PCA) of
these microelements in hair shows a clustering into two groups according to gender, disease severity
according to the Hoehn–Yahr scale, and pharmacological therapy. This pilot study represents a
starting point for future investigations where a larger group of subjects will be involved to define
other microelements useful when screening for early biomarkers of Parkinson’s disease.
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1. Introduction

Parkinson’s disease (PD) is characterized in an incidence of 5%–10% from genetic alterations;
hence, the etiology of this neurodegeneration can be associated to an interplay between genes and
environmental factors that can modulate gene expression and protein metabolism [1]. Furthermore,
a correlation between idiopathic PD and early onset of the disease has been observed not only in
genetic forms but also in exposed occupational subjects with no family history of the disease among
their first-degree relatives, highlighting the key role of environmental factors in the development of
Parkinson’s disease [2]. At the same time, epidemiological investigations on humans and studies on
animal models of Parkinson’s-like diseases have shown that metals, neurotoxicants, and pesticides
play a key role in the onset of PD [2–13]. Metals can accumulate in microscopic proteinopathies

Toxics 2016, 4, 27; doi:10.3390/toxics4040027 www.mdpi.com/journal/toxics

http://www.mdpi.com/journal/toxics
http://www.mdpi.com
http://www.mdpi.com/journal/toxics


Toxics 2016, 4, 27 2 of 9

leading simultaneously to their decrease in cellular microenvironments, where they play a key role in
biological processes [14]. Iron accumulation in specific basal ganglia has been reported in Parkinsonism
together with a concomitant low plasma level of the metal, since iron retention in the brain could be
associated with the failure of iron passage from brain to plasma [14]. Oxidative stress and the increase
in alpha-synuclein are linked to iron, since this metal is required in the Fenton reaction and as an
enhancer of protein synthesis, respectively [14]. Like iron, other important biological metals such as
Cu, Zn, and Mn are imbalanced in PD [1,2,4–6,13,14].

A key point in the evaluation of microelement changes is the matrix to be used to detect “chronic”
imbalances in the body. Plasma and urine represent an appropriate matrix for the measurement of
daily microelements present in the human body because of homeostasis processes, whereas 2 cm long
hair reflects what has been in the blood stream for the last 30 days [15]. Furthermore, the level of
microelements in hair is up to 10-fold higher than that found in blood or urine [16]. This is mainly
due to the presence of cystine and metal cations that form bonds with the sulfur of the matrix hair
keratin and to the accumulation of microelements over a longer time period [17]. For this reason,
hair represents an attractive choice for occupational and environmental surveys. Moreover, hair has
the following advantages: (1) it is a stable matrix; (2) its collection, transportation, and storage is
far simpler; (3) it is a biological material that can be collected in a much less invasive manner than
blood samples; (4) hair can be segmented in order to determine repeated measurements over time.
The Environmental Protection Agency (EPA) has accepted the use of human hair as a matrix for
environmental monitoring [18].

Recently, we showed that in an animal model of Parkinson’s-like disease, there was a significant
increase in As, Mg, S, and Zn in the hair of 12-month-old rats compared with 6-month-old ones,
corresponding to an approximate relative human lifespan of 30 and 18 years old, respectively [19].
In addition, in the same animal model of PD, K, Si, and the Cu/Zn ratio were decreased [19].
Furthermore, several data emphasize the interest in research based on the microelement profile
in hair as a way to identify early biomarkers of several diseases, as reported with autism spectrum
disorder and in an animal model of age-related diseases [20–22]. In PD, knowledge of biomarkers
before clinical manifestations of the disease represents a major research goal since Parkinsonism
symptoms appear once 50% of dopamine neurons have already died [23]. For this objective, the
deterioration in the sense of smell has been suggested [24]; however, as reported in an animal model of
Parkinson’s-like disease [19], hair analysis could be useful for the screening of microelement changes
as early biomarkers in human hair because these microelements could be modified, demonstrated in
an animal model of Parkinson’s disease before the death of 50% of dopaminergic neurons [19].

With the aim to provide new insights on biomarkers for Parkinson’s disease, we investigated the
difference in microelements (Na, Mg, Al, Si, P, S, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Sn,
Sb, Hg, Pb, and Ca/Mg) in the hair of PD subjects compared with healthy controls. For this purpose,
we collected and analyzed via ICP-MS hair from volunteers with and without a diagnosis of PD.
A restricted control subject and a PD subject were selected from within a single family, taking hair from
the couple (e.g., a wife and a husband). Microelement clustering in the two family groups permitted
the identification, following PCA, of which microelements in the hair was modified according to
gender, the importance of the disease, pharmacological therapy, and the Hoehn–Yahr scale.

2. Materials and Methods

2.1. Recruitment of Participants

A total of 70 volunteers were recruited in this case-control study after informed consent was given
by the participants.

Of these, 46 (30 males and 16 females) had a diagnosis of PD according to Movement Disorder
Society (MDS) Clinical Diagnostic Criteria [25], and 24 (8 males and 16 females) were healthy
relatives used as controls with no history of neurological disease or exposure to environmental metals.
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The exclusion criteria for PD patients were a history of repeated strokes with stepwise progression,
a previous head injury, use of antipsychotic or dopamine depleting drugs, definite encephalitis,
oculogyric crises, or both on no drug treatment, a negative response to large doses of levodopa, and
other neurological features such as supranuclear gaze palsy, cerebellar signs, early severe autonomic
involvement, Babinski signs, occupational exposure to metals, and communicating hydrocephalus
on neuroimaging.

The history of each patient was collected in order to obtain information on the onset of clinical
manifestations, disease duration, and disease severity using the Hoehn–Yahr scale [26], as well as the
type of pharmacological treatment.

In the PD group, the mean age was 72.33 years (SEM = 1.25 years); in the healthy related controls,
the mean age was 68.25 years (SEM = 1.83 years).

In order to compare data on PD subjects with healthy controls from the same family, 24 PD
patients (17 males and 7 females) were selected from the 46 subjects recruited. The control subject from
the same family was the wife or the husband of the PD patient. Their mean age was 71.29 (SEM = 1.62).

Participant recruitment was carried out at the Neurology Unit in San Salvatore Hospital (Pesaro,
Italy) after informed consent.

2.2. Hair Collection

Hair samples were collected by the same operator throughout the project at the Neurology Unit
in San Salvatore Hospital (Pesaro, Italy) and Cuore Salus (Fabriano, Italy), and a number was assigned
to each sample in order to operate under blind conditions for the hair analysis.

Hair samples were washed 24–48 h prior to collection with a neutral shampoo. Ten hairs from the
bulb with a maximum length of 2 cm were collected at the frontoparietal, occipital, and retroauricular
areas in the left and right part of the head, obtaining 60 hair samples per person.

2.3. Hair Analysis

Twenty-five macro- and microelements, including heavy metals (Na, Mg, Al, Si, P, S, K, Ca,
Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Sn, Sb, Hg, Pb, and Ca/Mg), were analyzed
via the ICP-MS technique [27]. This validated method is widely used for hair analysis [28,29].
Hair samples were cut into small pieces using a clean ceramic knife. About 60 ± 7 mg were
transferred into a polyethylene-labeled weighing pan, and the exact weight was recorded. To each
sample, 5 mL of reagent-grade nitric acid (HNO3) were added as an oxidant solution to the Teflon
vessel (Berghof Speedwave 4), and the samples were then incubated for 10 min prior to the onset of
mineralization [29,30]. After the mineralization process, the samples were cooled down to ambient
temperature, and the solution was transferred to 10 mL polyethylene test tubes and filled up with
reagent grade water type 1. One milliliter of the solution was transferred to a test tube and diluted
10 times with reagent grade water type 1 in order to decrease the acid concentration. The solution
was analyzed for the amounts of mineral elements and trace metals via ICP-MS. Sample results were
quantified by multiple calibration curves for all elements, and the results were checked by comparison
with Certified Reference Material Hairs (ERM DB001, GBW 07601) treated in the same mode.

2.4. Statistical Analysis

Statistical analysis was carried out using the program Statistica 8.0 (StatSoft Italy Srl, Vigonza,
PD, Italy, 2007). Since data of all microelements were not normally distributed, Mann–Whitney was
employed for analysis. Differences were considered significant at a p-value of 0.05.

2.5. Principal Component Analysis and Hierarchical Cluster Analysis

Besides statistical data analysis, data were analyzed using two of the golden standard techniques
in this field: Principal Component Analysis (PCA) and Hierarchical Clustering (HC). PCA is an
unsupervised statistical procedure used both for reducing the dimensionality of multivariate data



Toxics 2016, 4, 27 4 of 9

and for obtaining information on the possible clusters in the data which could be hidden by their
high dimensionality. Technically, PCA transforms the data projecting them into a new space, which is
built using a new basis in such a way where the maximal variance is exposed. The new orthonormal
coordinate system of data is made up by the so-called Principal Components (PCs): they are mutually
orthogonal and allow for a rationalization of the maximal variance.

Clustering is a methodology for classifying a finite set of objects or data. Data are represented
using a proximity matrix where, by using a metric, the “proximities” among the data are recorded.
The proximity matrix is the input of any clustering algorithm. In this paper, we used the agglomerative
hierarchical clustering approach. This method can be either bottom-up or top-down: in the first case, it
consists of building nested clusters (hierarchical clusters), where clusters at level i are the fusion of
(agglomerative clustering) clusters at level i – 1; in the second case, the clustering at level i is given by
the splitting up (division clustering) of a bigger cluster at level i + 1.

In this paper, we performed the agglomerative clustering using the R package “stats.” In detail,
the agglomerative clustering operates according to the following steps:

1. At the beginning, we have a collection of N atomic cluster, and each cluster contains one
data point.

2. According to a linkage method, the closest clusters are found.
3. The closest clusters are melted into new clusters.
4. The melted clusters are removed from the collection of clusters.

Steps 2, 3, and 4 are repeated until only one cluster remains; at the end, the procedure produces a
dendrogram: a hierarchical tree of clusters.

A fundamental point in this procedure is to define a linkage method, a method to measure the
distance between two clusters.

Both PCA and HC were performed using the free software R (Version 3.2.2, R CoreTeam, Vienna,
Austria) under GNU General Public License, www.r-project.org.

3. Results

3.1. Hair Analysis

ICP-MS analysis on PD patients (n = 46) shows that Ca, Sr, and Cd decrease significantly with
respect to the healthy control group (n = 24) (Table 1). If we select only PD patients (n = 24) from the
same family of healthy controls (n = 24), their hair, compared with that of their relatives as controls,
shows a significant decrease in Ca (U = 166, p = 0.012), Mg (U = 187, p = 0.037), and Sr (U = 183,
p = 0.030). Cd was decreased in PD patients with respect to healthy related controls at the limit of
significance (p = 0.0501) (Table 1).

Table 1. Metals and microelements in the hair of Parkinson’s patients and control subjects.

Metals and
Microelements (ppm)

Control (n = 24) #

Mean ± SEM
PD (n = 24) #

Mean ± SEM
PD (n = 46)

Mean ± SEM

Na 727.018 ± 125.760 620.395 ± 92.464 628.611 ± 92.464
Mg 207.201 ± 30.075 153.617 * ± 24.717 174.294 ± 27.013
Al 111.452 ± 22.754 262.138 ± 64.209 283.230 ± 66.506
Si 303.830 ± 62.176 308.630 ±32.806 335.799 ± 41.869
P 367.064 ± 42.159 538.565 ± 59.665 503.966 ± 53.817
S 42372.277 ± 1205.134 41186.553 ± 954.733 40144.768 ± 1037.435
K 855.179 ± 142.877 1008.183 ± 127.685 1014.116 ± 125.460
Ca 2309.983 ± 350.837 1361.330 * ± 237.619 1674.490 * ± 266.350
Cr 2.633 ± 1.745 0.937 ± 0.113 1.341 ± 0.211
Mn 0.255± 0.032 0.195± 0.032 1.775 ± 0.591
Fe 15.174 ± 2.119 11.643 ± 1.156 24.812 ± 3.064

www.r-project.org
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Table 1. Cont.

Metals and
Microelements (ppm)

Control (n = 24) #

Mean ± SEM
PD (n = 24) #

Mean ± SEM
PD (n = 46)

Mean ± SEM

Ni 2.018 ± 0.388 3.162 ± 0.890 2.846 ± 0.713
Cu 25.276± 9.854 16.900± 3.011 16.467 ± 2.925
Zn 126.588± 9.575 103.297± 9.310 177.398 ± 12.844
As 0.024 ± 0.004 0.027 ± 0.002 0.024 ± 0.002
Se 0.522 ± 0.093 0.462 ± 0.022 0.428 ± 0.023
Rb 0.932 ± 0.162 1.495 ± 0.217 1.350 ± 0.197
Sr 14.034 ± 2.700 7.297 * ± 1.289 8.367 * ± 1.844
Ag 0.102 ± 0.025 0.093 ± 0.016 0.097 ± 0.016
Cd 0.024 ± 0.006 0.009 §± 0.001 0.009 * ± 0.001
Sn 0.670 ± 0.188 0.446 ± 0.146 0.417 ± 0.112
Sb 0.075 ± 0.015 0.103 ± 0.045 0.196 ± 0.113
Hg 9.665 ± 3.113 6.552 ± 1.026 4.588 ± 0.844
Pb 1.038 ± 0.241 0.735 ± 0.083 0.627 ± 0.069

Ca/Mg 12.210 ± 2.006 10.721 ± 1.503 11.834 ± 1.823
# Selected from the same family (wife and husband). * p < 0.05; § p = 0.05.

3.2. PCA

PCA was performed taking into account the data of six metals/microelements (Ca, Cd, Sr, Mg,
Ca/Mg, and Cu) obtained from only 48 samples, i.e., 24 controls (C) and 24 PD patients.

From the control group, we took into account only healthy people paired with PD patients
(husband and wife) in order to reduce the variability between subjects in the hope of removing some
of the environmental differences. For PCA, the six microelements that were statistically significant
or near statistical significance were used. The results of the PCA are shown in Figure 1. According
to the screen plot 1B, only the first two PCAs were used because they are able to explain 77% of total
variance. In Figure 1A, we can see the effect of PCA on our data set: patients are clustered according to
the gender type into two well-defined groups (left: male; right: female).
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Figure 1. Principal Component Analysis (PCA) (a) of subjects clustered according to gender (F = ;
M = N) and screen plot (b).

3.3. Hierarchical Clustering Analysis

The same data (Ca, Cd, Sr, Mg, Ca/Mg, and Cu) processed with PCA were analyzed by Ward’s
method equipped with the squared Euclidean metric [31]. This is the standard way to use the hclust
command in R. In fact, in the classical formulation of Ward’s method, given two clusters, A = {xi}nA

i=1
and B =

{
xj
}nB

j=1, the distance between them is given by

dW =
nAnB

nA + nB
‖ ρ− µ ‖2

2 (1)

where ρ and µ are the centroids of the Clusters A and B (Figure 2).
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Figure 2. Cluster dendrogram obtained from PD (n = 24) and healthy subjects from the same family
(n = 24). Cluster A includes healthy controls and mainly females with low grade of PD, while
Cluster B includes mainly male PD patients with a severe grade of PD and who had a longer and
stronger medication.

4. Discussion

Dysregulation of metal and microelement homeostasis has been reported in several
neurodegenerative diseases [19–22,32]. In particular, deficits in Ca and Mg have been associated



Toxics 2016, 4, 27 7 of 9

with neuronal disorders; Ca plays a key role in signal transduction, while Mg is a key cofactor of
many enzymes influencing neurotransmission through regulation of their mediators [33]. Furthermore,
a deficit in Mg has been associated with depression and neuromuscular transition deficits [33]. Rats fed
low levels of Mg in early life have shown decreases in dopaminergic neurons together with activation
of microglia in substantia nigra pars compacta [33]. Low Mg dietary intake has been associated
with deficits in the olfactory function typically present in PD patients, and Mg supplementation
has had positive effects against PD in the Japanese population [33]. On the other hand, Mg and Ca
deficiency has been associated with the first signs of neurological and neuromuscular disturbances in
neurodegeneration, together with the accumulation of toxic metals like Cd, which is linked to oxidative
stress and superoxide dismutase inhibition [32,33]. In addition, Cd, Pb, and As have also been reported
to induce damage at the blood–brain barrier (BBB) following early life exposure [34].

In neurodegenerative disorders, abnormal metal–protein interactions could lead to damage of
the BBB or energy imbalances in the brain because the metal regulatory transport system depends on
ATPase activity [35–38]. This point indicates that metal dyshomeostasis may occur even in subjects
that are not exposed to toxic environments [38]. In our study, a significantly lower content of Ca
and Mg, together with a lower level of Cd at the limit of significance, were detected in the hair of
PD patients compared with healthy related controls, the wife or husband living in the same family.
The comparison with the healthy spouse permits the comparison of subjects with a similar life style
and age. An interesting outcome obtained in this study through the Hierarchical Clustering Analysis
was that subjects with mild Parkinsonism were grouped together and were distinct from the PD
group with more severe symptoms. Cluster A was comprised mainly of female PD patients with mild
symptoms and low dosage of dopaminergic treatment, while Cluster B included mainly male PD
patients with more serious symptoms and longer pharmacological treatment. In addition, the subjects
clustered in Cluster A have a level of Ca, Mg, Sr, and Cd in their hair similar to the healthy controls.
This therefore suggests that Ca, Mg, Sr, and Cd represent potential biomarkers that distinguish the
severity of the disease.

5. Conclusions

In conclusion, this study shows that metals and microelements are imbalanced in hair from
PD patients compared with controls, and that different genders and levels of disease severity can
discriminate PD subjects that cluster in different groups. Further studies are required to generate
data on larger numbers of patients in order to develop a model, based on specific algorithms, that is
useful for calculating the cut-off value of selected metals and microelements, differentiating subjects
developing PD from healthy ones. The next step will be to elaborate a predictive model to classify
data that could be useful for clustering groups according to disease severity. This classification can
bring new insights on microelement changes and could lead to new therapeutic approaches to contrast
PD progression.
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